首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于YOLOv5改进模型的柑橘果实识别方法   总被引:2,自引:2,他引:0  
为实现在自然环境下对柑橘果实的识别,提出一种基于YOLOv5改进模型的柑橘识别方法。通过引入CBAM(convolutional block attention module,卷积注意力模块)注意力机制模块来提高网络的特征提取能力,改善遮挡目标与小目标的漏检问题;采用α-IoU损失函数代替GIoU损失函数作为边界框回归损失函数,提高边界框定位精度。结果显示:本研究提出的模型平均精度AP值达到91.3%,在GPU上对单张柑橘果实图像的检测时间为16.7 ms,模型占用内存为14.5 Mb。结果表明,本研究基于YOLOv5的改进算法可实现在自然环境下快速准确地识别柑橘果实,满足实时目标检测的实际应用需求。  相似文献   

2.
为评估日光温室蓝莓开花窗口期内授粉蜜蜂投放量的合理性,基于机器视觉对蓝莓的蜜蜂授粉次数进行统计。针对检测环境复杂、目标尺度小、易被遮挡等问题,对数据集进行改进泊松融合数据增强处理;并优化设计YOLOv5模型结构,通过引入GAM注意力机制和Transformer模块,增强模型特征提取能力,特征金字塔网络采用BiFPN结构及CARAFE模块补充上下文信息;使用EIoU损失函数和Soft NMS边界框筛选算法,提高边界框的定位精度,解决目标遮挡漏检问题。结果显示,改进后网络的平均精度均值达到96.6%,较原网络提高3.5个百分点,在GPU上对单张蓝莓授粉图像的平均检测时间为11.4 ms。研究结果表明,本研究建立的模型的识别准确度、检测速度及鲁棒性能满足对蓝莓的蜜蜂授粉次数的实时监测。  相似文献   

3.
针对如何提高苹果表面缺陷的检测速度和精度,解决模型内存占比大的问题,提出一种基于改进YOLOv7的苹果表面缺陷轻量化检测算法。首先引入GhostNetV2作为YOLOv7网络的backbone,有效降低了模型复杂度,提高了检测速度。并引入SimAM无参注意力机制,以强化不同深度的特征信息。使用双向加权特征金字塔结构BiFPN进行加权特征融合,进一步提升苹果表面缺陷的检测精度。最后采用ECIOU损失函数来计算边界框损失,进一步提高模型收敛速度和整体性能。结果表明,改进YOLOv7模型在苹果表面缺陷检测上mAP@0.5较原YOLOv7网络提高2.0百分点,准确率和召回率也分别提升了1.7、3.9百分点,模型减小20.8 MB,速度提升36.43帧/s。其综合性能也优于SSD、CenterNet等主流算法,可实现对苹果表面缺陷的快速准确诊断。  相似文献   

4.
针对甘蔗智能切种机作业过程中背景杂乱导致茎节识别精度低等问题,提出了基于改进YOLOv5的一种甘蔗茎节识别方法。采用跨层级连接的方式优化颈部结构,增强不同层级间的信息融合能力;同时改进模型损失函数,一方面引入EIoU损失函数代替原始CIoU损失函数,提高边界框回归精度,另一方面利用Focal loss损失函数替换交叉熵损失函数,解决正负样本比例不均衡问题;最后引入Ghost模块轻量化网络模型。试验结果表明,本研究提出的模型相较于原模型,平均精度值提高了1.4个百分点,达97.80%,单张检测时间为16.9ms,模型大小仅11.40 Mb,实现了在不同杂乱程度场景下的甘蔗茎节识别,降低了切种时背景杂乱产生的影响。  相似文献   

5.
针对自然环境中,人工目视解译苹果叶部病害耗时耗力、人为主观因素强的问题。本研究提出了一种融合自注意力机制和Transformer模块的目标检测算法——BCE-YOLOv5,实现对自然环境下对苹果叶片病虫害的自动识别与检测。该算法首先使用BotNet、ConvNeXt模块分别替换Backbone网络和Neck网络的CSP结构,增加自注意力机制对目标的特征提取能力。通过将改进的CBAM引入YOLOv5的特征融合网络之后,使注意力机制对特征融合信息更加地关注。最后,用α-IoU损失函数替换IoU损失函数,使得网络在模型训练过程中收敛的更加稳定。BCE-YOLOv5算法在传统算法YOLOv5基础上平均精准率均值提升了2.9百分点,并且改进后的算法的模型大小和计算量较传统算法分别减小了0.2 M和0.9 GFLOPs。平均精度均值比YOLOv4s、YOLOv6s、YOLOx-s和YOLOv7模型分别高2.5、1.3、3.5、2.2百分点。该方法能快速准确识别苹果叶部病害,为苹果种植过程中提供智能化管理做参考。  相似文献   

