首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The improvement of soil productivity depends on a rational input of water and nutrients, optimal field management, and the increase of basic soil productivity(BSP). In this study, BSP is defined as the productive capacity of a farmland soil with its own physical and chemical properties for a specific crop season under local field management. Based on 19-yr data of the long-term agronomic experiments(1989–2008) on a fluvo-aquic soil in Zhengzhou, Henan Province, China, the decision support system for agrotechnology transfer(DSSAT ver. 4.0) crop growth model was used to simulate yields by BSP of winter wheat(Triticum aestivium L.) and summer maize(Zea mays L.) to examine the relationship between BSP and soil organic carbon(SOC) under long-term fertilization. Five treatments were included:(1) no fertilization(control),(2) nitrogen, phosphorus and potassium fertilizers(NPK),(3) NPK plus manure(NPKM),(4) 1.5 times of NPKM(1.5NPKM), and(5) NPK plus straw(NPKS). After 19 yr of treatments, the SOC stock increased 16.7, 44.2, 69.9, and 25.2% under the NPK, NPKM, 1.5NPKM, and NPKS, respectively, compared to the initial value. Among various nutrient factors affecting contribution percentage of BSP to winter wheat and summer maize, SOC was a major affecting factor for BSP in the fluvo-aquic soil. There were significant positive correlations between SOC stock and yields by BSP of winter wheat and summer maize(P0.01), and yields by BSP of winter wheat and summer maize increased 154 and 132 kg ha~(–1) when SOC stock increased 1 t C ha~(–1). Thus, increased SOC accumulation is a crucial way for increasing BSP in fluvo-aquic soil. The manure or straw combined application with chemical fertilizers significantly enhanced BSP compared to the application of chemical fertilizers alone.  相似文献   

2.
【目的】研究化肥配施有机肥的条件下,分析有机无机配施对玉米生长与营养状况,为玉米减施增效提供技术支撑。【方法】设5个处理,3次重复,CK:不施肥;PK:施用磷钾肥,不施氮肥;NPK:施用氮磷钾肥;NPKZn:施用氮磷钾肥和锌肥;NPKM:施用氮磷钾肥和有机肥。【结果】与常规施肥相比,化肥配施有机肥提高了玉米产量,平均增产6.5%,N素吸收量增加4.5%,籽粒Zn浓度增加3.25 mg/kg。【结论】化肥配施有机肥可以显著提高玉米产量、N素吸收量和籽粒Zn浓度,是化肥减施增效的有效措施。  相似文献   

3.
长期施肥对潮土玉米碳含量及分配比例的影响   总被引:4,自引:0,他引:4  
【目的】研究不同施肥措施对潮土玉米植株碳同化物积累与分配的影响,为合理施肥和作物增产提供科学依据。【方法】以长期定位试验为基础,在玉米成熟期进行取样分析,研究不同施肥下玉米植株及器官的碳含量、碳同化物分配比例及碳氮比。【结果】长期有机无机配施(NPKM,1.5NPKM)下植株碳含量平均约为464g·kg-1,比偏施氮肥(N)与偏施磷钾肥(PK)处理的碳含量提高了3%左右。PK处理的碳同化物在茎叶中的分配比例约为57%,比最低的N处理高出了73%;在根茬中,PK处理的碳同化物分配比例也最高,高出N处理约为7%。但在籽粒中,PK处理的碳同化物分配比例最低,为30%。茎叶、穗轴、根茬的碳氮比,以PK处理为最高,1.5NPKM处理最低,前者比后者分别高121%、105%和120%。所有施肥处理中,玉米地上部分固碳量为NPKM处理最高,比CK处理高7.2t·hm-2;地下部分固碳量则以NPK处理平衡施肥最高,比CK处理高0.3t·hm-2。【结论】NPK配施及有机-无机肥配施能有效提高玉米植株的固碳量,提高碳同化物在玉米植株籽粒和穗轴中的分配比例,从而降低碳同化物在茎叶和根茬中的分配比例及其C/N,对土壤培肥和碳固定具有双重作用,是可持续和环境友好型的施肥模式。  相似文献   

