首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Florfenicol (Aquaflor®) is the only U.S. Food and Drug Administration (FDA) approved drug for treating diseased fish reared in recirculating aquaculture systems (RAS). Treating diseased fish in RAS is challenging because of the potential to damage nitrifying bacteria in the biofilters. Impaired nitrification can lead to concentrations of ammonia and nitrite that compromise fish welfare. The objective of this study was to determine the effects of a FDA‐approved parasiticide and fungicide, Parasite‐S® (formalin), on biofilter nitrification. Stable biofilters were exposed once to 0, 9.25, 18.5, 37, or 55.5 mg/L formaldehyde. Total ammonia nitrogen (TAN) and nitrite nitrogen were monitored daily before and throughout the study to quantify biofilter function. Formaldehyde concentrations ≥37 mg/L increased TAN and nitrite nitrogen concentrations, and nitrification did not recover to pre‐exposure concentrations up to 8 day postexposure. On the basis of those results, a second trial was conducted. Stable biofilters were exposed once or on four consecutive days to 9.25 or 18.5 mg/L formaldehyde. Biofilters repeatedly exposed to formaldehyde showed signs of impairment and had variable recovery relative to single exposures. Results of this study may help identify formaldehyde concentrations that can be safely applied to RAS when treating diseased fish.  相似文献   

2.
单级生物接触氧化法去除海水养殖废水中的无机氮   总被引:1,自引:0,他引:1  
利用在填料上人工接种微生物组成的浸没式生物接触氧化单级处理系统对养殖废水进行净化,效果良好。在试验水体体积与处理系统体积之比约为100∶1的情况下,对氨氮、亚硝酸盐氮、硝酸盐氮起始质量浓度分别为4.0 mg/L、1.76 mg/L、800 mg/L,COD质量浓度为16.33 mg/L的养殖废水进行处理,发现处理系统中进行着强烈的硝化和反硝化作用:处理30 h,氨氮质量浓度下降并一直保持在0.1 mg/L;亚硝酸盐氮浓度48 h内,前6 h从1.76 mg/L短暂上升到2.24 mg/L,然后持续下降,最低到0.22 mg/L;对硝酸盐氮的反硝化作用能力也很强,经48 h处理,硝酸盐氮质量浓度从800 mg/L下降到180 mg/L。根据对处理过程中的水质测定,浸没式生物接触氧化单级处理试验系统具有较强的生物脱氮能力。  相似文献   

3.
The experiment was conducted with three biofloc treatments and one control in triplicate in 500 L capacity indoor tanks. Biofloc tanks, filled with 350 L of water, were fed with sugarcane molasses (BFTS), tapioca flour (BFTT), wheat flour (BFTW) and clean water as control without biofloc and allowed to stand for 30 days. The postlarvae of Litopenaeus vannamei (Boone, 1931) with an Average body weight of 0.15 ± 0.02 g were stocked at the rate of 130 PL m?2 and cultured for a period of 60 days fed with pelleted feed at the rate of 1.5% of biomass. The total suspended solids (TSS) level was maintained at around 500 mg L?1 in BFT tanks. The addition of carbohydrate significantly reduced the total ammonia‐N (TAN), nitrite‐N and nitrate‐N in water and it significantly increased the total heterotrophic bacteria (THB) population in the biofloc treatments. There was a significant difference in the final average body weight (8.49 ± 0.09 g) in the wheat flour treatment (BFTW) than those treatment and control group of the shrimp. Survival of the shrimps was not affected by the treatments and ranged between 82.02% and 90.3%. The proximate and chemical composition of biofloc and proximate composition of the shrimp was significantly different between the biofloc treatments and control. Tintinids, ciliates, copepods, cyanobacteria and nematodes were identified in all the biofloc treatments, nematodes being the most dominant group of organisms in the biofloc. It could be concluded that the use of wheat flour (BFTW) effectively enhanced the biofloc production and contributed towards better water quality which resulted in higher production of shrimp.  相似文献   

