首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
AIM: To determine the prevalence of infection with Candidatus Mycoplasma haemolamae (Mhl), antibodies to bovine viral diarrhoea virus (BVDV), and BVDV antigen, and the prevalence of animals with elevated faecal nematode egg counts (FEC) in a sample of adult New Zealand alpaca (Vicugna pacos).

METHODS: Blood samples were obtained from 175 alpaca, collected from 15 farms around New Zealand, and from 31 samples sent to a diagnostic laboratory for routine haematology. Blood smears (n=170) were examined microscopically for the presence of haemoplasma, and DNA was extracted from whole blood (n=206) for real-time PCR testing for Mhl. Packed cell volume (PCV) was determined for 193 samples. Serum samples (n=195) were tested for BVDV antibody using ELISA, and for BVDV antigen using a real-time PCR assay. Faecal samples were collected from 143 animals; FEC were measured, and samples pooled for larval culture.

RESULTS: No haemoplasma organisms were present on blood smear examination. Of the 206 blood samples, two (from the same farm) were positive for Mhl by real-time PCR testing, giving a prevalence of infection with Mhl of 0.97%. Of the 195 serum samples tested, four (2.1%) were positive for antibodies to BVDV; animals with BVDV antibodies were from 3/15 (20%) farms, none of which farmed cattle. None of the serum samples were positive by PCR for BVDV antigen. The median FEC was 50?epg (min 0, max 4,700), with 55/143 (38.5%) samples having 0?epg, and 33/143 (23.1%) having 250?epg. Haemonchus spp. were the most common nematodes present in faecal larval cultures from the North Island. Log10 FEC was negatively associated with PCV (p=0.02), and was higher in males than females (p<0.001), and in animals that were positive compared with negative for Mhl (p=0.022).

CONCLUSIONS AND CLINICAL RELEVANCE: The number of alpaca infected with Mhl was low, as was the seroprevalence of BVDV. Gastrointestinal parasitism was, however, a common finding in this sample of New Zealand alpaca.  相似文献   

3.
Background: Substantial bovine viral diarrhea virus (BVDV)‐related production losses in North American alpaca herds have been associated with BVDV type Ib infection. Objectives: To classify and differentiate the long‐term clinicopathological characteristics of BVDV type Ib infection of alpaca crias, after natural virus exposure. We hypothesized that persistently infected (PI) alpacas specifically demonstrate growth retardation, clinicopathological evidence of opportunistic infections, and early mortality. Animals: Thirty‐five crias naturally exposed to BVDV (18 acute, 3 chronic, 14 PIs), and 19 healthy cohort controls of 5 northeastern alpaca farms were prospectively evaluated over 2 years (September 2005–September 2008). Methods: Observational cohort‐control study. Results: Chronically (viremia >3 weeks) and PI crias demonstrated significantly lower birth weights, decreased growth rates, anemia, and monocytosis compared with control animals. Common clinical problems of PI alpacas included chronic wasting, diarrhea, and respiratory disease. Median survival of PI alpacas that died was 177 days (interquartile range, 555) with a case fatality rate of 50% within 6 months of life. Transplacental infection was confirmed in 82% (9/11) of pregnant females on 1 farm, resulting in the birth of 7 PI crias (7/10 deliveries; 1 animal was aborted). Mean gestation at the beginning and end of BVDV exposure was 64 and 114 days, respectively. Conclusions and Clinical Importance: Natural BVDV type 1b infection during early pregnancy resulted in a high incidence of PI offspring. Although PI alpacas may have distinct clinical characteristics, verification of persistent viremia in the absence of endogenous, neutralizing antibodies is essential to differentiate persistent from chronic infection.  相似文献   