4.
【目的】研究长期施肥对红壤性水稻土有机无机复合体中有机碳(OC)、全氮(TNOIC)特征的影响,为红壤性水稻土管理和培育土壤肥力提供依据。【方法】以长期定位施肥试验的红壤性水稻土为研究对象(始于1984年),选取CK(不施肥)、PK(施磷钾肥)、NPK(施氮磷钾肥)、NPKM(施70%氮磷钾肥+30%有机肥)4个处理。采集0—20 cm土层土样,分析各粒级(<2、2—10、10—20、20—50和50—250μm)有机无机复合体的分布,并探讨施肥对复合体中有机碳(OC)和全氮(TNOIC)含量、储量和碳氮比(C/N)的影响,以及有机无机复合体中OC和TNOIC对红壤性水稻土有机碳(SOC)、全氮(TN)贡献率的影响。【结果】与不施肥CK相比,施肥处理显著提高了20—50μm粒级复合体的比例,降低了<10μm粒级复合体比例,而NPKM处理与其他施肥处理相比,50—250μm粒级复合体的比例增加更显著;不同施肥对各粒级复合体中OC和TNOIC含量影响不同,与PK相比,NPK处理的50—250μm粒级复合体中OC和TNOIC分别增加了36.3%、80.6%;与NPK相比,NPKM...  相似文献   

5.
《农业科学学报》2023,22(7):2221-2232
Fertilization is an effective technique to improve soil fertility and increase crop yield. The long-term effects of different fertilizers on soil considerably vary. Over 38 consecutive years of different fertilization positioning experiments in a double cropping rice field of Qiyang Red Soil Experimental Station, seven different fertilization treatments including CK (no fertilization), NPK (nitrogen, phosphorus, and potassium fertilizer), M (cow manure), NPKM (nitrogen, phosphorus, and potassium with cow manure), NPM (nitrogen and phosphorus with cow manure), NKM (nitrogen and potassium with cow manure), and PKM (phosphorus and potassium with cow manure) were applied to study the effects on rice yield, soil fertility, and nutrient apparent balance in a paddy field. The results showed that the annual average yields of rice in NPKM, NPM, NKM, PKM, M, NPK and CK treatments ranged from 6 214 to 11 562 kg ha–1. Yields under long-term organic and inorganic treatments (NPKM, NPM, NKM and PKM) were 22.58, 15.35, 10.53 and 4.41%, respectively, greater than under the NPK treatment. Soil organic carbon (SOC), total nitrogen (TN), available nitrogen (AN) and available potassium (AK) concentration with long-term organic and inorganic treatment (NPKM, NPM, NKM and PKM) were significantly higher than in inorganic fertilizer (NPK) treatments. Soil total phosphorus (TP) and available phosphorus (AP) contentration with organic fertilizer combined with inorganic N and P fertilizer treatment (NPKM, NPM and PKM) were significantly higher than with inorganic fertilizer alone (NPK treatments). The average annual rice yield (11 562 kg ha–1), SOC (20.88 g kg–1), TN (2.30 g kg–1), TP (0.95 g kg–1), TK (22.50 g kg–1) and AP (38.94 mg kg–1) concentrations were the highest in the NPKM treatment. The soil AN concentration (152.40 mg kg–1) and AK contentration (151.00 mg kg–1) were the highest in the NKM treatment. N and P application led to a surplus of nitrogen and phosphorus in the soil, but NPKM treatment effectively reduced the surplus compared with other treatments. Soils under all treatments were deficient in potassium. Correlation analysis showed that SOC, TN, AN, TP, and AP contentration was significantly correlated with rice yield; the correlation coefficients were 0.428, 0.496, 0.518, 0.501, and 0.438, respectively. This study showed that the combined application of N, P, and K with cow manure had important effects on rice yield and soil fertility, but balanced application of N, P, and K with cow manure was required.  相似文献   