4.
Diets containing 28% and 32% crude protein were compared for pond‐raised channel catfish Ictalurus punctatus stocked at densities of 14,820, 29,640, or 44,460 fish/ha. Fingerling channel catfish with average initial weight of 48.5 g/fish were stocked into 30 0.04‐ha ponds. Five ponds were randomly allotted for each dietary protein ± stocking density combination. Fish were fed once daily to satiation for two growing seasons. There were no interactions between dietary protein concentration and stocking density for any variables. Dietary protein concentrations (28% or 32%) did not affect net production, feed consumption and weight gain per fish, feed conversion ratio, survival, processing yields, fillet moisture, protein and ash concentrations, or pond water ammonia and nitrite concentrations. Fish fed the 32% protein diet had slightly but significantly lower levels of visceral and fillet fat than fish fed the 28% protein diet. As stocking density increased, net production increased, while weight gain of individual fish, feed efficiency, and survival decreased. Stocking densities did not affect processing yield and fillet composition of the fish. Although highly variable among different ponds and weekly measurements, ponds stocked at the highest density exhibited higher average levels of total ammonia‐nitrogen (TAN) and nitrite‐nitrogen (NO2‐N) than ponds stocked at lower densities. However, stocking density had no significant effect on un‐ionized ammonia‐nitrogen (NH3‐N) concentrations, calculated based on water temperature, pH, and TAN. By comparing to the reported critical concentration, a threshold below which is considered not harmful to the fish, these potentially toxic nitrogenous compounds in the pond water were generally in the range acceptable for channel catfish. It appears that a 28% protein diet can provide equivalent net production, feed efficiency, and processing yields as a 32% protein diet for channel catfish raised in ponds from advanced fingerlings to marketable size at densities varying from 14,820 to 44,460 fish/ha under single‐batch cropping systems. Optimum dietary protein concentration for pond‐raised channel catfish does not appear to be affected by stocking density.  相似文献   

5.
The effect of water velocity on nitrification rates in fixed bed biofilters was investigated in three freshwater pilot scale RAS with rainbow trout. Removal of total ammonia nitrogen (TAN) and nitrite-nitrogen were assessed by NH4Cl spikes and tested at four different water velocities in the biofilters (1.4, 5.4, 10.8 and 16.2 m h−1) under identical conditions. Water velocities below 10.8 m h−1 significantly reduced TAN- and nitrite removal rates. The surface specific TAN removal rates correlated with the TAN concentrations at the water velocities 10.8 and 16.2 m h−1, and the first order surface removal rate constant was estimated at 0.45 m h−1. However, no correlations between TAN removal and TAN concentrations were found at the lowest velocities. Up to five-fold elevated nitrite levels were found in the RAS when biofilters were operated at 1.4 m h−1 compared to the trials at other water velocities, substantiating the significant effect of water velocity on both nitrification processes. The importance of biofilter hydraulics documented in this pilot scale RAS probably have implications for design and operation in larger scale RAS.  相似文献   

6.
In intensive aquaculture, one of the main problems confronted by the farmers is the ammonia pollution and subsequent disease outbreaks, high costs of quality protein feed, and the labor for periodic water exchange. Ammonia is a major metabolic waste product from fish, which is excreted across the gill membranes and in the urine. Controlling the inorganic nitrogen by manipulating the carbon/nitrogen ratios seems to be a practical and inexpensive means of reducing the accumulation of ammonia. At high carbon to nitrogen (C/N) ratios, bacteria will assimilate nitrogen, i.e., ammonia, from water and produce new cell protein. The experiment was designed by adding 0, 10, 20, and 30 g of carbohydrate (rice flour) for each gram of total ammonia nitrogen (TAN) released as a result of feeding metabolism and feed waste decomposition. The ammonia built up in the rearing water showed a drastic decrease in all the carbohydrate added tanks. The heterotrophic bacterial growth was significantly higher in the same. The biochemical constituents and growth rate were higher in fishes in the tanks having C/N ratio 10 and 20. Percentage weight gain was 100% for T30, protein efficiency ratio (PER) was high for T20 and T30 (4.048). The C/N ratios of 20 and 30 worked more effectively. Shifting the aquatic ecology from autotrophic to heterotrophic bacterial-based community can improve water quality and recycle the toxic ammonia waste to heterotrophic bacterial flocs, which in turn can be consumed by the fish, thereby reducing the feed protein demand and subsequently the reduction of feed cost.  相似文献   

