首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 380 毫秒
1.
Quantitative assessment of the impacts of climate change on groundwater levels is important for sustainable groundwater use. This study examined the Tedori River alluvial fan in Ishikawa Prefecture, Japan, where paddy fields occupy 45 % of the total area. A regional groundwater flow model simulated future groundwater levels in response to 38 climate change projections generated for each of three GCMs, using three GHG emission scenarios with the ELPIS-JP datasets. The numerical groundwater flow model consisted of a 1-D unsaturated water flow model (HYDRUS-1D) for estimating groundwater recharge and a 3-D groundwater flow model (MODFLOW). Variable parameters consisted of daily air temperature, precipitation, humidity, solar radiation, and wind speed, which influence groundwater through infiltration, evapotranspiration, snowfall, and snowmelt. Groundwater levels had both decreasing and increasing trends, depending on climate change. There were more decreasing than increasing trends, and the maximum groundwater drawdown during 2010–2090 was ~1 m. Groundwater level was most sensitive to change in rate of precipitation during the non-irrigation period. Variations of relatively low-intensity precipitation days, when daily precipitation was <10 mm, had an effect on groundwater level. These results contribute to development of adaptive and sustainable groundwater managements (e.g. land use management and pumping strategies) in the future.  相似文献   

2.
Promoting biomass utilization, the objectives of this study were to clarify the spatial distribution of nitrogen, one of the most important fertilizer components in the methane fermentation digested slurry (i.e., the digested slurry), and to establish an effective method to apply spatial-uniformly digested slurry with irrigation water in the rice paddy field. A numerical model describing the unsteady two-dimensional flow and solution transport of paddy irrigation water was introduced. The accuracy of this model was verified with a field observation. The tendencies of the TN simulated in inlet and outlet portions had good agreement with the measured data and the accuracy of the numerical model could be verified. Using the numerical model, scenario analyses were conducted to determine the method for spatial-uniform application of the digested slurry with irrigation water. The simulated results indicated that drainage of the surface water and trenches at the soil surface were effective for spatial-uniform application of the digested slurry with irrigation water in the rice paddy fields. The effect of the trenches was maximized when the surface water of the rice paddy field was drained adequately.  相似文献   

3.
There are many paddy fields and large amounts of groundwater in the Tedori River Alluvial Fan in Ishikawa Prefecture, Japan. Water infiltration from paddy fields during irrigation may significantly contribute to groundwater recharge. Groundwater recharge is known to be one outcome of paddy farming, and in general is usually related to land use. However, a decreased area of paddy fields because of socioeconomic factors such as urbanization and increasing area of fallow fields has possibly affected the groundwater environment. Evaluation of the quantitative effect of paddy fields on groundwater is necessary for groundwater conservation. This study examined the relationship between differences in the depth of groundwater from just before the irrigation period to just after the first irrigation of paddy fields (increments of groundwater levels) in observation wells and the area of paddy fields around each well. The paddy areas within circular buffer zones, which were delineated at 0.2 km intervals between 0.2 and 2.0 km centered on each observation well, were calculated. A positive relationship was found between the rise in groundwater and the area of paddy field within different buffer zones at most wells. In addition, in the middle or upper part of the fan, the effect of changes in the area of paddy fields surrounding the well on the groundwater level rise was greater than that on the lower part of the fan.  相似文献   

4.
The subject of this study is water management in low-lying paddy fields. The objective of this study is to quantify the water requirement, and estimate an appropriate volume and facilitate management of irrigation water in areas where it is difficult to estimate the flow rate continuously. A field observation was conducted at a 14-ha study site located in the Kuwabara area, Fukuoka City, southwest of Japan, to evaluate water management conditions in the command area of the reservoir. This site near the reservoir was selected, because it was impossible to understand the water supply situation in the entire command area. The farmers in this region have been unable to retain sufficient irrigation water. The observation results indicate that the water depth fluctuates widely in every irrigation canal. The canals are frequently empty because rotational irrigation is conducted by water managers; this makes quantifying the flow rate in the irrigation canal very difficult. To quantify the water requirement, an improved tank model was introduced. The accuracy of the model was examined by comparing the observed and calculated ponding depths at a paddy field. The simulation results agreed with the observed data. Using this model, water management for the reduction of water managers’ labor was simulated. Simulation results indicated that rotational irrigation effectively reduces labor and saves irrigation water.  相似文献   

