首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
To establish the effect of sward height, concentrate feeding time, and restricted time for grazing on forage utilization by grazing cattle, 32 crossbred beef (24 Angus and eight Hereford) cows (632 kg BW) and calves (104 kg BW) were grouped by weight and calving date. They were assigned randomly to two sward height treatments (4 to 8 or 8 to 12 cm), replicated four times. The herbage comprised mainly Kentucky bluegrass, orchardgrass, some forbs, and white clover. The cows were restricted to 12 h/d grazing (0700 to 1900) or unrestricted to 24 h/d grazing and fed a concentrate supplement (4.1 kg DM.cow(-1).d(-1), approximately 0.65% of BW or 33% of total DMI) either at 0700 or 1800. The experiment was repeated over three 15-d periods in May, June/July, and August 2000. The herbage on high sward height pasture was higher (P = 0.06) in NDF and ADF and lower (P < 0.01) in CP than low sward height herbage. For cows restricted to 12 h/d grazing, supplementing at 0700 as opposed 1800 resulted in greater (P = 0.04) forage DMI (8.6 vs. 8.1 kg/d), whereas cows that were unrestricted showed little change (8.2 kg/d at 0700 vs. 8.4 kg/d at 1800). Supplementing at 1800 as opposed to 0700 resulted in greater (P = 0.03) herbage DM digestibility (67.7 vs. 64.5%) for cows on high sward height, whereas cows on low sward height exhibited minimal differences (65.4% at 1800 vs. 66.3% at 0700). Cows restricted to 12 h/d grazing and supplemented at 0700 as opposed to 1800 resulted in greater (P = 0.06) digestible DMI (5.0 vs. 4.7 kg/d), whereas unrestricted cows exhibited the opposite response (4.6 kg/d digestible DMI at 0700 vs. 4.9 kg/d at 1800). Supplementing at 1800 as opposed to 0700 increased the time spent grazing to a greater (P = 0.09) extent for restricted than for unrestricted cows. When forage availability or grazing time was limiting (due to a low forage allowance and restricted access to forage, respectively) supplementing concentrates at 0700 resulted in greater forage utilization and intake rate because of increased forage DMI, DM digestibility, and digestible DMI. However, when forage or grazing time was not limiting, supplementing concentrates at 1800 resulted in greater forage utilization because of increased forage DM digestibility.  相似文献   

2.
Although feed intake and efficiency differences in growing cattle of low and high residual feed intake (RFI) classification have been established, little is known about the difference in grazed forage intake between beef cows of known RFI classification. Two experiments were conducted using Hereford cows for which RFI had been determined as heifers using the GrowSafe 4000E feed intake system, after which heifers had been divided into thirds as low RFI, mid RFI, and high RFI. During Exp. 1, 2 replicates of low and high RFI cows (n = 7/replicate) in mid- to late-gestation were blocked to 1 of 4 non-endophyte-infected tall fescue paddocks (1.8 to 2.4 ha), which they grazed continuously for 84 d during summer. Using grazing exclosures, weekly rising plate meter readings, and forage harvests every 21 d, average forage DMI was calculated. Low and high RFI groups did not differ (P > 0.05) in BW change or BCS change over the trial (19.5 vs. 22.1 kg of BW gain and 0.11 vs. 0.10 BCS gain), but low RFI cows had a 21% numerically lower DMI than high RFI cows (12.4 vs. 15.6 kg/d; P = 0.23). The average area needed per paddock over the trial was similar for low and high RFI cows (1.71 vs. 1.82 ha; P = 0.35), and the average DM on offer over the trial was less for low RFI than for high RFI cows (4,215 vs. 4,376 kg; P = 0.06). During Exp. 2, 3 replicates of low and high RFI cows with their calves (n = 4 pair/replicate) strip-grazed stockpiled and early spring growth tall fescue paddocks (0.7 to 0.9 ha) for 60 d in late winter and early spring. Because of limiting forage availability and quality at trial initiation, cow-calf pairs were also fed 3.31 kg/pair of pelleted soyhulls daily. Pre- and post-grazed forage samples were harvested for 4 grazing periods, and forage growth was estimated using a growing degree days calculation and on-site weather station data. Performance did not differ (P > 0.05) between low and high RFI cows throughout the experiment (18.4 vs. 26.6 kg of BW gain and -0.04 vs. 0.15 BCS gain). Despite the utilization of forage offered being similar for low and high RFI cow-calf pairs (P > 0.05), low RFI cows and their calves had an 11% numerically lower DMI than high RFI pairs (12.5 vs. 14.1 kg/d; P = 0.12). We concluded that either no intake differences existed between low and high RFI cows or that current methodology and small animal numbers limited our ability to detect differences.  相似文献   