6.
为实现穴盘甘蓝的智能化管理,针对穴盘甘蓝病害识别存在的光照不均匀、对比度低和待检测目标小等问题,研究了基于深度学习的穴盘甘蓝病害检测算法。该算法结合通道空间注意力机制模块,在特征提取模块对特征信息进行重标定,引导模型关注病害区域特征,抑制背景噪声,降低模型漏检率。并采用自适应多尺度特征融合算法提取穴盘甘蓝病害多尺度特征,充分利用不同尺度特征的语义信息提升小目标的检测精确率。由于算法的检测框定位不准确,在回归损失函数中添加了重叠面积损失、中心点距离损失和宽高损失,对回归任务进行了优化,提高穴盘甘蓝病害预测框定位精度;同时引入变焦损失函数作为分类损失函数,利用权重缩放因子缓解模型训练过程中相似病害类间差距小的问题。结果表明,研究算法对穴盘甘蓝炭疽病、细菌性黑斑病、褐斑病、黑腐病的检测平均精确率分别为97.59%、99.70%、98.69%和97.64%;其平均精度均值达到98.41%,与YOLOX、Faster R-CNN、YOLOv3、SSD、CenterNet算法相比,分别提高了4.96、12.86、18.19、4.71、10.69百分点。  相似文献   

7.
为实现自然环境下不同成熟度火龙果在不同光照、不同遮挡场景下的精确快速识别,提出了一种基于对YOLOv5的网络模型改进的一种检测模型(PITAYA-YOLOv5)。首先,使用k-means++算法重新生成火龙果数据集的锚框,提高了网络的特征提取能力;其次,将CSPDarkNet替换成PPLCNet作为骨干网络,并加入SE注意力模块(Squeeze-and-Excitation block),在降低网络参数量的同时保持检测精度;同时加入加权双向特征金字塔网络(Bi-FPN)替换YOLOv5的特征融合网络,提高网络对不同尺度特征图的融合效率;引入αDIoU损失函数,提高了模型的收敛效果。试验结果表明:PITAYA-YOLOv5目标检测模型的平均精度均值为94.90%,较原模型提高1.33个百分点,F1值为91.37%,较原模型提高1.12个百分点,平均检测速度达到20.2 ms,占用内存仅有8.1 M。针对枝条遮挡和果间遮挡下的火龙果检测能力明显增强。对比Faster R-CNN、CenterNet、YOLOv3、YOLOv5以及轻量化骨干网络ShuffleNetv2,该模型具有良好的检测精...  相似文献   

8.
[目的]提高温室甜瓜采摘机器人在复杂光线变化和枝叶遮挡情况下的检测精度,实现检测目标的空间坐标定位.[方法]基于YOLOv3,研究优化不同主干网络,头部、颈部网络结构及边界框损失函数组合对模型检测性能的影响,建立甜瓜严重遮挡下的目标检测网络模型YOLOResNet70,然后将模型与Intel RealSense D43...  相似文献   

9.
基于YOLO的贻贝(Mytilus edulis)识别与检测技术,是实现贻贝分级、分苗等作业环节机械化和智能化的关键。然而,贻贝因外部特征不够清晰明确,给识别准确率的提高带来了挑战。本文提出一种基于改进YOLOv5算法的贻贝目标检测模型(CST-YOLO)。该算法融合CoordAttention注意力机制,以增强特征表达能力;采用SIoU作为边界框回归损失函数,以减少边界框回归损失,提高模型的检测速度;将Head替换为改进的解耦头TSCODE Head来提高检测准确率。并在自制的贻贝数据集上进行算法测试,实验结果显示:相比YOLOv5算法,CST-YOLO算法的准确率P提高了0.428%,mAP_0.5:0.95达到92.221%,提高了1.583%。实验表明CST-YOLO算法在保证检测速度的前提下,有效提高了贻贝目标的检测精度。本研究有助于机器视觉技术在贻贝养殖业自动化与智能化生产加工中的应用。  相似文献   