6.
To evaluate the effect of organic manure application with chemical fertilizers on rice yield and soil fertility under long-term double-rice cropping system, a six year field experiment was conducted continually in the paddy soil derived from Quaternary red clay in Hunan Province of southern China. Four different treatments, i.e., no nitrogen with chemical P and K (PK), swine manure only (M), N, P and K chemical fertilizers only (NPK), and half chemical fertilizers combined with half swine manure (NPKM) with four replications were included. Each N, P and K application rate was the same at all the treatments (except the N application rate at PK) and N application rate was 150 kg N ha^-1. All fertilizers were applied to soil tillage layer with once application as baseal fertilizers. The nutrients uptake rate, grain yield, nitrogen use efficiency, and soil organic matter content at each treatment were investigated. The NPKM treatment achieved the highest mean annual yield of 12.2 t ha^-1 (68% higher than that of PK). Higher dry matter accumulation and nutrients absorption were observed during the middle-late growth period in the NPKM treatment, with higher panicle number per unit and filled-grain number per panicle. Its average nitrogen use efficiency was 36.3% and soil organic matter increased by 18.5% during the experimental period in the NPKM treatment, which were significantly higher than those in the NPK treatment. Organic manure application with chemical fertilizers increased the yield and nitrogen use efficiency of rice, reduced the risk of environmental pollution and improved soil fertility greatly. It could be a good practical technique that protects the environment and raises the rice yield in this region.  相似文献   

7.
Direct-sowing establishment method has great significance in improving winter oilseed rape (Brassica napus L.) production and guaranteeing edible oil security in China. However, nutrient responses on direct sown winter oilseed rape (DOR) performance and population development dynamic are still not well understood. Therefore, five on-farm experiments were conducted in the reaches of the Yangtze River (RYR) to determine the effects of nitrogen (N), phosphorus (P), and potassium (K) deficiencies on population density, dry matter production, nutrient uptake, seed yield, and yield components of DOR plants. Four fertilization treatments included the balanced NPK application treatment (NPK, 180 kg N, 39.3 kg P, 100 kg K, and 1.8 kg borax ha–1) and three nutrient deficiency treatments based on the NPK treatment, i.e., –N, –P, and –K. The results indicated that DOR population density declined gradually throughout the growing season, especially at over-wintering and pod-development stages. Nutrient deficiency decreased nutrient concentration in DOR plants, limited dry matter production and nutrient uptake, and thereby exacerbated density reduction during plants growth. The poor individual growth and reduced population density together decreased seed yield in the nutrient deficiency treatment. Averaged across all the experiments, seed yield reduced 61% by N deficiency, 38.3% by P deficiency, and 14.4% by K deficiency. The negative effects of nutrient deficiency on DOR performances followed the order of –N>–P>–K, and the effects were various among different nutrient deficiencies. Although N deficiency improved DOR emergence, but it seriously limited dry matter production and nutrient uptake, which in turn led to substantial plants death and therefore resulted in a very low harvested density. The P deficiency significantly reduced initial density, limited plants growth, and exacerbated density reduction. The K deficiency mainly decreased individual growth and yield, but did not affect density dynamic. Our results highlighted the importance of balanced NPK application in DOR production, suggesting that management strategy of these nutrients should be comprehensively considered with an aim to build an appropriate population structure with balanced plant density and individual growth.  相似文献   

8.
Overestimation of nitrogen(N) uptake requirement is one of the driving forces of the overuse of N fertilization and the low efficiency of N use in China. In this study, we collected data from 1 844 site-years of rice(Oryza sativa L.) under various rotation cropping systems across the Yangtze River Valley. Selected treatments included without(N0 treatment) and with N application(N treatment) which were recommended by local technicians, with a wide grain range of 1.5–11.9 t ha–1. Across the 1 844 site-years, over 96% of the sites showed yield increase(relative yield105%) with N fertilization, and the increase rates decreased from 78.9 to 16.2% within the lowest range 4.0 to the highest 6.5 t ha–1. To produce one ton of grain, the rice absorbed approximately 17.8 kg N in the N0 treatment and 20.4 kg N in the N treatment. The value of partial factor productivity by N(PFP N) reached a range of 35.2–51.4 kg grain kg–1 with N application under the current recommended N rate. Averaged recovery rate of N(RE N) was above 36.0% in yields below 6.0 t ha–1 and lower than 31.7% in those above 6.0 t ha–1. Soil properties only affected yield increments within low rice yield levels(5.5 t ha–1). There is a poor relationship between N application rates and indigenous nitrogen supply(INS). From these observations and considering the local INS, we concluded there was a great potential for improvement in regional grain yield and N efficiency.  相似文献   