3.
To establish the effect of sward height (SH) and concentrate supplementation on performance of grazing cattle, 24 crossbred Angus beef cows (535 kg BW) and calves (114 kg BW) were grouped by weight and calving date. They were randomly assigned to two SH treatments, either 4 to 8 cm or 8 to 11 cm, and fed three levels of supplement, high, low, or none, consisting of 6.24, 3.12, and 0 kg x animal(-1) x d(-1), respectively. The experiment was repeated over three 15-d periods in 1996: May (P1), June/July (P2), and August (P3). No SH x supplement level x period or SH x supplement level interactions (P > 0.10) were evident for responses tested. Cows on lower SH had greater (P < 0.08) DMI but spent an additional 1.3 h/d (P < 0.01) grazing compared with cows on higher SH. Sward height had no influence (P > 0.10) on forage DM digestibility (DMD). Forage DMI, DMD, and grazing time (GT) decreased (P < 0.05) as supplementation increased. Nonetheless, supplemented cows consumed more total DMI (P < 0.08) than unsupplemented cows. Cows consumed 2.4 kg/d more forage DM (P < 0.01) in P1 and P2 than in P3. Cows grazed 1.3 h/d (P < 0.01) less in P1 than in P2 and P3. Grazing efficiency (DMI/h GT) declined as supplementation increased and grazing season advanced to P3 (P < 0.01). Decreased forage DMI and grazing efficiency with increasing supplementation suggests that supplemented cattle should be able to maintain productivity while grazing at SH lower than unsupplemented cattle.  相似文献   

4.
Twenty multiparous Holstein cows were used in a completely randomized design with repeated measures to study milk production of cows supplemented or not supplemented with concentrate when they were switched to a total mixed ration (TMR) after grazing. In one group, cows grazed an or-chardgrass/bromegrass pasture and were assigned to one of two treatments: 1) unsupplemented (U; 1 kg/d mineral mix) or 2) concentrate supplemented (CS; 1 kg corn-based concentrate/4 kg milk). Total DMI was greater (26.5 vs 22.0 kg/d), but pasture DMI was less (16.8 vs 21.2 kg/ d), for CS cows because of the substitution rate of 0.49 kg pasture/kg concentrate. Overall, CS cows had greater 3.5% fat-corrected milk (FCM) (32.9 vs 26.5 kg/d), but less milk urea N (MUN; 9.6 vs 14.7 mg/dL) and milk fat (3.13% vs 3.88%), than U cows. Milk response to supplementation averaged 1.08 kg milk/kg concentrate. Cows assigned to both treatments lost BW (-17 kg/d) and body condition score (BCS) (-0.33). At the end of the 6-wk grazing period, all cows were switched to a TMR fed in confinement for 11 wk. Overall, DMI (24.3 kg/d), 3.5% FCM (30.6 kg/d), milk fat (3.26%), milk true protein (2.87%), and MUN (12.7 mg/dL) did not differ between treatments. Cows gained BW (53 kg) and BCS (0.33). A significant treatment × time interaction was found for milk yield. During the first day of TMR feeding, milk yield was greater (30.9 vs 19.3 kg/d) for CS cows. After 10 d on a TMR, milk yields between cows that had previously been on the U or CS treatments did not differ (35.5 kg/d). When cows were switched from only pasture to a TMR, milk yield was comparable with that of cows fed CS after 10 d. Lack of carry-over effects of previous treatments and increased production suggest improvement in nutrition and the potential for greater animal well-being for cows housed in a tiestall barn and fed a nutritionally complete TMR.  相似文献   

5.
A 2-yr study was conducted to confirm that managed pastures can provide Holstein steers adequate P to meet their daily requirement. Treatments offered were trace mineralized salt with or without additional P. In the first year, 80 Holstein steers (248 kg of BW) were assigned to 4 grazing groups. Treatments were trace mineralized salt only or a 67:33 mixture of trace mineralized salt and dicalcium phosphate. Steers rotationally grazed a cool-season grass/legume mixture for 137 d. Fecal bags were placed on 3 steers from each grazing group (n = 12) over a 4-d period for estimation of forage DMI and forage contribution to daily P intake twice during the grazing season. Analyzed pasture samples contained 3.28 mg of P/g of DM. During the second year, 72 Holstein steers (297 kg of BW) were blocked into 2 BW groups and subsequently assigned to 1 of 4 pasture groups. Steers rotationally grazed the same forage base as the first year for 126 d. Pasture samples contained 3.27 mg of P/g of DM. No significant differences (P > 0.10) were detected for BW, ADG, or free-choice supplemental mineral intake. Forage provided 126% of the recommended NRC P requirement. Thus, supplemental phosphorous was not required for Holstein steers grazing mixed, cool-season, grass/legume pastures.  相似文献   