5.
The Mae Lao Irrigation Scheme is one of the largest irrigation projects in Northern Thailand. According to the field reconnaissance, water shortage usually occurs during the dry season. And it is very difficult to equally distribute available water to the paddy fields from the upstream to the downstream parts of the system. To understand and identify the causes of the problems, the measurement of water level and flow rate along all canals may be effective. However, it is not easy to achieve this in such a large-scale irrigation system. Thus, the numerical simulation becomes the second option. The objective of this study is to identify and quantify the real water shortage causes by developing an Unsteady Irrigation Water Distribution and Consumption model which can simulate the water movement and consumption in the whole irrigation system. The beneficial area of the right main canal is modeled based on the physical aspect of the system. The components of the model consist of canal networks, control structures, and paddy fields. A canal is divided into several portions called reach. The Saint-Venant equations are applied to describe the unsteady water movement in each reach. Flow movement at the control structure is expressed by the boundary condition. The paddy fields are modeled to make paddy block and connected to each reach. The water consumption in each paddy block is estimated by Paddy Tank model. The numerical model is successfully developed showing the ability to simulate the water movement and consumption properties in this irrigation system.  相似文献   

6.
This research is to construct a water balance model to estimate the amount of return flow in an irrigation system. A simple computation framework for the model was established to include various irrigation applications in cropping seasons. The model was able to estimate evapotranspiration, deep percolation into groundwater aquifer, and return flow. Return flow can be split into two parts, which are surface and subsurface return flows. The water balance model was then applied at the irrigation system (rotational block No. 11-2 of five paddy field units) which is operated by the Taoyuan Irrigation Association in Taiwan as an example. Two study cases were simulated, in which one was for using return flow and the other one was for using no return flow. The study period for the model simulations is the first rice cropping term in 2010 which was from February 16 to July 10. As a result, return flows calculated by the model were 27, 27, 34, and 39% of outflows for sandy loam, sandy clay, clay loam, and light clay soil, respectively. Irrigation water at the downstream field unit with use of return flow was supplemented by the upstream field units, and the amount is 5?C8% of irrigation water for using no return flow. Furthermore, it can be seen from the simulations that increases in irrigation water provide increases of return flow. Increases of irrigation water result in slight increases of subsurface return flow, while increases of irrigation water cause nearly none of change in deep percolation.  相似文献   

7.

Water management methods regulate water temperature in paddy fields, which affects rice growth and the environment. To understand the effect of irrigation conditions on water temperature in a paddy field, water temperature distribution under 42 different irrigation models including the use of ICT water management, which enables remote and automatic irrigation, was simulated using a physical model of heat balance. The following results were obtained: (1) Irrigation water temperature had a more significant effect on paddy water temperature close to the inlet. As the distance from the inlet increased, the water temperature converged to an equilibrium, which was determined by meteorological conditions and changes in water depth. (2) Increasing the irrigation rate with higher irrigation water amount increased the extent and magnitude of the effects of the irrigation water temperature. (3) When total irrigation water amount was the same, increasing the irrigation rate decreased the time-averaged temperature gradient effect over time across the paddy field. (4) Irrigation during the lowest and highest paddy water temperatures effectively decreased and increased the equilibrium water temperature, respectively. The results indicate that irrigation management can be used to alter and control water temperature in paddy fields, and showed the potential of ICT water management in enhancing the effect of water management in paddy fields. Our results demonstrated that a numerical simulation using a physical model for water temperature distribution is useful for revealing effective water management techniques under various irrigation methods and meteorological conditions.