9.
【目的】研究灰漠土长期不同施肥管理措施下,农田土壤全磷、有效磷(Olsen-P)的变化关系及对磷素盈亏的响应,为科学施磷及土壤质量定向培育提供参考依据。【方法】以始于1989年的不同施肥措施的长期定位试验为研究对象,对土壤磷盈亏状况及土壤有效磷(Olsen-P)对土壤盈亏的响应关系、磷素活化系数(PAC)等进行分析。【结果】NP、PK、NPK、NPKS处理土壤PAC随施肥年限呈抛物线变化,并在第16年时达到峰值,NPKM、1.5NPKM处理PAC随施肥年限呈极显著线性正相关(P<0.01),年增加速率分别为0.23%和0.42%。CK、NK当季土壤表观磷盈亏呈现亏缺状态,当季土壤磷平均亏缺量分别为8.9、15.5 kg/hm2;NP、PK、NPK、NPKS当季土壤磷盈余值的平均值分别为35.4、38.9、32.3和25.4 kg/hm2,NPKM、1.5NPKM处理当季土壤磷盈余值分别为49.6、127.8 kg/hm2,年际盈余量随种植年限逐渐下降,施磷处理土壤有效磷增量与累计盈亏间存在显著相关性,每盈余100 ...  相似文献   

10.
Excessive use of N fertilizer in intensive agriculture can increase crop yield and at the same time cause high carbon(C) emissions.This study was conducted to determine optimized N fertilizer application for high grain yield and lower C emissions in summer corn(Zea mays L.).A field experiment, including 0(N0), 75(N75), 150(N150), 225(N225), and 300(N300) kg N ha–1 treatments, was carried out during 2010–2012 in the North China Plain(NCP).The results showed that grain yield, input energy, greenhouse gas(GHG) emissions, and carbon footprint(CF) were all increased with the increase of N rate, except net energy yield(NEY).The treatment of N225 had the highest grain yield(10 364.7 kg ha–1) and NEY(6.8%), but the CF(0.25) was lower than that of N300, which indicates that a rate of 225 kg N ha–1 can be optimal for summer corn in NCP.Comparing GHG emision compontents, N fertilizer(0–51.1%) was the highest and followed by electricity for irrigation(19.73–49.35%).We conclude that optimazing N fertilizer application rate and reducing electricity for irrigation are the two key measures to increase crop yield, improve energy efficiency and decrease GHG emissions in corn production.  相似文献   

11.
长期施用有机肥对潮土区甘薯碳氮积累与分配的影响   总被引:1,自引:0,他引:1  
【目的】甘薯碳氮积累与分配是影响产量形成的关键因素。研究长期有机肥料添加条件下甘薯碳氮积累与分配的响应关系,为实现潮土区甘薯高产高效栽培提供科学依据。【方法】以40年潮土长期定位试验(徐州)为平台,选择不施肥(CK)、施氮磷钾肥(NPK)、施有机肥料(M)、有机肥料+氮磷钾肥处理(MNPK)处理作为研究对象,测定分析不同施肥措施下耕作层土壤性质、甘薯收获期的地上/地下部生物量以及各主要功能器官的碳氮含量,阐明不同施肥处理对甘薯碳氮含量及其在各功能器官中的分配比例的影响,以及不同施肥措施下甘薯地上、地下部碳氮比(C/N)的变化,并运用主成分分析法解析甘薯碳氮分配与土壤性质的关系。【结果】长期有机肥配施氮磷钾化肥(MNPK),相较单施有机肥料(M)或化肥(NPK),甘薯块根生物量与干物质量显著提高(P<0.05)。同时土壤全氮、速效钾含量均显著提高(P<0.05)。通过对土壤性质与甘薯碳氮固持及碳氮比之间的相关性分析表明,甘薯各器官碳氮固持量与土壤有机碳(SOC)、全氮(TN)、速效钾含量呈极显著正相关(P<0.01)。 而土壤有效磷(AP)含量并未与甘薯叶片碳氮含量表现出相关关系,但与块根氮固持量呈极显著正相关(P<0.01),相关系数达0.839。甘薯叶片C/N与土壤EC呈极显著正相关(P<0.01),叶柄与藤蔓C/N与土壤EC呈极显著负相关(P<0.01),甘薯地下块根C/N与土壤有效磷含量呈极显著负相关(P<0.01)。通过对碳氮固持量在地上部、地下部的分配比例以及地上部、地下部的C/N进行主成分分析(PCA),结果表明前两个轴共同解释了66.6%的变异,第一主成分轴贡献率为42.8%。CK与NPK处理在轴1上的排序较高,说明两者处理下土壤pH与EC值较高,且对于碳氮在甘薯地上部的分配以及地下部C/N的解释度较高。【结论】有机物料添加能够合理调配各器官C/N,提高碳氮在甘薯地下块根部分的分配比例,促进甘薯产量的形成。  相似文献   