6.
A digestion study with 28 yearling heifers (428 +/- 9.9 kg; Exp. 1) and a 2-yr winter grazing trial with 60 crossbred cows (552 +/- 6.9 kg; Exp. 2) were used to determine the effects of level of nonstructural carbohydrate (NSC) supplementation on intake and digestibility of low-quality forage. Treatments were as follows: 1) control, no supplement; 2) 0.32 kg of NSC (1.8 kg/d of soybean hulls and soybean meal; DM basis); 3) 0.64 kg of NSC (1.7 kg/d of wheat middlings; DM basis); and 4) 0.96 kg of NSC (1.7 kg/d of barley and soybean meal; DM basis). Supplements provided 0.34 kg of CP/d and 5.1 Mcal of ME/d. In Exp. 1, heifers were individually fed hay (5.5% CP, DM basis) and their respective supplements in Calan gates for 28 d. Data were analyzed as a completely randomized design. In Exp. 2, cows were individually fed supplement on alternate days, and grazed a single rangeland pasture stocked at 1.8 ha/ animal unit month. Two ruminally cannulated cows were used per treatment to obtain forage extrusa and to measure in situ DM disappearance (DMD) and carboxymethylcellulase (CMCase) activity of particle-associated ruminal microbes. Data were analyzed as a completely randomized design with the effects of treatment, year, and their interaction. In both experiments, Cr2O3 boluses were used to determine fecal output, individual animal was the experimental unit, and contrasts were used to test linear and quadratic effects of NSC level and control vs. supplemented treatments. In Exp. 1, hay and diet DM, NDF, and CP intakes and digestibilities were increased (P < 0.01) by NSC supplementation compared with the control. In Exp. 2, 72-h in situ DMD and CMCase were decreased linearly (P < 0.08) with increasing NSC supplementation. Intake of forage DM, NDF, and CP was decreased linearly (P < 0.01) with increasing NSC supplementation during both years. Supplementation with NSC decreased (P = 0.01) cow BW loss compared with the control in yr 1, whereas in yr 2, cow BW loss was linearly increased (P = 0.03) by increasing NSC supplementation. Supplements containing NSC improved forage digestion and intake when heifers consumed forage deficient in CP relative to energy (digestible OM:CP > 7), but decreased forage digestion and intake when cows grazed forage with adequate CP relative to energy (digestible OM:CP < 7). Forage and supplement digestible OM:CP seemed to be superior predictors of response to supplementation with NSC compared with forage CP levels alone.  相似文献   

7.
One hundred eighty crossbred cows were assigned to one of six native range pastures during two winters to evaluate forage and supplement intake as affected by liquid supplement (yr 1: 50% crude protein, 84% from urea; yr 2: 57% crude protein, 91% from urea) delivery method and cow age (2, 3, 4, 5, or 6 yr). Treatments were: 1) no supplement (Control); 2) a lick-wheel feeder containing liquid supplement (ADLIB); and 3) a computer-controlled lick-wheel feeder that dispensed 0.9 kg x cow(-1) x d(-1) of liquid supplement (average 0.5 kg of dry matter x cow(-1) x d(-1); Restricted). Each treatment was applied to two pastures. Forage digestibility was increased (P = 0.03) by supplementation. Supplemented cows lost less (P = 0.05) body condition than unsupplemented cows (average -0.3 vs -0.6). Blood urea nitrogen (BUN) was highest (P = 0.001) for ADLIB (8.7 mg/dL), intermediate for Restricted (6.2 mg/dL), and lowest for Control (2.3 mg/dL). Forage DMI was 31% higher (P = 0.01) in 1995 than in 1996, and was increased (P = 0.02) by supplementation both years. Cows supplemented with ADLIB consumed 23% more forage dry matter than Control cows, whereas Restricted cows consumed 21% more dry matter than ADLIB cows. Supplement intake by cows on ADLIB was greater (P = 0.001) than by cows on Restricted in both years. Supplement intake was lowest (P = 0.002) by 2-yr-old cows, intermediate by 3-yr-olds, and greatest by 4-, 5-, and 6-yr-old cows. Variation in supplement intake by individual cows was higher (P = 0.09) for cows in the Restricted treatment (coefficient of variation [CV] = 117%) than those on ADLIB (CV = 68%) during the first year, but did not differ between supplement treatments (average CV = 62%) in the second year. The proportions of cows consuming less than 0.3 kg/d of supplement dry matter intake (DMI) and consuming less than the target amount of supplement (0.5 kg DMI) were less (P = 0.001) for ADLIB than for Restricted during both years. ADLIB cows spent more (P = 0.001) time at the supplement feeder and had more (P < 0.002) supplement feeding bouts than Restricted cows during both years. During the first year, 2- and 3-yr-old cows spent less (P < 0.01) time at the feeder and had fewer feeding bouts per day than 6-yr-old cows. Age had no effect (P > 0.24) on feeding behavior during the second year. Supplementation of beef cows grazing winter range with 50 to 57% crude protein liquid supplement increased forage digestibility and intake. Restricting supplement access increased forage consumption and variability of supplement intake.  相似文献   