  相似文献   

8.
In the large-scale irrigation schemes of the lower Ili River Basin of Kazakhstan, crop rotation combines paddy rice and non-rice crops. Continuous irrigation is practiced in paddy fields, whereas other crops are sustained from groundwater after only limited early irrigation. The water table in non-rice crops is raised by seepage from canals and the flooded paddy fields. We investigated the areal extent to which the groundwater level of non-irrigated fields is influenced by seepage from canals and paddy fields by examining the relationship between distance (from canal and paddy field) and groundwater level in upland fields. The groundwater level was influenced for up to 300 and 400 m from the canals and paddy fields, respectively. Geographic information system analysis of crop and canal patterns in the 11 selected years showed that if the zone of influence is 300 and 400 m from the canals and paddy fields, respectively, the groundwater level of most of the area of upland fields was raised by seepage. We conclude that the water supply to cropping fields by seepage from irrigation canals and paddy fields is adequate, but the spatial distribution of the paddy fields may be an important factor that needs more attention to help improve water use efficiency in this irrigation district.  相似文献   

9.
This study of a water cycle was conducted in an evergreen forest located in the Mekong River Basin in central Cambodia. At the observation site, we measured the dynamics of the spatial distribution of groundwater levels. The groundwater movement was analyzed two-dimensionally using boundary conditions and parameters that had been observed in the field. The climate in the research area is dominated by two seasons, which occur annually: a rainy and a dry season. The groundwater levels are generally high during the rainy season and low during the dry season. Groundwater levels were measured along a stream, which flowed through the study site. The streambed was visible at the head of the stream in January. At the next downriver well point, the streambed appeared in March. Finally, it became visible at all well points in April, meaning that surface runoff had disappeared temporarily and instead flowed underground during the ensuing dry period. Groundwater levels of the studied lateral flow perpendicular to the stream that seeped and infiltrated into the stream were 1.2–2.5 m deep (in April), which was the lowest level recorded for the year. During that period, the depth of the groundwater of the studied lateral flow fell by as much as 56 mm per month. In addition, the lateral flow groundwater infiltrated into groundwater of the stream during that period. The groundwater level fluctuation was estimated based on a two-dimensional analysis of lateral flow perpendicular to the stream using a numerical simulation model with soil physical parameters and observed boundary conditions. The observations of ground water fluctuations were well reproduced. Deep seepage of groundwater was estimated using a uniform boundary condition that allowed efflux through the bottom, estimated as being approximately 30 mm per year. The simulated deep seepage rate was considered plausible considering other hydrological components such as soil water storage fluctuation.  相似文献   

10.
Chiyoda basin is located in Saga Prefecture in Kyushu Island, Japan, and lies next to the tidal compartment of the Chikugo River to which the excess water in the basin is drained away. Chiyoda basin has a total area of about 1,100 ha and is a typical flat and low-lying paddy-cultivated area. The main environmental issue in this basin is total nitrogen (TN) and total phosphorus (TP) load management because TN and TP, which loaded from farmlands, degrade surface water as a result of anthropogenic eutrophication. This paper presents a mathematical model of TN and TP runoff during an irrigation period in Chiyoda basin in order to elucidate the pollutant fluxes that accompany water transportation in paddy fields and drainage canals, and to evaluate pollutant removal from the study area to the Chikugo River. First, the water flow and the algorithm of gate operation were simulated by a continuous tank model and the accuracy of the model was then evaluated by comparing the simulated water levels with observed ones during an irrigation period. The observed and simulated water levels were in good agreement, indicating that the proposed model is applicable for drainage and water supply analyses in flat, low-lying paddy-cultivated areas. Second, the TN and TP runoff during an irrigation period was simulated based on the TN and TP loads that were determined by observed data in paddy fields. For TN runoff, the simulated results and observed data were in good agreement whereas for TP runoff, the simulated results were higher than the observed data. However, if the settled TP within the paddy tank was calculated as 6%, then the simulated results and the observed data were in good agreement. We concluded that TN runoff from paddy field to the drainage canal system was not affected much by the sediment related process. The present study could provide farmers and managers with a useful tool for controlling the water distribution in an irrigation period, and the TN and TP loads in the downstream area as well as the Chikugo River.  相似文献   