7.
A 30‐day experiment was conducted to evaluate the effect of C/N ratio on water quality and bacterial community in an integrated system comprising one molluscan species (pearl mussel Hyriopsis cumingii) and two fish species (gibel carp Carassius gibelio and silver carp Hypophthalmichthys molitrix) at five C/N ratios (6, 8, 10, 12 and 14). The mussel and fishes were reared in the experimental tanks (400 L), but gibel carp received formulated feed. Water quality in the experimental tanks was analysed on day 0, 10, 20 and 30, and bacterial community in the water column and sediment was analysed on day 30. Total nitrogen, total phosphorus and total organic carbon accumulated in the tanks over time. Ammonia and nitrite decreased with the increase in C/N ratio. Bacterial community in the water column and sediment changed at the phylum and genus levels with the increase in C/N ratio, and the critical C/N ratio causing a functional shift of bacterial community occurred at 10 in water column and 12 in sediment. The increase in C/N ratio benefited the growth of both potential probiotics and pathogenic bacteria. The high C/N ratio enhanced the bacterial functions of chemoheterotrophy and hydrocarbon degradation, but depressed the functions of nitrification and denitrification in the water column and sediment respectively. This study reveals that the C/N ratio can be used as a tool to manipulate the bacterial community and water quality in the mussel‐fish integrated system.  相似文献   

8.
The relative contribution that solid waste or 'sludge', which accumulates at the bottom of abalone ( Haliotis midae L.) tanks, makes to dissolved ammonia has not been established. Sludge was allowed to accumulate in 10 fully stocked abalone tanks, fed a formulated feed (Abfeed®; Marifeed, South Africa), for 24 days. Sludge was subsequently siphoned from five of these tanks. Total ammonia nitrogen (TAN) production and toxic, free ammonia nitrogen (FAN) were recorded in the tanks from which sludge was removed and compared with those from which sludge was not removed over the subsequent 50 h. Tanks with neither abalone nor sludge present were used as a control. The mean production of TAN (±standard deviation) was an average of 44% higher in tanks from which sludge was not removed compared with those from which it was, indicating that the sludge was a significant contributor to dissolved ammonia in the tanks. The toxic FAN concentrations were correspondingly higher in tanks with sludge present (2.3±0.3 μL−1) compared with cleaned tanks (1.9±0.1 μL−1). Our results indicate that regular removal of sludge from abalone tanks should significantly reduce the dissolved ammonia levels, thereby improving water quality in the culture environment.  相似文献   

9.
An on-station trial was conducted to evaluate the effect of stocking density of freshwater prawn and addition of different levels of tilapia on production in carbon/nitrogen (C/N) controlled periphyton based system. The experiment had a 2 × 3 factorial design, in which two levels of prawn stocking density (2 and 3 juveniles m? 2) were investigated in 40 m2 earthen ponds with three levels of tilapia density (0, 0.5 and 1 juveniles m? 2). A locally formulated and prepared feed containing 30% crude protein with C/N ratio close to 10 was applied considering the body weight of prawn only. Additionally, tapioca starch was applied to the water column in all ponds to increase C/N ratio from 10 (as in feed) to 20. Increasing stocking density of tilapia decreased the chlorophyll a concentration in water and total nitrogen in sediment, and increased the bottom dissolved oxygen. The concentrations of inorganic nitrogenous species (NH3–N, NO2–N and NO3–N) were low due to maintaining a high C/N ratio (20) in all treatment ponds. Increasing prawn density decreased periphyton biomass (dry matter, ash free dry matter, chlorophyll a) by 3–6% whereas tilapia produced a much stronger effect. Increasing stocking density of freshwater prawn increased the total heterotrophic bacterial (THB) load of water and sediment whereas tilapia addition decreased the THB load of periphyton. Both increasing densities of prawn and tilapia increased the value of FCR. Increasing prawn density increased gross and net prawn production (independent of tilapia density). Adding 0.5 tilapia m? 2 on average reduced prawn production by 12–13%, and tilapia addition at 1 individual m? 2 produced a further 5% reduction (independent of prawn density). The net yield of tilapia was similar between 0.5 and 1 tilapia m? 2 treatments and increased by 8.5% with increasing stocking density of prawn. The combined net yield increased significantly with increasing stocking density of prawn and tilapia addition. The significantly highest benefit cost ratio (BCR) was observed in 0.5 tilapia m? 2 treatment but freshwater prawn density had no effect on it. Therefore, both stocking densities (2 and 3 juveniles m? 2) of prawn with the addition of 0.5 tilapia m? 2 resulted in higher fish production, good environmental condition and economic return and hence, polyculture of prawn and tilapia in C/N controlled periphyton based system is a promising options for ecological and sustainable aquaculture.  相似文献   