10.
为准确识别自然条件下的咖啡叶片病虫害,提出一种基于YOLOv5改进的目标检测算法。该方法通过在主干网络融入ConvNext网络和ECA注意力机制来优化相关网络模型,提高了网络特征提取能力,更好解决了鲁棒性差和对遮挡目标与小目标的漏检问题。结果表明,该方法的检测精度均值(mAP)达到了94.13%,检测速度和精度都具有良好效果,同时模型大小只有17.2 MB,可以满足边缘设备的运行条件。因此,改进后的YOLOv5算法可为自然环境下咖啡叶片病虫害识别提供技术支撑,满足实时目标检测的实际应用需求。  相似文献   

11.
无人工干预的猪舍清洗可以有效预防猪只感染疾病。针对猪舍场景中光线较弱、特征不明显、存在相互遮挡情况导致对清洗目标的检测准确率低的问题,提出一种改进的YOLOv5算法。在预处理阶段,利用基于双边滤波的Retinex算法提高在弱光条件下对猪舍清洗目标的检测能力;在清洗目标检测过程中,通过在YOLOv5网络的backbone中引入CBAM(convolutional block attention module)注意力机制,使网络学习到猪舍清洗目标更多的有效特征信息;对网络中边框回归损失函数进行改进,采用DIoU-NMS算法筛选出猪舍清洗目标的候选框,提高在部分遮挡情况下清洗目标的检测精度。实验结果表明:在猪舍清洗目标的测试集上改进后的YOLOv5目标检测算法较基准算法准确率提高7.3百分点,召回率提高7.6百分点,平均准确度提高7.1百分点,在弱光条件和目标遮挡情况下鲁棒性更高。研究结果为畜牧智能清洗设备的研发提供了基础。  相似文献   

12.
为了解决水稻小病斑检测不准确的问题,提出一种基于改进YOLOv3的水稻叶部病害检测方法Rice–YOLOv3。首先,采用K–means++聚类算法,计算新的锚框尺寸,使锚框尺寸与数据集相匹配;其次,采用激活函数Mish替换YOLOv3主干网络中的Leaky Relu激活函数,利用该激活函数的平滑特性,提升网络的检测准确率,同时将CSPNet与DarkNet53中的残差模块相结合,在避免出现梯度信息重复的同时,增加神经网络的学习能力,提升检测精度和速率;最后,在FPN层分别引入注意力机制ECA和CBAM模块,解决特征层堆叠处的特征提取问题,提高对小病斑的检测能力。在训练过程中,采用COCO数据集预训练网络模型,得到预训练权重,改善训练效果。结果表明:在测试集下,Rice–YOLOv3检测水稻叶部3种病害的平均精度均值(mAP)达92.94%,其中,稻瘟病、褐斑病、白叶枯病的m AP值分别达93.34%、89.68%、95.80%,相较于YOLOv3,Rice–YOLOv3检测的m AP提高了6.05个百分点,速率提升了2.8帧/s,对稻瘟病和褐斑病的小病斑的检测能力明显增强,可以检测出原...  相似文献   

13.
为解决当前流行的目标检测模型对自然环境下百香果由于目标密集互相遮挡所致的检测效率低等问题,以YOLOv3网络为基础,提出了一种基于增强的YOLOv3百香果目标检测算法。首先,针对百香果目标尺寸的特点,利用以交并比为距离度量的改进K-means++算法,重新获取与目标果实相匹配的锚选框,提高对目标的框选精度以及模型的收敛速度;其次,在输出网络中将用来筛选目标预测框的Soft-NMS算法通过线性函数的形式对其高斯函数的抑制参数进行改进,以提高模型在不同密集场景下的适应性和检测能力;最后,利用增强的YOLOv3模型在经过预处理后的百香果数据集上进行多次试验对比,结果表明增强后的YOLOv3目标检测算法平均精度均值(mAP)达到94.62%,F1值达到94.34%,较原YOLOv3算法分别提升了4.58和3.68百分点,平均检测速度为25.45帧/s,基本满足了自然环境下百香果目标检测的精准性和实时性要求。  相似文献   