8.
Our objective was to evaluate a replicated (n = 2) Midwestern year-round grazing system's hay needs and animal production compared with a replicated (n = 2) conventional (minimal land) system over 3 yr. Because extended grazing systems have decreased hay needs for the beef herd, it was hypothesized that this year-round system would decrease hay needs without penalizing animal production. In the minimal land (ML) system, two replicated 8.1-ha smooth bromegrass-orchardgrass-birdsfoot trefoil (SB-OG-BFT) pastures were rotationally stocked with six mature April-calving cows and calves and harvested as hay for winter feeding in a drylot. After weaning, calves were finished on a high-concentrate diet. Six mature April-calving cows, six mature August-calving cows, and their calves were used in the year-round (YR) grazing system. During the early and late summer, cattle grazed two replicated 8.1-ha SB-OG-BFT pastures by rotational stocking. In mid-summer and winter, April- and August-calving cows grazed two replicated 6.1-ha, endophyte-free tall fescue-red clover (TF-RC) and smooth bromegrass-red clover (SB-RC) pastures, respectively, by strip-stocking. In late autumn, spring-calving cows grazed 6.1-ha corn crop residue fields by strip-stocking. Calves were fed hay with corn gluten feed or corn grain over winter and used as stocker cattle to graze SB-OG-BFT pastures with cows until early August the following summer. First-harvest forage from the TF-RC and SB-RC pastures was harvested as hay. Body condition scores of April-calving cows did not differ between grazing systems, but were lower (P < or = 0.03) than those of August-calving cows from mid-gestation through breeding. Preweaning calf BW gains were 47 kg/ha of perennial pasture (P < 0.01) and 32 kg/cow (P = 0.01) lower in the YR grazing system than in the ML system. Total BW gains ofpreweaning calf and grazing stocker cattle were 12 kg/ha of perennial pasture less (P = 0.07), but 27 kg/cow greater (P = 0.02) in pastures in the YR grazing system than in the ML system. Amounts of hay fed to cows in the ML system were 1,701 kg DM/cow and 896 kg DM/cow-stocker pair greater (P < 0.05) than in the YR grazing system. Extended grazing systems in the Midwest that include grazing of stocker cattle to utilize excess forage growth will decrease stored feed needs, while maintaining growing animal production per cow in April- and August-calving herds.  相似文献   

9.
Brangus cows (n = 29) were used in three experiments to evaluate the effects of parity (multiparous vs. primiparous) and potential genetic merit for milk production (high vs. low) on forage intake during late gestation, early lactation, and late lactation. Cows were selected for milk production based on their sire's EPD for milk production (MEPD). Cows had ad libitum access to (130% of previous 2-d average intake) low-quality hay (5.3% CP and 76% NDF), and cottonseed meal was supplemented to ensure adequate degradable intake protein. All females were adapted to diets for at least 7 d, and individual intake data were collected for 9 d. During the lactation trials, actual milk production was determined using a portable milking machine following a 12-h separation from calves. During late gestation, multiparous cows consumed 24% more (P = 0.01) forage DM (kg/d) than primiparous cows; however, parity class did not influence forage intake when intake was expressed relative to BW. Furthermore, MEPD did not influence forage intake during late gestation. During early lactation, multiparous cows produced 66% more (P < 0.001) milk than primiparous cows, and high MEPD tended (P = 0.10) to produce more milk than low MEPD. Multiparous cows consumed 19% more (P < 0.0001) forage DM than did primiparous cows when expressed on an absolute basis, but not when expressed on a BW basis. High-MEPD cows consumed 8% more (P < 0.05) forage DM than did low-MEPD cows. During late lactation, multiparous cows produced 84% more milk than primiparous cows, although MEPD did not influence (P = 0.40) milk yield. In addition, multiparous cows consumed 17% more (P < 0.01) forage DM per day than primiparous cows, but when intake was expressed relative to BW, neither parity nor MEPD influenced forage DMI during late lactation. Milk yield and BW explained significant proportions of the variation in forage DMI during early and late lactation. Each kilogram increase in milk yield was associated with a 0.33- and 0.37-kg increase in forage DMI for early and late lactation, respectively. Results suggest that multiand primiparous cows consume similar amounts of low-quality forage DM, expressed per unit of BW, during late gestation and lactation. Selecting beef cows for increased genetic merit for milk production increases forage DMI during early lactation.  相似文献   

