首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Choo TM  Vigier B  Shen QQ  Martin RA  Ho KM  Savard M 《Phytopathology》2004,94(10):1145-1150
ABSTRACT Fusarium head blight (FHB) or scab is a destructive disease of barley in many countries. A better understanding of the interrelationships between plant traits and FHB resistance should help in the development of effective and efficient breeding strategies for FHB-resistant cultivars. Recent mapping studies indicate that many of the quantitative trait loci (QTL) for FHB resistance coincide with the QTL for plant height, heading date, and spike characteristics. Therefore, a study was conducted to investigate the relationship of morphological and physiological traits to FHB infection and deoxynivalenol (DON) accumulation in a barley doubled-haploid (DH) population derived from a Léger x CI9831 cross. Approximately 190 DH lines were grown at Ottawa (Ontario) for 2 years, Charlottetown (Prince Edward Island) for 1 year, and Hangzhou (Zhejiang) for 2 years. The field plots were inoculated with Fusarium graminearum at each location. FHB incidence was positively correlated with DON content. Resistance to FHB was associated with two-row spike, purple lemma, long glume awn, tall stature, and resistance to lodging, but it was not associated with long rachilla hairs, rough lemma awn, or heading date. Two-row spike was associated with tall stature and resistance to lodging. These associations as well as its spike characteristics helped reduce FHB infection and DON accumulation in two-row lines compared with six-row lines. The association between long glume awn and FHB resistance could be due to genetic linkages. Therefore, trait associations should be taken into consideration when breeding for FHB resistance and interpreting data from FHB experiments.  相似文献   

2.
Ma Z  Steffenson BJ  Prom LK  Lapitan NL 《Phytopathology》2000,90(10):1079-1088
ABSTRACT Fusarium head blight (FHB) is a devastating disease that causes significant reductions in yield and quality in wheat and barley. Barley grains infected with deoxynivalenol (DON), a vomitoxin produced by Fusarium graminearum, are rejected for malting and brewing. Among six-rowed barley cultivars tested thus far, only cv. Chevron exhibited resistance. This study was conducted to map genes and to identify DNA markers for marker-assisted breeding for FHB resistance in cv. Chevron with restriction fragment length polymorphism (RFLP) markers. A doubled haploid (DH) population was created from a cross between cv. Chevron and susceptible cv. Stander. Seven field experiments were conducted in four different locations in 2 years. A RFLP map containing 211 loci and covering over 1,000 centimorgans (cM) of the genome was used to map quantitative trait loci (QTL) associated with relatively low FHB severity and DON concentration. Morphological traits differing between the parents were also measured: heading date, plant height, spike angle, number of nodes per cm of rachis in the spike, and kernel plumpness. Many of the QTL for FHB and DON coincided with QTLs for these morphological traits. The "fix-QTL" algorithm in Mapmaker QTL was used to remove the part of the variance for FHB resistance that may be explained by heading date or plant height. Results from this study suggest that QTLs with major effects for FHB resistance probably do not exist in cv. Chevron. Three QTL intervals, Xcmwg706-Xbcd441 on chromosome 1H, Xbcd307b-Xcdo684b on chromosome 2H, and Xcdo959b-Xabg472 on chromosome 4H, that are not associated with late heading or height may be useful for marker-assisted selection.  相似文献   

3.
 为明确不同小麦品种(系)对赤霉病的抗性和麦穗组织中DON毒素积累水平,培育和利用抗赤霉病和DON毒素积累的品种提供资源和依据,本研究采用单小花滴注接种法对河南省的106个小麦品种(系)抗赤霉病性进行鉴定分析,并用ELISA测定了病穗组织中DON毒素水平。结果表明不同小麦品种(系)对赤霉病的抗性有显著差异,106个小麦品种(系)中未发现抗病和中抗材料,中感品种(系)有华育198、郑麦103和春丰0021等14个,占13.2%;感病的有曌式2010-06、百农898和中麦63等92个,占86.8%。不同小麦品种(系)籽粒、颖壳和穗轴中DON毒素积累水平有显著差异,籽粒中DON毒素水平在(0.70~287.63)mg/kg之间,其中郑03876、豫保1号和中麦63 的DON毒素水平在2 mg/kg 以下,为抗毒素材料;其他的103个品种DON毒素水平大于2 mg/kg;颖壳和穗轴中的DON毒素水平在(51.03~392.87)mg/kg之间,普遍比籽粒中DON毒素含量高。籽粒中DON毒素水平与小麦品种(系)的平均病害严重度间呈极显著正相关。  相似文献   