4.
5.
Mucosal disease (MD), one sequelae of bovine virus diarrhoea virus (BVDV) infection, causes severe lesions in lymphoid tissues and mucosal surfaces. Lesions are associated with the presence of cytopathogenic (cp) BVDV and initially characterized by apoptotic cell death. The objective of this investigation was to determine if this cell death is mediated only by the cp BVDV, which is known to induce apoptosis in cell culture or if immune-mediated host reactions might also contribute. Early onset MD was experimentally induced in calves by inoculation of persistently viremic calves with a closely related cp BVDV. Calves were euthanized in the early phase of infection between days 5 and 13 post-inoculation and tissues from tonsils, lymph nodes, Peyer's patches, jejunum and colon were collected. Presence of cp BVDV antigen was correlated with distribution of lymphocyte subpopulations in consecutive cryostat sections. In the lymphoid tissues, cp BVDV antigen was predominantly found in the lymphoid follicles. The increase of infected cells with time post-inoculation was paralleled by a decrease of B-lymphocytes and an increase of CD4+ T-lymphocytes. An increased number of CD8+ T-lymphocytes was seen in progressed lesions only. In the intestinal mucosa, initially multifocal, later diffuse infection with cp BVDV was accompanied by a multifocal or diffuse increase of CD4+ T-lymphocytes, respectively. Numbers of IgA+ plasma cells and CD8+ T-lymphocytes were decreased. The common change observed in lymphoid tissues and mucosa was the increase of CD4+ T-lymphocytes in sites with lesions. This might indicate a cell-mediated immune response to the cp BVDV. Besides their helper function to other cells of the immune system, activated CD4+ T-lymphocytes might also exert cytotoxic activity, induce apoptosis in target cells via Fas/Fas ligand binding and thus contribute to the severity of tissue lesions in MD.  相似文献   

6.
7.
Viral distribution and lesions were compared between calves born with persistent infection (PI) and calves acutely infected with the same bovine viral diarrhea virus (BVDV) isolate. Two PI calves from 1 dairy herd were necropsied. The PI viruses from these calves were isolated, characterized by sequencing, and found to be identical. This virus strain, designated BVDV2-RS886, was characterized as a noncytopathic (ncp) type 2 BVDV. To establish acute infections, BVDV2-RS886 was used to inoculate clinically healthy, seronegative calves which were 3 weeks to 3 months old. Nine calves received 10(6)-10(7) tissue culture infective dose of BVDV2-RS886 intranasally. Four additional age-matched animals served as noninfected controls. Infected calves were necropsied at 3, 6, 9, or 13 days postinoculation (dpi). Viral antigen was detected by immunohistochemistry in frozen sections, and lesions were evaluated in hematoxylin eosin-stained paraplast sections. In the PI calves, a wide distribution of viral antigen was found in all tissues and was not associated with lesions. In the acutely infected calves, viral antigen was widespread in lymphoid tissues at 6 dpi but had been mostly eliminated at 9 and 13 dpi. Depletion of lymphoid tissues was seen at 6, 9, and 13 dpi and repopulation at 9 and 13 dpi. In 1 of the calves at 13 dpi, severe arteritis was present in lymph nodes and myocardium. This comparison shows that an ncp BVDV strain that causes no lesions in PI animals is able to induce marked depletion of lymphoid tissues in calves with acute infection. Therefore, the failure to eliminate PI cattle from a herd causes problems not only in pregnant cattle but may also affect other age groups.  相似文献   