10.
The objectives of this research were to determine the influence of protein supplementation frequency on cow performance, grazing time, distance traveled, maximum distance from water, cow distribution, DMI, DM digestibility, harvest efficiency, percentage of supplementation events frequented, and CV for supplement intake for cows grazing low-quality forage. One hundred twenty pregnant (60 +/- 45 d) Angus x Hereford cows (467 +/- 4 kg BW) were used in a 3 x 3 Latin square design for one 84-d period in each of three consecutive years. Cows were stratified by age, BCS, and BW and assigned randomly to one of three 810-ha pastures. Treatments included an unsupplemented control (CON) and supplementation every day (D; 0.91 kg, DM basis) or once every 6 d (6D; 5.46 kg, DM basis) with cottonseed meal (CSM; 43% CP, DM basis). Four cows from each treatment (each year) were fitted with global positioning system collars to estimate grazing time, distance traveled, maximum distance from water, cow distribution, and percentage of supplementation events frequented. Collared cows were dosed with intraruminal n-alkane controlled-release devices on d 28 for estimation of DMI, DM digestibility, and harvest efficiency. Additionally, Cr2O3 was incorporated into CSM on d 36 at 3% of DM for use as a digesta flow marker to estimate the CV for supplement intake. Cow BW and BCS change were greater (P < or = 0.03) for supplemented treatments compared with CON. No BW or BCS differences (P > or = 0.14) were noted between D and 6D. Grazing time was greater (P = 0.04) for CON compared with supplemented treatments, with no difference (P = 0.26) due to supplementation frequency. Distance traveled, maximum distance from water, cow distribution, DMI, DM digestibility, and harvest efficiency were not affected (P > or = 0.16) by protein supplementation or supplementation frequency. The percentage of supplementation events frequented and the CV for supplement intake were not affected (P > or = 0.58) by supplementation frequency. Results suggest that providing protein daily or once every 6 d to cows grazing low-quality forage increases BW and BCS gain, while decreasing grazing time. Additionally, protein supplementation and supplementation frequency may have little to no effect on cow distribution, DMI, and harvest efficiency in the northern Great Basin.  相似文献   

11.
Greater milk production is the promised outcome for selecting corn hybrids with various traits that impact forage quality. Our objective was to select a set of hybrids most likely to exhibit differences in forage quality and evaluate milk production of cows fed a high forage diet. Four hybrids were selected for the feeding trial: a leafy hybrid (Mycogen TMF 100®; Mycogen Seeds, Indianapolis, IN), a brown midrib (BMR) hybrid (Mycogen BMR F407®), and two conventional hybrids varying in fiber digestibility (Pioneer 36B08® [Conventional 1 {CONV1}] and Pioneer 35P12® [Conventional 2 {CONV2}]; Pioneer Hybrid International, Inc., Des Moines, IA). Diets were formulated to provide 1.0% BW as forage NDF (approximately 32% NDF) and were balanced to meet or exceed NRC requirements. Fifty-six cows were fed for 56 d. The DMI of cows fed the BMR and the leafy hybrid total mixed rations (TMR) were greater than those of cows fed the other hybrids. Differences in milk production reflected the differences in intake. Cows fed the BMR (41.7 kg/d) and leafy hybrid (42.1 kg/d) TMR were not different from each other in milk production, but had greater (P<0.05) milk production than cows fed CONV1 (39.0 kg/d) or CONV2 (39.2 kg/d) hybrids. Greater intake by cows fed the BMR TMR than by cows fed the CONV1 or CONV2 TMR is likely the result of greater digestibility. Although the leafy hybrid TMR tended to be greater in digestibility than CONV1 or CONV2 TMR, it is likely that a lesser forage-to-concentrate ratio of the leafy hybrid TMR compared with the other TMR also contributed to its greater intake. Ruminal concentrations of propionate were greater in cows fed BMR than in those fed other hybrids, which could also result in greater milk production. Corn silage hybrids selected for improved forage quality can result in greater milk production by cows fed the improved hybrids in high forage diets.  相似文献   

12.
Oesophageal fistulated steers were used to sample herbage daily during periods of occupation on veld in good and moderate condition. Forage quality was assessed in terms of in vitro dry matter digestibility and digestible crude protein. The quality of herbage ingested remained fairly constant as forage availability declined during periods of occupation, even when swards were grazed very severely. Digestibility declined somewhat from spring through to winter, but digestible crude protein content in the diet was unaffected by time of year. The quality of forage ingested during winter was nevertheless still high, even after a full growing season's rest. It was sufficient for growing steers to gain 0,75 kg livemass per day. Trends were similar on both veld condition types. It was concluded that, in semi‐arid grassveld of the eastern Cape, forage availability is likely to have a greater influence on animal performance than forage quality.  相似文献   