12.
研究测土配方施肥对玉米生长性状、产量、经济效益和养分利用率的影响,进而指导阿克苏市玉米科学合理施肥,提高化肥利用率,减少化肥投入,实现玉米化肥减量增效的目标。以金谷玉6号玉米为试验材料,设置不施肥(CK)、无氮(PK)、无磷(NK)、无钾(NP)和氮磷钾(NPK)5个处理,在收获期对玉米株高、径粗、穗长、穗粒数、百粒重、产量、平均产值、净收入和养分利用率等指标进行测定。实验结果表明:全年施肥量为尿素29.78kg/667m2,重过磷酸钙25kg/667m2,硫酸钾10.4kg/667m2,对玉米的生长、产量和经济效益均有促进作用。玉米氮肥的利用率为36.26%,磷肥的利用率为17.39%,钾肥的利用率为41.99%。  相似文献   

13.
为研究长期有机无机肥配施对红壤性水稻田作物产量、土壤微生物生物量及有机碳分子结构的影响,以始于1984年的江西红壤性水稻田长期定位试验为平台,选取的试验处理包括:不施肥(CK)、单施化肥(NPK)和等养分条件下70%化肥配施30%有机肥(NPKM1)、50%化肥配施50%有机肥(NPKM2)、30%化肥配施70%有机肥(NPKM3),采用固体13C核磁共振测定了土壤有机碳组分含量,分析了土壤化学指标和土壤微生物生物量碳(Microbial biomass carbon,MBC)和微生物生物量氮(Microbial biomass nitrogen,MBN)。结果表明,连续34年的不同施肥处理显著影响了水稻产量、土壤微生物生物量及土壤有机碳(SOC)分子结构。与NPK处理相比,有机肥配施(NPKM1、NPKM2、NPKM3)提高了水稻产量,增幅为6.5%~7.7%(P>0.05),中低有机肥配施比例(30%和50%)稳产效果更优。长期单施化肥使土壤严重酸化,而配施有机肥可减缓土壤酸化。长期施肥处理MBC和MBN较CK处理分别显著提高17.0%~71.1%和104.1%~267.0%,但MBC/MBN下降,有机无机肥配施处理较NPK处理提高了微生物熵。长期单施化肥主要提高了烷基碳的相对含量,而配施有机肥同时提高烷基碳和烷氧碳(甲氧基/含氮烷基碳)含量,有利于土壤活性有机质累积。Pearson相关性分析表明土壤微生物生物量与SOC、氮磷养分指标及甲氧基/含氮烷基碳呈显著或极显著正相关,与芳基碳和羧基碳呈显著负相关。冗余分析显示SOC、有效磷、速效钾及烷基碳等对水稻产量的影响较大。研究表明,在供试条件下,长期实行中低比例有机肥配施化肥有利于提高土壤养分和土壤微生物生物量,并改善土壤有机质结构,是维持作物高产和提升土壤质量的有效施肥措施。  相似文献   