8.
Mucosal disease (MD), one sequelae of bovine virus diarrhoea virus (BVDV) infection, causes severe lesions in lymphoid tissues and mucosal surfaces. Lesions are associated with the presence of cytopathogenic (cp) BVDV and initially characterized by apoptotic cell death. The objective of this investigation was to determine if this cell death is mediated only by the cp BVDV, which is known to induce apoptosis in cell culture or if immune‐mediated host reactions might also contribute. Early onset MD was experimentally induced in calves by inoculation of persistently viremic calves with a closely related cp BVDV. Calves were euthanized in the early phase of infection between days 5 and 13 post‐inoculation and tissues from tonsils, lymph nodes, Peyer's patches, jejunum and colon were collected. Presence of cp BVDV antigen was correlated with distribution of lymphocyte subpopulations in consecutive cryostat sections. In the lymphoid tissues, cp BVDV antigen was predominantly found in the lymphoid follicles. The increase of infected cells with time post‐inoculation was paralleled by a decrease of B‐lymphocytes and an increase of CD4+ T‐lymphocytes. An increased number of CD8+ T‐lymphocytes was seen in progressed lesions only. In the intestinal mucosa, initially multifocal, later diffuse infection with cp BVDV was accompanied by a multifocal or diffuse increase of CD4+ T‐lymphocytes, respectively. Numbers of IgA+ plasma cells and CD8+ T‐lymphocytes were decreased. The common change observed in lymphoid tissues and mucosa was the increase of CD4+ T‐lymphocytes in sites with lesions. This might indicate a cell‐mediated immune response to the cp BVDV. Besides their helper function to other cells of the immune system, activated CD4+ T‐lymphocytes might also exert cytotoxic activity, induce apoptosis in target cells via Fas/Fas ligand binding and thus contribute to the severity of tissue lesions in MD.  相似文献   

9.
本研究旨在获得高效特异性的牛病毒性腹泻病毒(BVDV)NS3(P80)非结构蛋白的纳米抗体。用BVDV灭活疫苗免疫羊驼,测得抗体效价后分离全血中的淋巴细胞。通过噬菌体展示技术构建羊驼重链抗体可变区噬菌体展示文库。经过连续3次吸附-洗脱-扩增的生物筛淘,从中挑选出与BVDV-NS3蛋白结合的噬菌体。对经菌液PCR、琼脂糖凝胶电泳鉴定到的单域抗体(VHH)克隆进行基因测序和同源性比对。用ELISA方法验证筛选出的纳米抗体的反应原性,找到与BVDV-NS3蛋白亲和力高的纳米抗体。结果表明,获得插入率为92.8%、库容为1.84×1014 CFU/mL的噬菌体展示文库。ELISA结果和氨基酸序列分析显示,成功得到1条与BVDV-NS3蛋白具有良好反应性且与VHH同源性较高的纳米抗体序列。本研究利用大肠杆菌成功表达BVDV-NS3抗原蛋白,建立BVDV纳米抗体噬菌体展示文库,筛选到针对BVDV重要抗原蛋白相应的纳米抗体且与VHH同源性较高。试验结果为牛病毒性腹泻/黏膜病的防控、诊断、治疗及纳米抗体药物的研制提供参考。  相似文献   

10.
Bovine viral diarrhoea virus (BVDV) is one of the most common and economically important viral infections of cattle. As vaccination is common in most European countries, differentiation between infected and vaccinated animals is one of the key challenges facing BVDV eradication campaigns. This study was designed to compare the ability of commercial ELISA kits to differentiate antibodies generated following vaccination with four different commercial inactivated BVDV vaccines from antibodies generated following challenge with virulent BVDV. Although none of the tested vaccine–ELISA combinations was able to differentiate an infected from a vaccinated animal (DIVA) at the individual animal level, p80 blocking ELISAs, in combination with inactivated BVDV vaccines, may have some value under certain circumstances at herd level. In most cases, antibody responses to BVDV vaccines cannot be clearly distinguished from responses seen in the early phase of natural infection. No commercial BVD vaccine showed true marker qualities for DIVA using p80 blocking ELISAs.  相似文献   