13.
Two experiments were conducted to compare ruminal, physiological, and performance responses of forage-fed cattle consuming grain-based supplements without (NF) or with the inclusion (10%; DM basis) of a rumen-protected PUFA (PF) or SFA source (SF). Supplements were offered and consumed at 0.6% of BW/animal daily (DM basis). In Exp. 1, DMI and ruminal in situ forage degradability were evaluated in 3 Angus × Hereford cows fitted with ruminal cannulas and allocated to a 3 × 3 Latin square design. Within each experimental period, hay was offered in amounts to ensure ad libitum access from d 1 to 13, DMI was recorded from d 8 to 13, and cows were limited to receive 90% of their average hay DMI (d 1 to 13) from d 14 to 21. On d 16, polyester bags containing 4 g of ground hay (DM basis) were incubated within the rumen of each cow for 0, 4, 8, 12, 24, 36, 48, 72, and 96 h. Hay and total DMI were reduced (P < 0.05) in cows receiving PF compared with cows receiving SF and NF. No treatment effects were detected (P > 0.48) for ruminal disappearance rate and effective ruminal degradability of hay DM and NDF. In Exp. 2, preconditioning DMI, ADG, carcass traits, and plasma concentrations of cortisol, fatty acids, acute-phase proteins, and proinflammatory cytokines were assessed in 72 Angus × Hereford steers receiving supplement treatments during a 28-d preconditioning period. All steers were transported to a commercial growing lot after preconditioning (d 1) and were later moved to an adjacent commercial finishing yard (d 144), where they remained until slaughter. No treatment effects were detected (P ≥ 0.52) for preconditioning ADG and G:F, but DMI tended (P = 0.09) to be reduced in steers receiving PF compared with those receiving NF and SF. Plasma PUFA concentrations were greater in steers receiving PF compared with those receiving NF and SF (P = 0.01). After transportation, concentration of tumor necrosis factor-α increased for steers receiving NF, did not change for steers receiving SF, but decreased for steers receiving PF (treatment × day interaction, P < 0.01). Steers fed PF had greater (P = 0.02) ADG compared with those fed NF during the growing phase. Carcass yield grade and marbling were greater (P < 0.05) for steers fed PF compared with those fed NF. In conclusion, PUFA supplementation did not affect ruminal forage degradability but did impair DMI in beef cows. Further, PUFA supplementation to steers during preconditioning reduced plasma concentrations of tumor necrosis factor-α after transportation, and benefited growing lot ADG and carcass marbling.  相似文献   

14.
Ten lactating cows were used to determine the effect of feeding non-fibrous carbohydrate (NFC) supplement before grazing on feed intake and nitrogen (N) utilization throughout a grazing season. The experiment was conducted from June to September. Cows grazed twice a day (2.5 h × 2) under a set stocking system and were fed NFC supplement (1 kg/4 kg of milk yield) 2 h before grazing (PRE) or immediately after grazing (POST). Cows were also fed a grass and corn silage mixture ad libitum. Herbage dry matter intake (DMI) was greater for PRE than for POST throughout the experiment and decreased from June to September. Conversely, silage DMI was less for PRE than for POST throughout the experiment and increased over the grazing season. Consequently, total DMI for PRE did not differ from that for POST. Milk urea-N concentration and urinary urea-N excretion in June did not differ between the treatments, whereas that after July was higher for PRE than for POST. Proportion of urinary N excretion to absorbed N intake in June was lower for PRE than for POST, but that after July was higher for PRE than for POST. Feeding NFC supplement before grazing would improve N utilization when cows eat large amounts of herbage high in N.  相似文献   

15.
A 4-yr study was conducted to determine the effects of two grazing methods (GM) at two stocking rates (SR) on alfalfa pasture plant productivity and animal performance and to ascertain the effect of grazing systems on subsequent performance of steers fed a high-concentrate diet. Eight pasture plots (.76 ha) were seeded in 1988 with alfalfa (Medicago sativa L. var. WL225) and divided into two blocks of four pastures each. Grazing methods consisted of a traditional four-paddock or an intensive 13-paddock system. Pastures were managed to allow a 36-d rest period with an average grazing season of 110 d. The low and high SR were 5.9 vs 11.7, 5.3 vs 10.5, 5.3 vs 7.9, and 5.3 vs 7.9 steers/ha for years 1989 to 1992, respectively. Following the grazing season, steers were placed in a feedlot and fed a high-concentrate diet (81% high-moisture corn, 14% corn silage, 5% protein-mineral supplement) for an average of 211 d. There was no effect of GM on herbage mass, pasture phase ADG, or live weight gain/hectare. Increasing the number of paddocks was beneficial when herbage mass was limited and stocking rate was above 7.9 steers/ha. Increasing SR above 7.9 steers/ha decreased herbage mass and pasture-phase ADG. As forage allowance increased, pasture-phase ADG increased quadratically (R2 = .82, P < .001), reached a plateau, and then decreased. Previous grazing system did not influence the performance of steers in the feedlot or their carcass characteristics. Optimum SR is dependent on herbage mass produced.  相似文献   