10.
利用生物滤池模拟装置,以实际养殖废水为处理对象,探讨了4种常见有机碳源(葡萄糖、乙醇、红糖和淀粉)及不同碳氮比对有机物去除、硝化反应和异养反硝化作用等生物滤池主要净化过程的影响.碳源初选结果显示,同种碳源下,当C/N从0升高至6过程中,生物滤池对TAN(总氨氮)的去除率呈先升高后降低趋势;当C/N较小时,各组对NO2--N的去除率差异性不显著(P>0.05),随着C/N继续升高,NO2-N去除率则显著降低(P<0.05);乙醇组除外,其他3组随着C/N升高,CODMn去除率先迅速增大然后趋于稳定;各组NO3-N和TN去除率呈先升高后降低趋势,且变化显著(P<0.05),当C/N=4时,分别达到最高值.碳源复选结果显示,在C/N=4条件下,分别添加有机碳源(乙醇、淀粉、红糖和葡萄糖)的4组对TAN、NO3--N、TN和CODM的去除率显著高于对照组(P<0.05);而对照组NO2--N的去除率最高,达到93.59%;添加乙醇,生物滤池对水体中TAN、NO2-N、NO3-N和TN的去除效果优于其他3种碳源.研究表明,当C/N=4时,乙醇作为外加碳源能很好地提高生物滤池的净化效率.  相似文献   

11.
A 10‐week feeding trial of using housefly (Musca domestica) maggot meal (MM) in practical feeds for Nile tilapia (Oreochromis niloticus) was conducted to assess the growth performance, ingredient utilization, flesh quality, innate immunity and its influence on water environment. Fish were fed five isonitrogenous and isoenergetic diets, where fishmeal (FM) was substituted by MM at the level of 0, 90, 180, 270 and 360 g kg‐1 diet (remaining FM content: 360, 270, 180, 90 and 0 g kg‐1). There was no significant difference in feed intake and apparent digestibility coefficient between the treatments. Replacing up to 270 g kg‐1 FM did not have an impact on the growth performance and ingredient utilization, whereas the complete replacement of FM caused significantly lower survival rate, weight gain, specific growth rate and higher feed conversion rate. Dietary MM was also proved positively influential in flesh quality, whereas replacing 180 g kg‐1 or more FM suppressed the innate immunity of tilapia. When compared by the effects on the water environment, the increasing substitute levels were accompanied with the declining concentrations of nitrite nitrogen and total phosphorus in the water. Our study verified the feasibility of using MM as a partial substitute of FM in aquatic feed. When replacing 180 g kg‐1 FM (corresponding to half of the FM content in control diet) in the diet of Nile tilapia, it can serve as a renewable and environmentally superior alternative without compromising the performance criteria.  相似文献   

12.
Selected water quality variables were measured at monthly intervals for 1 yr in 10 commercial channel catfish ponds in northwest Mississippi. Temporal changes in most variables appeared to be related to seasonal periodicity of phytoplankton abundance. Phytoplankton standing crops and total organic matter were highest in summer months when primary production was favored by warm water temperatures, high solar irradiance, and large inputs of nutrients resulting from high summer fish feed allowances. As day length, water temperature, and feed inputs decreased in autumn and winter, phytoplankton abundance and organic matter concentrations decreased. Seasonal changes in total nitrogen and total phosphorus concentrations were similar to phytoplankton abundance because much of the total nitrogen and phosphorus was contained within phytoplankton cells. Contrasting to the seasonal trend for total nitrogen, concentrations of dissolved inorganic nitrogen were lowest in the summer and highest in the cooler months. Rapid assimilation by phytoplankton served to maintain relatively low concentrations of dissolved inorganic nitrogen during the summer despite highest nitrogen loading rates during that period. Low water temperatures and generally less favorable conditions for phytoplankton growth decreased rates of nitrogen assimilation in the winter and ammonia, nitrite, and nitrate accumulated. Soluble reactive phosphorus concentrations were low throughout the year because physico-chemical processes, such as precipitation and adsorption to bottom muds acted to continually remove inorganic phosphorus from the water column.  相似文献   