14.
[目的]针对自然场景下无人机拍摄的图像中鼠洞目标占比小,与地物高度融合且容易受阴影等各类因素影响,导致误识别率高的情况,需要对目标检测算法进行改进,以提高鼠洞定位精度。[方法]以YOLOv5s为基础算法进行优化改进,在Backbone主干网络的C3模块融合轻量ECA注意力机制模块,从通道方面更好关注特征信息,降低漏检率;在特征金字塔FPN中引入转置卷积学习最佳上采样方法,恢复卷积运算中丢失的有用信息;用SIoU替换CIoU损失函数来有效减少冗余框,同时加快预测框的收敛和回归。其次,做消融实验来验证3种改进策略的有效性并对比模型改进前后在不同场景下的识别情况。[结果]改进的YOLOv5s比原始模型的P、R和mAP分别提高了3.3%、3.7%和3.5%,FPS达到了56.7,且在特殊场景下无漏检、错检的情况,可以保证鼠洞检测的准确性和实时性。对比其它算法在平均检测精度、体积和速度上都较有优势。[结论]本文改进的算法能满足在复杂场景下的鼠洞检测,实现精确定位,为鼠害监测提供鼠洞检测方面的支撑。  相似文献   

15.
针对现有目标检测算法对自然环境下核桃识别存在漏检、误检等问题,提出了一种基于Swin Transformer多层特征融合改进的YOLOX-S核桃识别算法。首先,在主干特征提取网络中引入基于Swin Transformer的多层特征融合模块,借助Swin Transformer的多头注意力机制对小目标的特征信息进行提取并与特征图进行融合,可以有效解决因网络层数加深导致的高层特征图中小目标特征信息丢失问题;其次,为了提高算法的检测精度,引入更高效的Repblock模块对原网络中的CSP模块进行替换;最后,为了提高下采样效果,使用更为优秀的Transition Block模块作为主干特征提取网络的下采样模块。结果表明,改进后的YOLOX-S模型在采集的自然环境下核桃数据集上平均精度AP50达到96.72%,分别比Faster-RCNN、YOLOv5-S、YOLOX-S算法提高7.36、1.38、0.62百分点,检测速度达到46 f/s,模型参数大小为20.55 M。改进后的YOLOX-S算法具有更好的精度,改善了漏检和误检问题,对自然环境下的核桃有更好的识别效果。  相似文献   

16.
目的 提高杂交稻种子活力分级检测精度和速度。方法 提出了一种基于YOLOv5改进模型(YOLOv5-I)的杂交稻芽种快速分级检测方法,该方法引入SE (Squeeze-and-excitation)注意力机制模块以提高目标通道的特征提取能力,并采用CIoU损失函数策略以提高模型的收敛速度。结果 YOLOv5-I算法能有效实现杂交稻芽种快速分级检测,检测精度和准确率高,检测速度快。在测试集上,YOLOv5-I算法目标检测的平均精度为97.52%,平均检测时间为3.745 ms,模型占用内存空间小,仅为13.7 MB;YOLOv5-I算法的检测精度和速度均优于YOLOv5s、Faster-RCNN、YOLOv4和SSD模型。结论 YOLOv5-I算法优于现有的算法,提升了检测精度和速度,能够满足杂交稻芽种分级检测的实用要求。  相似文献   

17.
【目的】黄龙病被称为柑橘的“癌症”,是一种毁灭性病害,而木虱是黄龙病传播的主要媒介, 对木虱的监测和精准消杀是防控黄龙病及抑制其传播的一种有效途径。【方法】传统方式消灭木虱主要是靠人 工喷洒药物,人力成本高但防控效果并不理想。采用基于改进 YOLOX 的木虱边缘检测方法,在主干网络加入卷 积注意力模块 CBAM(Convolutional block attention module),在通道和空间两个维度对重要特征进行进一步提取; 将目标损失中的交叉熵损失改为使用 Focal Loss,进一步降低漏检率。【结果】本研究设计的算法契合木虱检测 平台,木虱数据集拍摄于广东省湛江市廉江红橙园,深度适应农业农村实际发展需要,基于 YOLOX 模型对骨干 网络和损失函数做出改进实现了更加优秀的柑橘木虱检测方法,在柑橘木虱数据集上获得 85.66% 的 AP 值,比 原始模型提升 2.70 个百分点,检测精度比 YOLOv3、YOLOv4-Tiny、YOLOv5-s 模型分别高 8.61、4.23、3.62 个 百分点,识别准确率大幅提升。【结论】改进的 YOLOX 模型可以更好地识别柑橘木虱,准确率得到提升,为后 续实时检测平台打下了基础。  相似文献   