16.
Two experiments were conducted to compare the performance and physiological responses of forage-fed beef females supplemented with either a molasses-based (ML) or a citrus pulp-based (CT) supplement. In Exp. 1, BW gain, reproductive performance, and concentrations of blood urea N (BUN), plasma glucose, insulin, IGF-I, and progesterone (P4) were assessed in 60 Brahman x Angus heifers supplemented 3 times weekly with either ML or CT. Supplement intakes were formulated to be isocaloric and isonitrogenous. Reproductive performance was not affected by treatments, but mean BW gain was greater (P < 0.01) for heifers fed CT than for those fed ML (0.40 vs. 0.30 kg/d). Mean plasma concentrations of glucose, insulin, and IGF-I were greater (P < 0.05) for heifers fed CT, whereas BUN was greater (P < 0.05) for heifers fed ML. Mean plasma P4 concentration did not differ between treatments, but both groups had lower plasma P4 concentrations during days that supplements were offered (P < 0.01). In Exp. 2, forage DMI and concentrations of BUN, plasma glucose, insulin, IGF-I, and P4 were assessed in 24 Brahman x British mature cows supplemented with the same treatments described in Exp. 1. Overall forage DMI did not differ between treatments, but a day effect and a treatment x day interaction were detected (P < 0.05). Both groups consumed less forage during the days on which the supplements were offered (P < 0.01), and forage DMI for cows fed CT was less (P < 0.05) than for cows fed ML during those days. No differences were detected in any blood or plasma measurement. In addition, no differences in concentrations of P4 were detected between CT- and ML-fed cows. We concluded that CT-supplemented heifers had greater BW gain compared with ML-supplemented heifers, but no differences in reproductive performance were observed. We also observed that CT-supplemented cows had a greater variability in forage DMI compared with ML-supplemented cows.  相似文献   

17.
Because wheat forage contains high concentrations of N, NPN, digestible DM, and water, beef cattle and sheep require an adaptation period before positive BW are seen. The objective of the present experiment was to determine the impact of length of exposure of lambs and steers to wheat forage on BW gains, N retention, and forage digestibility. Sixteen steer calves (average BW = 210 +/- 12 kg) and 20 wether lambs (average BW = 31.5 +/- 2.0 kg) were randomly assigned to 1 of 2 treatment groups. Group 1 grazed a wheat pasture for 120 d during the winter, whereas group 2 was wintered on dormant warm-season grass pastures plus warm-season grass hay and plant-based protein supplements. In the spring (April 5), all lambs and steers grazed wheat pasture for 14 d and were then housed in metabolism stalls and fed freshly harvested wheat forage to determine forage digestibility and N metabolism. Data were analyzed for lambs and steers separately as a completely randomized design, using the individual animal as the experimental unit. Lambs and steers grazing wheat pasture for the first time in the spring had less ADG during the first 14 d than lambs (80 vs. 270 g, respectively; P = 0.01) and steers (1.06 vs. 1.83 kg, respectively; P = 0.09) that had grazed wheat pastures all winter. Digestibility of DM, NDF, and ADF fractions and N metabolism of freshly harvested wheat forage by lambs and steers were not different (P > 0.10) between the 2 treatment groups. Less ADG during the first 14 d of wheat pasture grazing is most likely the result of less DMI by nonadapted animals and is not due to diet digestibility or N metabolism.  相似文献   

18.
Two 120-d trials (May to September, 1988 and 1989) determined the effects of grazing tall fescue (two varieties) or orchardgrass on forage intake and performance by beef cows. Each summer, 48 cow-calf pairs grazed endophyte-infected Kentucky-31 tall fescue (KY-31), endophyte-free Mozark tall fescue (MOZARK), or Hallmark orchardgrass (OG) pastures (16 pairs/treatment). Forage OM intakes and digestibilities were determined during June and August each year. Cow and calf BW and milk production were determined every 28 d. During June of both years, OM intakes did not differ (P greater than .10) among treatments. During August of 1988, intakes were 18% lower (P less than .05) by KY-31 cows (1.6% of BW) than by MOZARK or OG cows (average 1.95% of BW); however, no differences (P greater than .10) were measured in August of 1989. Estimates of ergovaline consumption during June from KY-31 were between 4.2 (1988) and 6.0 mg/d (1989), whereas August estimates were between 1.1 (1988) and 2.8 mg/d (1989). Ergovaline in MOZARK estrusa was below detection limits, except in August of 1989. Cows that grazed KY-31 lost three times (P less than .01) more BW than cows that grazed MOZARK or OG (42 vs 9 and 13 kg, respectively). Milk production by KY-31 cows was 25% lower (P less than .01) than that by cows that grazed MOZARK or OG (6.0 vs average of 8.0 kg/d). Similarly, slower (P less than .01) calf gains were noted for KY-31 than for MOZARK or OG (.72 vs .89 and .88 kg/d, respectively). Cows grazing KY-31 experienced accelerated BW loss and reduced milk production and weaned lighter calves than did cows grazing MOZARK or OG. Decreased performance was not explained by consistently reduced forage intakes; hence, altered nutrient utilization was suspected.  相似文献   