14.
Excessive nitrogen(N) fertilization in intensive agricultural areas such as the plain region of South China has resulted in low nitrogen use efficiency and serious environmental problems. To determine the optimum N application rate, grain yield, apparent nitrogen recovery efficiency(ANRE), apparent N loss, and ammonium(NH_3) volatilization under different N application rates in the three years from 2012 to 2014 were studied. The results showed that the relationship between grain yields and N application rate in the three years were well fitted by quadratic equations. When N application rate reached 197 kg ha~(–1) in 2012, 199 kg ha~(–1) in 2013 and 196 kg ha~(–1) in 2014, the plateau of the grain yields appeared. With the increase of N application rate, the ANRE for rice decreased which could be expressed with sigmoidal equation; when N application rate was 305 kg ha~(–1) in 2012, 275 kg ha~(–1) in 2013 and 312 kg ha~(–1) in 2014, the curves of ANRE appeared turing points. Besides, the relationship between soil Nresidual and N application rate was fitted by the quadratic equation and the maximums of soil Nresidual were reached in the three years with the N application rate of 206, 244 and 170 kg ha~(–1), respectively. Statistical analysis indicated that NH3 volatilization and apparent N loss in three years all increased with the increasing N application rate. When the amount of NH3 volatilization increased to 11.6 kg N ha~(–1) in 2012, 40.5 kg N ha~(–1) in 2013 and 57.0 kg N ha~(–1)in 2014, the apparent N loss in the three years had obvious increase. To determine the optimum N application rate, the average N application on the plateau of the grain yield was considered as the lower limit while the average N application rate at the turning points of ANRE, the residual N in soil and apparent N loss was taken as the upper limit. According to the results in three years, the optimum N application rate for rice in Zhejiang was 197–255 kg ha~(–1).  相似文献   

15.
The present study aims to understand the effects of long-term fertilization on soil organic carbon (SOC), black carbon (BC), enzyme activity, and the relationships among these parameters. Paddy field was continuously fertilized over 30 yr with nine different fertilizer treatments including N, P, K, NP, NK, NPK, 2NPK (two-fold NPK), NPK+manure (NPKM), and CK (no fertilization), N, 90 kg urea-N ha−1 yr−1; P, 45 kg triple superphosphate-P2O5 ha−1 yr−1; K, 75 kg potassium chloride-K2O ha−1 yr−1; and pig manure, 22 500 kg ha−1 yr−1. Soil samples were collected and determined for SOC, BC content, and enzyme activity. The results showed that the SOC in the NPKM treatment was significantly higher than those in the K, P, and CK treatments. The lowest SOC content was found in the CK treatment. SOC content was similar in the N, NP, NK, NPK, 2NPK, and NPKM treatments. There was no significant difference in BC content among different treatments. The BC-to-SOC ratios (BC/SOC) ranged from 0.50 to 0.63, suggesting that BC might originate from the same source. Regarding enzyme activity, NPK treatment had higher urease activity than NPKM treatment. The urease activity of NPKM treatment was significantly higher than that of 2NPK, NP, N, P, K, CK, and NPKM treatment which produced higher activities of acid phosphatase, catalase, and invertase than all other treatments. Our results indicated that long-term fertilization did not significantly affect BC content. Concurrent application of manure and mineral fertilizers increased SOC content and significantly enhanced soil enzyme activities. Correlation analysis showed that catalase activity was significantly associated with invertase activity, but SOC, BC, and enzyme activity levels were not significantly correlated with one another. No significant correlations were observed between BC and soil enzymes. It is unknown whether soil enzymes play a role in the decomposition of BC.  相似文献   