13.
Two experimental modules with different stocking densities (M1 = 70 and M2 = 120 shrimp /m2) were examined weekly over a culture cycle in tanks with low‐salinity water (1.9 g/L) and zero water exchange. Results showed survival rates of 87.7 and 11.9% in M1 and M2, respectively. Water temperature, pH, dissolved oxygen, electrical conductivity and chlorophyll a were not significantly (p > .05) different between modules. In contrast, the concentrations of nitrogen compounds were significantly (p < .05) different between modules, except nitrite‐N (M2 were 2.31 ± 1.38 mg/L N‐TAN, 0.18 ± 0.49 mg/L N‐NO2? and 6.83 ± 6.52 mg/L N‐NO3?; in M1: 0.97 ± 0.73 mg/L N‐TAN, 0.05 ± 0.21 mg/L N‐NO2? and 0.63 ± 0.70 mg/L N‐NO3?). When waters of both modules reached higher levels of ammonia and nitrite, histological alterations were observed in gills. The histological alterations index (HAI) was higher in M2 (5‐112) than in M1 (2‐22).  相似文献   

14.
Oyster aquaculture is an expanding industry in the Chesapeake Bay. Oysters remove nitrogen (N) and phosphorus (P) from the water column through filtration and conversion of phytoplankton into shell and tissue, but also continuously excrete these same nutrients back into the water column as inorganic compounds readily available for plant or algal uptake. The objective of this study was to assess multiple water quality parameters upstream and downstream of a commercial oyster aquaculture facility in the mesohaline region of the Chesapeake Bay. Results of the study indicated a 78.4% average increase in total ammonia nitrogen (TAN) concentration and a 19.4% decrease in chlorophyll-a (Chl-a) concentration downstream of the facility. There was no significant change in the concentration of reactive phosphate (RP), nitrate–nitrogen (NO3–N), or nitrite–nitrogen (NO2–N) as water passed through the facility. It was determined that velocity of water through the facility had no influence on the change in TAN or Chl-a concentration from upstream to downstream of the facility. Increased reduction in Chl-a concentration from upstream to downstream was related to higher upstream concentrations of Chl-a. There was no correlation between increased rates of Chl-a removal and downstream TAN. Results of this study suggest that oyster aquaculture can significantly increase the amount of available inorganic nitrogen in the water column immediately downstream of a facility, independent of upstream availability of phytoplankton and flow velocity of water through the facility.  相似文献   

15.
Nitrogen (N) and phosphorus (P) budgets in a bioflocs technology (BFT) aquaculture system and a recirculation aquaculture system (RAS) during over-wintering of tilapia (GIFT Oreochromis niloticus)for 64 d were compared in the current study. Fish feed was the major input of N in both systems, specifically, 94±0 % and 82±4 % for the RAS and BFT aquaculture system, respectively. The rate of N recovery in the BFT aquaculture systems was estimated to be 48±5 % of input N, which was significantly different from that of the RAS (37±4 %). There was no significant difference between the RASs and BFT aquaculture systems in terms of P recovery rate. The regular backwashing of the drum filter and biological filter in RAS accounted for 41 ± 2 % of input N and 39 ± 2 % of input P. Approximately 54 % of unassimilated nitrogen N was removed by nitrification in the BFT aquaculture systems. The results from the present study suggest that nitrification may be the dominant pathway for ammonia removal in a BFT aquaculture system rather than by heterotrophic bacterial assimilation.  相似文献   