11.
To examine the virus-host interaction in subclinical bovine viral diarrhea virus (BVDV) infections, the spread of a BVDV 2 strain of low virulence to different organs and the development of lesions were investigated. Eight colostrum-deprived, clinically healthy, 2-3-month-old calves were intranasally inoculated with 10(6) tissue culture infective dose of the naturally occurring BVDV 2 strain 28508-5 of low virulence, and 2 served as controls. Two calves each were euthanized at days 3, 6, 9, and 13 postinoculation (pi). Representative tissues were processed for histology and immunohistology. Signs of overt clinical disease were absent. However, a mild temperature elevation at days 7 or 8 pi and a moderate decrease of circulating lymphocytes occurred in all inoculated calves. The BVDV antigen was detected at day 3 pi in several lymphoid tissues. At day 6 pi, BVDV antigen was found widespread in lymphoid tissues and multifocally in intestinal epithelial cells but was associated with no or subtle lesions only. At day 9 pi, much less BVDV antigen was detectable, but there was severe depletion of lymphoid tissues. At day 13 pi, BVDV antigen had been cleared from most lymphoid tissues that were at variable phases of depletion and recovery. In conclusion, the BVDV strain of low virulence spread to lymphoid tissues and intestinal epithelial cells but was rapidly eliminated. Transient depletion of lymphoid tissues was followed by recovery.  相似文献   

12.
The monoclonal antibody (MAb) D89 against bovine viral diarrhea virus (BVDV) was used in conjunction with fluorescein-conjugated anti-mouse immunoglobulin in an indirect fluorescent antibody (IFA) procedure on frozen tissue sections and cell culture. During the 2-year study, BVDV was isolated from specimens submitted in 460 cases. The D89 Mab detected all but 2 BVDV isolates, both cytopathic. In 316 of the cases in which BVD virus was detected by IFA, specimens were inoculated on bovine turbinate cells and examined for BVDV antigens at 3-5, 10, and 20 days postinoculation. The BVDV was detected in 238/316 cases (75%) after 3-5 days incubation. The remainder were not detected until 10 or 20 days postinoculation. Virus isolation was enhanced in the early test if plates were centrifuged at the time of inoculation. Results suggest that D89 monoclonal antibody is a suitable diagnostic reagent for the detection of BVDV isolated from diagnostic specimens. The D89 MAb can be used for the detection of BVDV in both cell culture and tissues. Combination of D89 with another BVDV MAb (C17) did not improve the ability to detect BVDV in tissues compared to using D89 only, and the combined Mab's resulted in an increase in nonspecific fluorescence when used on tissues. Although pooling of different BVDV monoclonal antibodies may be necessary to detect all strains of BVDV in cell culture, pooling should be used with caution on tissues. Early detection of BVDV in cell culture by this IFA procedure permits faster confirmation of BVDV diagnosis when compared to the usual routine testing for noncytopathic BVDV at termination of first passage in cell culture.  相似文献   

13.
本研究旨在获得高效特异性的牛病毒性腹泻病毒(BVDV)NS3(P80)非结构蛋白的纳米抗体。用BVDV灭活疫苗免疫羊驼,测得抗体效价后分离全血中的淋巴细胞。通过噬菌体展示技术构建羊驼重链抗体可变区噬菌体展示文库。经过连续3次吸附-洗脱-扩增的生物筛淘,从中挑选出与BVDV-NS3蛋白结合的噬菌体。对经菌液PCR、琼脂糖凝胶电泳鉴定到的单域抗体(VHH)克隆进行基因测序和同源性比对。用ELISA方法验证筛选出的纳米抗体的反应原性,找到与BVDV-NS3蛋白亲和力高的纳米抗体。结果表明,获得插入率为92.8%、库容为1.84×1014 CFU/mL的噬菌体展示文库。ELISA结果和氨基酸序列分析显示,成功得到1条与BVDV-NS3蛋白具有良好反应性且与VHH同源性较高的纳米抗体序列。本研究利用大肠杆菌成功表达BVDV-NS3抗原蛋白,建立BVDV纳米抗体噬菌体展示文库,筛选到针对BVDV重要抗原蛋白相应的纳米抗体且与VHH同源性较高。试验结果为牛病毒性腹泻/黏膜病的防控、诊断、治疗及纳米抗体药物的研制提供参考。  相似文献   