16.
典型黑土春玉米化学肥料养分利用效率变化研究   总被引:1,自引:0,他引:1  
【目的】减少化学肥料投入和提高肥料养分利用效率是我国当前重要的农业举措。鉴于化学肥料不合理施用引起的黑土肥力下降和酸化,开展黑土化学肥料减少投入和肥料养分利用效率变化研究,有利于实现黑土化学肥料的科学施用。【方法】于2013—2016年在典型黑土区开展连续4年肥料投入试验,设置了不施肥(CK)、缺氮(PK)、缺磷(NK)、缺钾(NP)、氮磷钾配施处理(NPK)。测定了作物产量、养分吸收、土壤无机氮、速效磷、速效钾。【结果】黑龙江春玉米年产量10 t·hm -2左右,除2013年外,2014—2016年各年份NPK处理春玉米产量、地上部氮磷钾养分吸收显著(P<0.05)高于CK或PK处理产量。除2016年磷素农学效率外,NPK处理肥料氮磷钾养分回收率、农学效率和偏生产力逐年升高。2013—2016年期间,肥料平均氮磷钾回收率分别为45.8%、6.1%和3.5%,农学效率分别为23.2、7.2和5.0 kg·kg -1,偏生产力分别为58.3、133.2和97.7 kg·kg -1。土壤矿质氮测试显示春玉米收获后到次年播种前冻融交替促进土壤有机氮素矿化。4年养分平衡计算的平均值显示NPK处理氮磷施用量基本与春玉米养分吸收量一致,土壤氮磷总体处于平衡状态,作物地上部钾素奢侈吸收导致土壤钾素处于亏缺状态。 【结论】典型黑土区连续4年试验显示,在产量保持稳定的条件下,磷、钾肥能大幅减少,提高磷钾肥利用效率,而不施化学氮肥仅能维持第一年产量,随后的年份里氮肥利用效率提高和产量降低同时发生。  相似文献   

17.
Soil organic carbon (SOC) and nitrogen (N) are two of the most important indicators for agricultural productivity. The primary objective of this study was to investigate the changes in SOC and N in the deep soil profile (up to 100 cm) and their relationships with crop productivity under the influence of long-term (since 1990) fertilization in the wheat-maize cropping system. Treatments included CK (control), NP (inorganic N and phosphorus (P) fertilizers), NPK (inorganic N, P and potassium fertilizers), NPKM (NPK plus manure), and M (manure). Crop yield and the properties of topsoil were measured yearly from 2001 to 2009. C and N contents were measured at five different depths in 2001 and 2009. The results showed that wheat and maize yields decreased between 2001 and 2009 under the inorganic fertilizer (NP and NPK) treatments. The average yield between 2001 and 2009 under the NP, NPK, NPKM, and M treatments (compared with the CK treatment) increased by 38, 115, 383, and 381%, respectively, for wheat and 348, 891, 2 738, and 1 845%, respectively, for maize. Different long-term fertilization treatments significantly changed coarse free particulate (cfPOC), fine free particulate (ffPOC), intramicroaggregate particulate (iPOC), and mineral-associated (mSOC) organic carbon fractions. In the experimental years of 2001 and 2009, soil fractions occurred in the following order for all treatments: mSOC>cfPOC>iPOC>ffPOC. All fractions were higher under the manure application treatments than under the inorganic fertilization treatments. Compared to the inorganic fertilization treatments, manure input enhanced the stocks of SOC and total N in the surface layer (0–20 cm) but decreased SOC and N in the deep soil layer (80–100 cm). This reveals the efficiency of manure in increasing yield productivity and decreasing risk of vertical loss of nutrients, especially N, compared to inorganic fertilization treatments. The findings provide opportunities for understanding deep soil C and N dynamics, which could help mitigate climate change impact on agricultural production and maintain soil health.  相似文献   

18.
合理施肥是保证作物高产、减少面源污染的重要措施,以华北平原为研究区域,基于7个长期施肥试验,探讨不同施氮量及施肥模式(不施肥CK、化肥NPK、有机肥M、有机无机配施NPKM)对作物产量及氮肥利用率的影响。结果表明,作物产量与施肥量之间整体呈抛物线趋势,作物产量最高值均出现在NPKM处理。不同施肥模式对作物产量有一定影响,NPKM与NPK处理小麦产量无显著差异,且显著高于M、CK处理;NPKM、NPK、M处理玉米产量无显著差异,均显著高于CK处理。氮肥利用率随着施氮量增加呈下降趋势,不同施肥模式对氮肥利用率有一定影响,小麦季NPKM与NPK处理氮肥利用率无显著差异,且高于M处理,玉米季NPKM、NPK、M处理之间氮肥利用率均无显著差异。综合分析施氮量与有机肥替代率两因素对小麦产量的影响,在华北平原,利用有机肥替代化肥潜力可观,且不会显著降低作物产量,甚至增产,但为避免显著减产,在考虑提高有机肥替代率时,需要满足总施氮量的需求。  相似文献   