18.
针对复杂环境下目前现有的玉米病虫害检测方法的精度不理想、模型复杂、难以在移动端部署等问题,本研究提出了基于轻量化改进型YOLOv5s的玉米病虫害检测方法。首先,采用轻量级网络GhostNet替换原始YOLOv5s模型中特征提取网络和特征融合网络的卷积层,降低模型的计算量和参数量,提高运行速度,以满足移动端的部署要求;其次,为弥补GhostNet所带来的检测精度下降缺陷,在模型的主干特征提取网络中引入注意力机制,更加全面地评估特征权值,以增强玉米病虫害的特征,减弱无关信息的干扰,提升检测性能;最后,将模型的损失函数由CIOU替换为EIOU,以增强模型对目标的精确定位能力,从而提升模型的收敛速度和回归精度。试验结果表明,改进模型相比原始YOLOv5s模型在对供试玉米病虫害检测中,P、R和mAP分别提高了1.9个百分点、2.2个百分点和2.0个百分点,分别达到了94.6%、80.2%和88.8%;在保持较高检测精度的同时,模型的计算量、参数量和模型大小分别减少了50.6%、52.9%和50.4%,解决了检测模型在移动端的部署问题。  相似文献   

19.
针对当前水稻穴播机缺乏实时监测和自主调节机制,无法对播种状态进行实时修正的弊端,为进一步提升穴播机的核心性能指标,提出一种基于深度学习的水稻精量穴播排种系统。采用YOLOv5检测模型在自制水稻种粒数据集上进行特征训练,通过增加检测尺度和优化初始锚框参数增强算法模型对小目标颗粒对象的检测精度,将训练好的水稻种粒检测器与DeepSORT算法连接,实现对水稻种粒的追踪计数。机具控制端将检测模型输出结果与农艺指标进行对比,通过计算种粒数量偏差实时修正振送器送种速率,运用PID控制技术实时对排种状态进行自我调节,最终实现智能排种。研究结果显示,经过优化后的YOLOv5水稻种粒检测器准确率为98.6%,召回率为98.8%,平均精度为99.1%,相较于原版YOLOv5准确率上升了3.0百分点,召回率提升了3.6百分点,平均精度提升了3.2百分点;本设计水稻排种系统空穴率为1.33%,穴粒合格率为95.6%,符合水稻直播机国家标准,相较于未引入深度学习的样机空穴率下降了2.12百分点,穴粒合格率提升了8.73百分点。结果表明,本设计的水稻穴播排钟系统在检测性能和核心指标上均有提升,可以为传统农机与人工...  相似文献   

20.
针对现有番茄检测精度低、没有品质检测和部署难度高等问题,提出基于YOLOv5s改进的番茄及品质实时检测方法,并与原始YOLOv5模型及其他经典模型进行对比研究。结果表明,针对番茄大小不同的问题,采用K-Means++算法重新计算先验锚框提高模型定位精度;在YOLOv5s主干网络末端添加GAM注意力模块,提升模型检测精度并改善鲁棒性;应用加权双向特征金字塔网络(BiFPN)修改原有结构,完成更深层次的加权特征融合;颈部添加转换器(transformer),增强网络对多尺度目标的检测能力。改进后的YOLOv5s番茄识别算法检测速度达到72帧/s。在测试集中对番茄检测均值平均精度(mAP)达到93.9%,分别比SSD、Faster-RCNN、YOLOv4-Tiny、原始YOLOv5s模型提高17.2、13.1、5.5、3.3百分点。本研究提出的番茄实时检测方法,在保持检测速度的同时,可降低背景因素干扰,实现复杂场景下对番茄的精准识别,具有非常好的应用前景,为实现番茄自动采摘提供相应技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号