11.
This study is to assess the climate change impact on the temporal variation of paddy rice irrigation reservoir water level from the future evaluated watershed inflow, and to suggest an adaptation method of the future reservoir water level management for stable water supply of paddy irrigation demands. A 366.5 km2 watershed including two irrigation reservoirs located in the upper middle part of South Korea was adopted. For the future evaluation, the SLURP model was set up using 9 years daily reservoir water level and streamflow records at the watershed outlet. The average Nash-Sutcliffe model efficiencies for calibration and validation were 0.69 and 0.65, respectively. For the future climate condition, the NIES MIROC3.2 hires data by SRES A1B and B1 scenarios of the IPCC was adopted. The future data were downscaled by applying Change Factor statistical method through bias-correction using 30 years past weather data. The results of future impact showed that the future reservoir storages of autumn and winter season after completion of irrigation period decreased for 2080s A1B scenario. Considering the future decrease of summer and autumn reservoir inflows, the reservoir operation has to be more conservative for preparing the water supply of paddy irrigation, and there should be a more prudent decision making for the reservoir release by storm events. Therefore, as the future adaptation strategy, the control of reservoir release by decreasing in August and September could secure the reservoir water level in autumn and winter season by reaching the water level to almost 100% like the present reservoir water level management.  相似文献   

12.
《Journal of Crop Improvement》2013,27(1-2):353-386
SUMMARY

Salinity in soil and water is irrevocably associated with irrigated agriculture throughout the world and as a result requires that salt management becomes an integral part of the production system. With careful water management, it is possible to sustain irrigated agriculture in areas with saline soil and saline groundwater with and without subsurface drainage. The results from two field projects conducted in an area with saline soils and saline groundwater demonstrated the type of irrigation systems and management needed to sustain production of moderately salt tolerant and tolerant crops. During the first study at Murrieta farms, yields of cotton and sugar beet were maintained using both saline and non-saline water for irrigation when pre-plant irrigation and rainfall were adequate to maintain soil salinity at a tolerable level. Wheat production was reduced in areas that used saline water for irrigation. Use of saline water containing toxic elements such as boron for irrigation poses a threat to the sustainability of the system. The second study evaluated the management of furrow and subsurface drip irrigation in the presence of shallow saline groundwater. Careful management of the furrow system during pre-plant irrigation and the first irrigation of the growing season was required to prevent waterlogging. It was possible to manage the subsurface drip system to induce significant crop water use from shallow groundwater. Rainfall and pre-plant irrigation were adequate at this site to manage soil salinity.  相似文献   

13.
Intensive use of chemical fertilizer for crops may be responsible for nitrogen and phosphate accumulation in both groundwater and surface waters. The return flow polluted by nutrients not only results in the limitation of water reuse goals but also creates many environmental problems, including algal blooms and eutrophication in neighboring water bodies, posing potential hazards to human health. This study is to evaluate the N-fertilizer application of terraced paddy fields impacting return flow water quality. Water quality monitoring continued for two crop-periods around subject to different water bodies, including the irrigation water, drainage water at the outlet of experimental terraced paddy field, and shallow groundwater were conducted in an experimental paddy field located at Hsin-chu County, Northern Taiwan. The analyzed results indicate that obviously increasing of ammonium-N (NH4 +-N) and nitrate-N (NO3 ?-N) concentrations in the surface drainage water and ground water just occurred during the stage of basal fertilizer application, and then reduced to relatively low concentrations (<0.1 mg/l and <3 mg/l, respectively) in the remaining period of cultivation. The experimental results demonstrate the potential pollution load of nitrogen can be reduced by proper drainage water control and fertilizer application practices.  相似文献   