14.
The aim of the experiment was to study whether bovine herpesvirus 1 (BHV1) marker vaccine batches known to be contaminated with bovine virus diarrhoea virus (BVDV) type 1 could cause BVD in cattle. For this purpose, four groups of cattle were used. The first group (n = 4 calves, the positive control group), was vaccinated with vaccine from a batch contaminated with BVDV type 2. The second group (n = 4 calves, the negative control group), was vaccinated with vaccine from a batch that was not contaminated with BVDV. The third group (n = 39 calves), was vaccinated with a vaccine from one of four batches contaminated with BVDV type 1 (seronegative experimental group). The fourth group (n = 6 seropositive heifers), was vaccinated with a vaccine from one of three batches known to be contaminated with BVDV type 1. All cattle were vaccinated with an overdose of the BHV1 marker vaccine. At the start of the experiment, all calves except those from group 4 were seronegative for BVDV and BHV1. The calves from group 4 had antibodies against BVDV, were BVDV-free and seronegative to BHV1. After vaccination, the positive control calves became severely ill, had fever for several days, and BVDV was isolated from nasal swabs and white blood cells. In addition, these calves produced antibodies to BVDV and BHV1. No difference in clinical scores of the other groups was seen, nor were BVDV or BVDV-specific antibody responses detected in these calves; however, they did produce antibodies against BHV1. The remainder of each vaccine vial used was examined for the presence of infectious BVDV in cell culture. From none of the vials was BVDV isolated after three subsequent passages. This indicates that BVDV was either absent from the vials or was present in too low an amount to be isolated. Thus vaccination of calves with vaccines from BHV1 marker vaccine batches contaminated with BVDV type 1 did not result in BVDV infections.  相似文献   

15.
Tissues were obtained at necropsy from the nasal vestibule, turbinates, nasopharynx, trachea, tracheobronchial bifurcation, and lung from each of 10 clinically healthy calves persistently infected (PI) with bovine viral diarrhea virus (BVDV) serotype 2a. Tissues from the nasal vestibule were obtained by biopsy from five additional PI calves. Formalin-fixed tissues were processed for immunohistochemistry to localize the distribution of BVDV throughout the respiratory tract. Antigen distribution and intensity were subjectively evaluated. Throughout the respiratory tract, mononuclear leukocytes, vascular smooth muscle, and endoneural and perineural cells had BVDV immunoreactivity (BVDV-IR). Multifocally, squamous and ciliated columnar epithelium throughout the respiratory tract contained weak to moderate BVDV antigen. Viral antigen was not seen in goblet cells. BVDV-IR in mixed tubuloalveolar glands of the nasal cavity was weak to strong in serous secretory cells and ductular epithelium. Chondrocytes of the concha often contained BVDV antigen diffusely. Nasal mucus-secreting and tracheobronchial glands multifocally contained weak viral signal. In all cases, alveolar macrophages had moderate to strong BVDV-IR, whereas BVDV-IR in alveolar epithelial cells was weak to moderate. BVDV was present in interalveolar leukocytes and mesenchymal cells. Results indicate that serous secretions of the nasal cavity, productive viral infection of epithelium, and infected leukocytes in respiratory secretions are likely major sources of infectious BVDV from PI calves. The presence of BVDV antigen in respiratory epithelium is, at least, indirect support for the notion that this virus predisposes PI cattle to secondary microbial infections.  相似文献   

16.
A pilot study was initiated to determine the seroprevalence of bovine viral diarrhea virus (BVDV) neutralizing antibodies in finisher hogs in Ontario swine herds, including 2 swine herds with clinical syndromes suspicious of BVDV. No herds were positive for BVDV antibodies by virus neutralization. The 2 swine herds with clinical disease suggestive of pestivirus infection were also negative for antibodies to BVDV in indirect fluorescent antibody assays. Prevalence of BVDV in Ontario swine farms is negligible.  相似文献   