19.
【目的】分析长期不同施肥下土壤有效磷含量、全磷含量、土壤磷素盈亏和磷素活化效率(PAC)的动态变化,探讨不同施肥下水稻土磷素演变特征及与磷平衡的响应关系。【方法】基于1982年开始的红壤性水稻土长期不同施肥定位试验,试验包括不施肥(CK)、有机肥(牛粪,M)、氮磷钾肥(NPK)、氮磷钾肥+有机肥(NPKM)、氮磷肥+有机肥(NPM)、氮钾肥+有机肥(NKM)和磷钾肥+有机肥(PKM)共7个处理。【结果】经过30年不同施肥,土壤有效磷含量均呈上升趋势。M、NKM、NPK、NPM、NPKM和PKM处理土壤有效磷含量变化速率分别为0.18、0.20、0.83、1.35、1.46和1.62 mg·kg-1·a-1。M、NPK、PKM、NPM和NPKM处理土壤全磷增加速率分别约为4.3、15.4、16.0、18.3和22.9 mg·kg-1·a-1。所有施肥处理,土壤中磷素均有盈余,磷素盈余量与土壤有效磷增加量呈显著正相关关系(P<0.05),土壤中每盈余100 kg P·hm-2,M、NKM、NPM、NPKM、PKM和NPK6个处理的土壤有效磷含量分别增加0.4、0.7、1.9、2.1、2.2和3.2 mg·kg-1。在土壤中磷素盈余量接近的情况下,单施化肥(NPK)的PAC显著高于单施有机肥(M)处理(P<0.05)。【结论】化学磷肥和有机肥配施相比单施化肥或有机肥能够显著提高红壤性水稻土土壤有效磷、全磷含量和磷素活化效率。  相似文献   

20.
This study investigated the effects of three contrasting soil management regimes and different nutrient treatments on the distribution of water-stable aggregates(2, 1–2, 0.5–1, 0.25–0.5, and 0.25 mm) and associated soil organic carbon(SOC) and total nitrogen(TN) content in loess soil. A 21-yr long-term experiment was performed, in which soil management regimes include cropland abandonment(Abandonment), bare fallow(Fallow) and wheat-fallow cropping(Cropping). Under Cropping, the following nutrient treatments were employed: control(CK, no nutrient input), nitrogen only(N), nitrogen and potassium(NK), phosphorus and potassium(PK), NP, NPK, and manure(M) plus NPK(MNPK). Results demonstrated that Abandonment significantly increased the content of soil macro-aggregates(0.25 mm) and mean weight diameter(MWD) at 0–10 and 10–20 cm soil horizons compared with Cropping, whereas Fallow yielded lower values of above two parameters. Abandonment increased SOC and TN contents in all aggregate sizes by 17–62% and 6–60%, respectively, at 0–10 cm soil layer compared with Cropping. Conversely, Fallow decreased SOC and TN contents in all aggregates by 7–27% and 7–25%, respectively. Nevertheless, the three soil management regimes presented similar SOC contents in all aggregates at 10–20 cm soil horizon. Only Cropping showed higher TN content in 0.5 mm aggregates than the two other regimes. Consequently, Abandonment enhanced the partitioning proportions of SOC and TN in 1 mm macro-aggregates, and Fallow promoted these proportions in micro-aggregates compared with Cropping. Under Cropping, long-term fertilization did not affect the distribution of aggregates and MWD values compared with those under CK, except for NPK treatment. Fertilizer treatments enhanced SOC and TN contents in aggregates at all tested soil depths. However, fertilization did not affect the partitioning proportions of SOC and TN contents in all aggregates compared with CK. Comprehensive results showed that different soil management regimes generated varied patterns of SOC and TN sequestration in loess soil. Abandonment enhanced soil aggregation and sequestered high amounts of SOC and TN in macro-aggregates. Long-term amendment of organic manure integrated with NPK maintained soil aggregate stability and improved SOC and TN sequestration in all aggregates in loess soil subjected to dryland farming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号