14.
This paper introduces an irrigation system developed in the floodplain of a lake and studies the water management technique of the irrigation system by estimating the total water balance of the whole system. The system is characterized by a reservoir combined with a dike system in the floodplain of the Tonle Sap Great Lake and an irrigation system. Two main models are used for calculating the total water balance. The first model is the water balance of the reservoir. The inputs to the model are water level of the reservoir, precipitation, lake evaporation, infiltration, and area–volume curve of the reservoir. The outputs are inflow and outflow of the reservoir. The supply from the reservoir to paddy fields is computed from the outflow. The second model is the water balance of paddy fields, based on which the water requirement in paddy fields is derived. The reference evapotranspiration needed to calculate the water requirement is simulated for monthly time series using the FAO Penman–Monteith model. Since there is no drainage network in the irrigation system, surface drainage and runoff are not included in the calculation of the water balance, and seepage is considered negligible in the flat floodplain area. The evapotranspiration, rice variety, soil type and irrigated area are used to simulate water consumption in paddy fields. Finally, the two models are connected to produce the total water balance from the reservoir to paddy fields. The total outflow from the reservoir is estimated and the total water consumption for dry season cultivation is also determined. Finally, the efficiency of the whole system is examined.  相似文献   

15.
Water shortages during the dry season threaten sustainable agricultural production in Nganjuk District, East Java, Indonesia. To mitigate this problem, farmers adopted conjunctive use of surface water and groundwater, but the sustainability of this practice has not been investigated. This study temporally and spatially assessed water allocation in Nganjuk District when conjunctive irrigation was used. In particular, the land cover, water balance, and irrigation well density (IWD) were analyzed using time series GIS and remote sensing data to obtain their temporal and spatial distributions. First, the land cover was analyzed to determine cropping intensity, and the water balance was analyzed temporally and spatially. IWD was introduced to facilitate the water balance analysis. Second, the land cover, water balance, and IWD results were overlaid. Third, the effectiveness of the IWD method, the magnitude of water shortages, and the sustainability of groundwater resources were considered. Temporal and spatial water shortages in irrigation blocks were observed during the dry season. The change of storage showed a surplus during the wet and early dry seasons and a shortage during the late dry season. The annual water balances indicated that the southern part had a surplus, and the northern part experienced water shortages, especially downstream of the Widas River. Conjunctive use during the late dry season was predominant and concentrated in the southern part (83% of southern blocks). IWD was appropriate for examining groundwater use trends and was effective for expressing average withdrawal data (R 2 = 0.87).  相似文献   

16.
Agricultural fields in the middle Shira River basin play an important role as a source of groundwater recharge; however, the water balance between the agricultural water and river water is unclear. This study was conducted to investigate the water balance in the fields by measuring the stream flow of agricultural water channels, which draw water from the Shira River. The flow rate of water channels was found to increase in the beginning of May, which corresponded to the cultivation of paddy rice fields. During summer, the total agricultural intake was comparable to the river flow observed in the middle Shira River Basin. Determination of the water budget for the targeted area revealed that most of the recharged water was dependent on agricultural irrigation from the river. The annual recharge of the overall target area was estimated to be as high as 15,300 mm. In addition, the infiltration rate was as high as 170 mm/day in the paddy fields during summer, and as high as 30 mm/day in the upland fields during winter. In order to recover the groundwater recharge in this region, it is necessary to extend the submerged period to include periods in which the stream water in the Shira River is not subject to heavy rainfall as well.  相似文献   