19.
The objective of this study is to investigate the effect of contrasting spring grazing dates (GD) and stocking rate (SR) on sward characteristics, grass dry matter intake and milk production performance of autumn calving dairy cows during the spring period. Two swards were created by grazing in March (early grazing; E) or by delaying first grazing until mid-April (late grazing; L). Two stocking rates, high (H; 5.5) and medium (M; 4.5) were applied across each sward. Forty eight autumn calving Holstein cows (160 ± 35 days in milk) were assigned to one of four (n = 12) different grazing treatments. The experiment began on April 17th and finished after 2 grazing rotations on June 20th. Later spring grazing significantly increased herbage mass (kg DM/ha) above ground level (+ 933, P < 0.05) and > 50 mm (+ 738, P < 0.05). Compressed sward height (+ 22.1 mm, P < 0.05), extended tiller height (+ 73 mm, P < 0.001) and pseudostem height (+ 35 mm, P < 0.001) were also significantly higher for later grazed swards. In the grazing horizon (> 80 mm— extended tiller height), later grazed swards had significantly lower leaf proportion (− 0.09, P < 0.05) and higher dead material (+ 0.05, P < 0.001). Daily herbage allowance (> 50 mm) was on average 12.7, 15.9, 18.2 and 21.9 kg DM/cow for EH, EM, LH and LM, respectively. Daily leaf allowance (> 80 mm) was 10.1, 12.3, 13.3 and 14.5 kg DM/cow for EH, EM, LH and LM, respectively. The EM (16.2 kg DM/cow), LH (+ 0.1 kg) and LM (0.8 kg) treatments all had similar grass DM intake, however there was evidence of an interaction (P < 0.10) between GD and SR, this was due to the low grass DM intake of the EH (13.9 kg DM/cow) treatment. When expressed as UFL (Fill unit) intake the EM treatment recorded the highest value. There was a significant interaction between GD and SR (P < 0.01) for milk, protein yield, 4% fat corrected milk yield (P < 0.05) and protein concentration (P < 0.001). Cows grazing the EM treatment produced 23.9 kg of milk, 876 and 685 g of fat and protein yield. The difference in milk production (cow/day) between EM and EH treatments was + 3.6 kg milk, + 98 g fat and + 107 g protein. The production yield difference between LM and LH treatments was + 1.1 kg milk, + 27 g fat and + 29 g protein in favour of the LM treatment (23.9 kg of milk, 877 and 687 g fat and protein yield). Herbage quality and morphological characteristics are clearly improved with early spring grazing as herbage mass is reduced on subsequent rotations. Swards grazed in early spring allow higher grass utilisation and high milk production performance when grazed at a medium stocking rate. Improved milk production from herbage can be achieved provided herbage mass and allowance are maintained at levels where herbage quality decreases are minimised.  相似文献   

20.
The objective of this study was to evaluate the effect of feeding regimen on chewing activity and ruminal passage of digesta in non-lactating cows fed pasture ad libitum. Six ruminally fistulated Holstein dry cows (mean ± SD; parity = 3.7 ± 0.5, length of pregnancy = 28 ± 2 W, BW = 692 ± 75 kg) were assigned randomly to two dietary treatments using a crossover design; three cows were rotationally grazed pasture (treatment G) and the other was fed harvested pasture ad libitum in confinement (treatment C). Passage of digesta was measured by fecal marker excretion using Co-EDTA and Dysprosium (Dy) labeled grass as fluid phase maker or solid phase marker, respectively. Particle size distribution of ruminal digesta and feces was measured by wet sieving method. No significant difference in dry matter intake (DMI) between treatments was observed. Eating time in treatment G (517 min/day or 38.6 min/kg DMI) was longer treatment C (384 min/day or 31.0 min/kg DM). Chewing time per DMI was similar in both treatments (70.0 vs. 66.1 min/kg DMI). Ruminal liquid outflow rate and rumen volume of cows in treatment G were significant higher and lower than treatment C (9.9 vs. 12.2%/h and 111.0 vs. 79.9 L, respectively). The mean retention time in small particle pool to be able to pass through the reticulo-omasum orifice (CMRT2) in cows of treatment C was longer (P < 0.05) than that for treatment G.. Logarithmic particle distribution and mean particle size of ruminal digesta at 24 h after feeding and feces particles had no significance between treatments. These results indicated that ingestive behavior of dry cow affected on eating time and ruminal volume, and it might have caused the higher ruminal liquid and particulate passage rate in treatment G compare to treatment C, with minimal effect on the particle size of digesta to pass from the rumen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号