16.
This study investigated how removal rates of urea, ammonia, and nitrite in laboratory scale moving bed biofilters were affected by long-term feed loading. To generate different loadings, five identical freshwater flow-through systems (100 l/h) with rainbow trout (Oncorhynchus mykiss) were fed increasing fixed rations of a commercial diet. The filtered effluent from each system was lead through a moving bed biofilter installed end-of-pipe. After an acclimatization period of four months, the moving bed biofilters were spiked separately with urea, ammonia and nitrite in batch mode in three successive trials to investigate degradation kinetics. Results showed that urea, in addition to ammonia and nitrite, was degraded although the substrate limited/dependent removal rate of urea (first order kinetic) was lower than that of ammonia and nitrite. Degradation of urea could be described as first order kinetics below 2.5 mg N/l. Degradation of total ammonia nitrogen (TAN) and nitrite was substrate independent (zero order kinetic) above 2 mg N/l and subsequently substrate dependent as substrate concentrations in the bulk water declined. The transition zone from zero to first order degradation was elevated with increase in long-term biofilter loading. For ammonia and nitrite, a significant increase in the zero order removal rate constants related to long-term loading were observed up to a long-term feed loading of 207 g/d, corresponding to 69 g feed/m2 filter media/d and an TAN + urea-N concentration of 2.70 mg N/l. Long-term feed loading had no obvious effect on first order removal rate constants of any of the three nitrogenous compounds. Degradation of urea resulted in generation of ammonia demonstrating that urea degradation contributes to the ongoing nitrification activity in aquaculture biofilters. For all three types of spiking (urea, ammonia and nitrite) accumulation of nitrate was observed in the moving bed biofilters, sustaining that nitrification had occurred.  相似文献   

17.
Total ammonia nitrogen (TAN) concentration is often a key limiting water quality parameter in intensive aquaculture systems. Removing ammonia through biological filtration is thus the first objective in recirculating aquaculture system design. In this study, the performance characteristics of a steady-state nitrification biofilm were explored using a series of reactors. Four nitrification kinetics parameters were estimated using the data collected from the experimental system, including minimum TAN concentration, half saturation constant, maximum TAN removal rate and maximum specific bacterial growth rate. Experimental data showed that a minimum TAN concentration was needed to support a steady-state nitrification biofilm. For the temperature of 27.2°C, the mean minimum TAN concentration was 0.07 mg/l. For a single substrate-limiting factor, the relationship between TAN removal rate (R) and TAN concentration (S) was represented by an empirical equation [R=1859(S−0.07)/(S+1.93)]. The characteristics of nitrite oxidation were also demonstrated by the experiment system. The results of this study will help to better understand the characteristics of nitrification biofilters applied in recirculating aquaculture systems.  相似文献   

18.
A 30‐day experiment was conducted to evaluate inorganic nitrogen control, biofloc composition and shrimp performance in zero‐exchange culture tanks for juvenile L. vannamei offered a 35% (P35) or 25% (P25) crude protein feed, each feed supplemented with additional carbohydrate to increase the C/N ratio to 20:1 (CN20) or 15:1 (CN15). Sucrose was used as a carbohydrate to manipulate the two C/N ratios based on the carbon and nitrogen content of both the feeds and sucrose. The four treatments were referred to as: P35 + CN20, P35 + CN15, P25 + CN20 and P25 + CN15. Each treatment consisted of four replicate tanks (125 L), each stocked with 28 shrimp (equivalent to 224 shrimp m?3). Bioflocs formed and developed based on initial inoculation in all four treatments; and monitored water quality parameters were maintained within acceptable ranges for shrimp culture throughout the experiment. No significant effects (> 0.05) of dietary protein level, C/N ratio or their interaction were observed on biofloc development (BFV, TSS and BFVI) and inorganic nitrogen (TAN, NO2?‐N and NO3?‐N) concentrations. At the end of the experiment, proximate analysis of the bioflocs collected from the four treatments showed crude protein levels of 21.3% ~ 32.1%, crude lipid levels of 1.6% ~ 2.8% and ash levels of 43.4% ~ 61.4%. Extracellular protease and amylase activities of the bioflocs were 9.9 ~ 14.4 U g?1 TSS and 293.5 ~ 403.8 U g?1 TSS respectively. Biofloc composition and enzyme activity were both affected by dietary protein level (< 0.01) and C/N ratio (< 0.05). Survival, per cent weight gain and protein efficiency ratio of shrimp were not affected (> 0.05) by dietary protein level, C/N ratio or their interaction; however, the feed conversion ratios were significantly lower (< 0.05) in treatments with high dietary protein (P35) compared with those in treatments with low dietary protein (P25). The results from this study demonstrate that dietary protein level and C/N ratio manipulation can have important implications for water quality, biofloc composition and shrimp performance in intensive, zero‐exchange biofloc‐based culture systems.  相似文献   