17.
The cellular events involved in precipitation of the clinically fatal outcome of an infection with bovine viral diarrhoea virus (BVDV) remain unresolved, though it is now known that this course of the infection, Mucosal Disease (MD), only occurs in calves persistently infected with non-cytopathic BVDV. In studies aimed at elucidating the pathogenesis of MD, the distribution of BVDV antigens and infectious virus in tissues of persistently infected, clinically normal calves was investigated. Virus antigen was detected in most tissues, in epithelial and immune cells. No signs of an inflammatory response were detected and cytopathological changes were subtle or absent. The infection may nevertheless create a cell-environment which will enhance replication of cytopathic virus. Variations in the clinical, pathomorphologies and virological appearance of MD-cases may depend on both the host-reactions, including virus-induced immunopathology, and the virus-strain combinations in a putative mixed infection.  相似文献   

18.
The relationship between bovine viral diarrhea virus (BVDV) infection and thrombocytopenia was studied in 18 veal calves experimentally infected with BVDV. All calves were free of BVDV, and 13 calves were free of serum neutralizing antibodies to BVDV before virus inoculation. Calves were inoculated at approximately 10 days of age, and platelet counts were monitored over a period of several weeks. Ten additional calves housed in close proximity were kept as uninoculated controls. A profound decrease in platelet counts by 3 to 11 days after inoculation was seen in all calves that had neutralizing antibody titers less than 1:32 before infection. Severe thrombocytopenia (less than 5,000 platelets/microliter) was seen in 12 calves, 11 of which also developed hemorrhages. Necropsy findings in 3 severely thrombocytopenic calves that died included multiple hemorrhages throughout the body. Calves that recovered had increased platelet counts, and in most instances, a corresponding increase in neutralizing antibody titers to BVDV. At 11 days after inoculation, BVDV was detected on platelets by use of immunofluorescence, but evidence of surface-bound immunoglobulin was not found. The results suggest that a nonimmunoglobulin-mediated method of platelet destruction or sequestration develops as a sequela to BVDV infection.  相似文献   

19.
OBJECTIVE: To evaluate the efficacy of a modified-live virus (MLV) combination vaccine containing type 1 and type 2 bovine viral diarrhea virus (BVDV) in providing fetal protection against challenge with heterologous type 1 and type 2 BVDV. DESIGN: Prospective study. ANIMALS: 55 heifers. PROCEDURE: Heifers were vaccinated with a commercial MLV combination vaccine or given a sham vaccine (sterile water) and bred 47 to 53 days later. Heifers were challenged with type 1 or type 2 BVDV on days 75 to 79 of gestation. Clinical signs of BVDV infection, presence of viremia, and WBC count were assessed for 14 days after challenge. Fetuses were collected on days 152 to 156 of gestation, and virus isolation was attempted from fetal tissues. RESULTS: Type 1 BVDV was not isolated in any fetuses from vaccinated heifers and was isolated in all fetuses from nonvaccinated heifers challenged with type 1 BVDV. Type 2 BVDV was isolated in 1 fetus from a vaccinated heifer and all fetuses from nonvaccinated heifers challenged with type 2 BVDV. CONCLUSIONS AND CLINICAL RELEVANCE: A commercial MLV combination vaccine containing type 1 and type 2 BVDV given to the dam prior to breeding protected 100% of fetuses against type 1 BVDV infection and 95% of fetuses against type 2 BVDV infection. Use of a bivalent MLV vaccine in combination with a comprehensive BVDV control program should result in decreased incidence of persistent infection in calves and therefore minimize the risk of BVDV infection in the herd.  相似文献   

20.
Bovine virus diarrhoea virus (BVDV)-1f was isolated from a Lesser Malayan Mousedeer in Copenhagen Zoo during a routine screening. Analysis of animals related to the Copenhagen mousedeer revealed that its mother and all siblings were virus positive, a pattern also seen for persistently infected (PI) cattle. BVDV could be transmitted from the PI mousedeer to a calf after indirect contact. The host spectrum for BVDV seems to be even wider than expected; the implications for BVDV control are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号