17.
内蒙古河套灌区春小麦高产节水灌溉制度研究   总被引:1,自引:0,他引:1  
为给河套灌区春小麦高产节水灌溉制度的建立提供理论依据,2006-2007年在内蒙古河套平原浅层地下水灌区,研究了不同灌水处理下春小麦产量形成、耗水组成及水分利用效率的特点.结果表明,随着灌水量的增加,小麦生育期总耗水量明显增加,而水分利用效率显著降低;总耗水的增加主要是由于灌溉水消耗增多所致,地下水补给量则随灌水量增加呈明显减少趋势.小麦生育期总灌水量与产量和水分利用效率均呈抛物线关系,产量达峰值时的灌水量大于水分利用效率达峰值时的灌水量.综合两年试验结果得出,在秋季浇足底墒水的基础上,春浇2水是实现春小麦节水与高产相统一的最佳灌溉模式,即在小麦分蘖至拔节期、抽穗至开花期灌2次水,每次灌水750~1050 m3·hm 2,产量和水分利用效率可分别达到6750 kg·hm-2和1.75 kg·m-3以上.  相似文献   

18.
The Plaichumpol Irrigation Project, in Nan Basin of Thailand, is selected as a case study of impact study, where farmers depended on both surface and groundwater sources (especially in the dry year), to assess the impact on irrigation systems. The study used the MRI-GCM data to project the future climate condition and assess the impact on irrigation systems focusing on water shortage and groundwater pumping aspects in the selected consecutive dry years. The responses from farmers on the impact and adaptation were also gathered via site interviews and analyzed. Based on the bias-corrected MRI-GCM data, the annual rainfall in Nan Basin will decrease in the near future (2015–2039), compared with the past average data (1979–2006), while the rainfall will increase in the far future (2075–2099) compared with past. Water supply from dam will decrease in wet season and dry season, while water demand in both of near future and far future will increase in wet season and dry season. Less water shortage and groundwater pumping in both near-future and far-future periods are expected in the future consecutive dry years compared with the past, though the groundwater is still an important supplementary irrigation water source in the dry year. From the field interview, the farmers are ready to adapt to the changing situations and join in the water use meeting to follow up with irrigation officers about the adjustment of plant calendar and water allocation due to the climate change and to prepare adaptation measures as necessary.  相似文献   

19.
In northeast Thailand, the rapid expansion of rainfed paddy fields has decreased the stability of rice production. This paper describes a model that computes rice production on the basis of the hydrologic conditions of rainfed paddy fields on hill slopes. The model well expressed the hydrologic processes, rice yield, and production at the study site. We simulated rice production as uphill paddy plots are abandoned, increasing catchment area, under various rainfall conditions. The simulation showed that rice yield and stability increase as uphill plots are abandoned, although the total rice production decreases. Thus, the effect of catchment size on rice production in each plot was quantified. The model proved to be useful for analyzing rainfed rice production under various land and water conditions.  相似文献   

20.
In Taiwan, groundwater commonly becomes important water resources in dry periods, and/or areas lack of water storage facility due to its low cost, steady water supply and good water quality. However, improper groundwater development brings about serious decreases in groundwater levels and land subsidence which causes disasters, such as seawater intrusion or soil salination, accompanied with environmental and economic losses. It is critical to develop strategies for water resources conservation in mountainous areas. The complex heterogeneity of mountainous physiographic environment makes it challenging in the forecasts of groundwater level variations, particularly in mountainous areas. Artificial neural networks (ANNs) have been recognized as an effective modeling tool for complex nonlinear systems in the last two decades. This study aims to investigate the interactive mechanisms of groundwater at the mountainous areas of the Jhuoshuei river basin in central Taiwan through analyzing and modeling the groundwater level variations. Several issues are discussed in this study, which includes the correlation between groundwater level variation and rainfall as well as streamflow, the identification of groundwater recharge patterns and effective rainfall thresholds for estimating groundwater level variations. The results indicate: (1) the daily variation of groundwater level is closely correlated with river flow and one-day antecedent rainfall based on correlation analyses; (2) effective rainfall thresholds can be identified successfully; (3) groundwater level variations can be classified into four types for monitoring wells; and (4) the daily variations of groundwater level can be well estimated by constructed ANNs. The identified interactive mechanisms between surface water and groundwater can facilitate the mountainous water resource conservation strategy for better water management, especially irrigation water supply and for alleviating land subsidence in downstream areas in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号