19.
This study determined the digestibility of nitrogen and phosphorus, and the excretion rate of different‐sized groups of milkfish fed a commercial diet, a SEAFDEC formulated diet or lab‐lab (natural food‐based diet). Fish (31.2–263.0 g) were stocked in 12 units of 300‐L fibreglass tanks filled with aerated seawater. The postprandial total ammonia‐nitrogen (TAN) and phosphate (PO4‐P) excretion of fish were estimated from changes in TAN and PO4‐P concentrations in water for 24 h. Digestibility was determined from the nitrogen, phosphorus and Cr2O3 content of the diets, and pooled faeces after the fish had been fed diets marked with chromic oxide. TAN excretion rate (mg TAN kg?1 fish day?1) was significantly lowest (P < 0.05) in medium to very big fish fed the lab‐lab diet (60.8–124.4) and highest in small and medium fish fed the SEAFDEC diet (333.3–331.6) and small fish fed the commercial diet (280.1). Regardless of size, fish fed lab‐lab excreted (mg PO4‐P kg?1 fish day?1) significantly lower PO4‐P (36.2) but did not differ with fish fed the commercial diet (64.8). Excretion rates decreased exponentially as fish weight increased but positively increased with feed ration. Excretion pattern of milkfish revealed two peaks: the first peak occurred 6 h after feeding and the second peak at 18 h for TAN and 21 h for PO4‐P, coinciding with the start of the daylight hours. TAN and PO4‐P excretion accounted for 20.5–34.6% of total N consumed and 18.7–42.6% of P consumed respectively. Approximately 27.9–42.5% of N consumed and 47.2–58.5% of P consumed were lost as faeces. Total nutrient losses were lower using the lab‐lab diet (0.31 g N and 0.14 g P kg?1 fish) compared with the formulated diets (0.47–0.48 g N and 0.17–0.19 g P kg?1 fish); the losses decreased per kg of fish as fish size increased. Results suggest that the diet and size of fish influence wastage of N and P to the environment with greater losses in small fish and when artificial diets are used. Such measurements will provide valuable information for the preparation of N and P budgets for milkfish in grow‐out systems.  相似文献   

20.
A 56‐day experiment was conducted to investigate the effect of no carbohydrate addition applied to control water quality in water‐reusing biofloc systems for tilapia (GIFT Oreochromis niloticus) cultivation. Reusing water‐contained flocs was initially inoculated into six 300 L indoor tanks. Thirty fish (average individual weight 99.62 ± 7.34 g) were stocked in each tank. Glucose was extra added into three tanks (GLU‐tanks) according to biofloc technology, while other tanks were no carbohydrate added (NCA‐tanks). Concentrations of total ammonia nitrogen in GLU‐tanks and NCA‐tanks were fairly consistent and below 4.74 ± 0.35 mg/L. Nitrite concentrations in NCA‐tanks were significantly lower than GLU‐tanks, which were below 0.59 ± 0.10 mg/L during the later culture period. NCA‐tanks achieved a low relative abundance of denitrifiers and high concentrations of nitrate. Soluble reactive phosphorous in NCA‐tanks was consistently increased, which was decreased to a low level in GLU‐tanks. However, growth parameters in NCA‐tanks were similar to GLU‐tanks (> .05) and reach a high finial density of 24.32 ± 1.04 kg/m3. Cetobacterium sp. was the first‐dominant bacterial genus in all tanks, which was a commonly indigenous bacterium in the intestinal tract of freshwater fish. The results demonstrate the feasibility of no carbohydrate addition in water‐reusing biofloc systems for tilapia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号