4.
5.
Twenty four isolates of Fusarium graminearum, half of which were 3-acetyldeoxynivalenol (3-ADON) and half 15-acetyldeoxynivalenol (15-ADON) chemotypes, were tested for their ability to produce deoxynivalenol and to cause Fusarium head blight (FHB) in spring wheat cultivars. The objectives of this study were to determine (1) whether 3-ADON isolates differ in aggressiveness, as measured by the FHB index, and DON production from 15-ADON isolates under field conditions, and (2) whether the performance of resistant host cultivars was stable across isolates. Field tests of all isolates were conducted with three replicates at each of two locations in Canada and Germany in 2008 with three host genotypes differing in FHB resistance level. The resistant host genotype showed resistance regardless of the chemotype or location. The differences between mean FHB indices of 3-ADON and 15-ADON isolates were not significant for any wheat genotype. In contrast, average DON production by the 3-ADON isolates (10.44 mg kg−1) was significantly (P < 0.05) higher than for the 15-ADON isolates (6.95 mg kg−1) at three of the four locations where moderately resistant lines were tested, and at both locations where susceptible lines were evaluated. These results indicate that 3-ADON isolates could pose a greater risk to food safety. However, as the mean aggressiveness and DON production of 3-ADON and 15-ADON chemotypes was similar on highly resistant lines, breeding and use of highly resistant lines is still the most effective measure of reducing the risks associated with DON in wheat.  相似文献   

6.
Resistance of barley to Fusarium graminearum was studied using a pair each of resistant and susceptible black and yellow barley lines. The spikelets were inoculated with a trichothecene‐producing isolate, a trichothecene‐nonproducing isolate (tri5?), or a mock solution. Spikelets were collected 72 h after inoculation and metabolites were analysed using a LC‐hybrid MS system. Metabolite abundances were used to identify the constitutive (RRC) and induced resistance‐related metabolites (RRI). The pathogen virulence factor, DON, and its plant detoxification product, DON‐3‐O‐glucoside (D3G), were also identified and designated as resistance‐indicator (RI) metabolites. The RRC, RRI and RI metabolites were putatively identified. Jasmonic acid was significantly induced in barley following inoculation with a trichothecene‐producing isolate, but not with a tri5? isolate. The former isolate reduced the induction of both the number and amount of RR metabolites. The metabolites cinnamic acid, sinapoyl alcohol, coniferin, catechin and naringin were identified only in response to the inoculation with a tri5? mutant. The abundances of p‐coumaric acid, coniferaldehyde and sinapaldehyde increased more in response to the tri5? mutant than to the trichothecene‐producing isolate. The total amount of DON synthesized and its conversion to D3G varied greatly between the resistant and susceptible black barley, but not in yellow barley. Interestingly, an increase in the amount of total DON produced was associated with a decrease in the conversion of DON to D3G. The roles of RRC, RRI and RI metabolites in plant defence and their further use as potential biomarkers in screening are discussed.  相似文献   

7.
ABSTRACT Barley has two flowering types, chasmogamous (open-flowering) and cleistogamous (closed-flowering). We examined the effect of the timing of Fusarium graminearum infection on Fusarium head blight (FHB) and mycotoxin accumulation in barley cultivars with different flowering types using greenhouse experiments. In the first experiment, 13 cultivars were spray inoculated at two different developmental stages, and the severity of FHB was evaluated. The effect of the timing of infection differed among cultivars. Cleistogamous cultivars were resistant at anthesis but susceptible at 10 days after anthesis, whereas chasmogamous cultivars were already susceptible at anthesis. In the second experiment, five cultivars were inoculated at three different developmental stages and the concentrations of deoxynivalenol (DON) and nivalenol (NIV) in mature grain were analyzed. Cleistogamous cultivars accumulated more mycotoxins (DON and NIV) when inoculated 10 or 20 days after anthesis than when inoculated at anthesis, whereas chasmogamous cultivars accumulated more mycotoxins when inoculated at anthesis. Thus, the most critical time for F. graminearum infection and mycotoxin accumulation in barley differs with cultivar, and likely is associated with the flowering type. Late infection, even without accompanied FHB symptoms, was also significant in terms of the risk of mycotoxin contamination.  相似文献   

8.
Fusarium head blight (FHB) is a major threat to wheat production globally, causing not only yield losses but also food and feed contamination. FHB research began at the International Maize and Wheat Improvement Center (CIMMYT) in the early 1980’s, and since then, large-scale FHB screening has been conducted to identify and incorporate new resistance genes into elite CIMMYT germplasm. Promising lines with good FHB resistance were regularly compiled as a Fusarium Head Blight Screening Nursery (FHBSN) and distributed worldwide. The first FHBSN was assembled in 1985, and the most recent two were the 13th and 14th FHBSN that were released in 2011 and 2012, respectively. Candidate lines for a FHBSN came mainly from different CIMMYT wheat breeding programs and were tested for three consecutive years before being included in an FHBSN. FHBSN screening was conducted under strictly standardized field conditions at El Batán, where CIMMYT headquarters is located, using artificial inoculation of F. graminearum strains, whose aggressiveness and DON chemotypes had been previously identified. FHB index was scored at 31 days after inoculation for all lines and DON concentration was measured only for elite lines in their 2nd and 3rd year of evaluation. Haplotyping is a new tool for genetic characterization of FHBSN entries and helps to identify new resistance sources with novel resistance genes and to better target crosses toward diversifying and/or pyramiding resistance. The 13th FHBSN was taken as an example in this paper to show the procedure and strategy for the development of new FHB resistant lines.  相似文献   

9.
The mechanisms of resistance in barley to fusarium head blight (FHB), caused by Gibberella zeae are complex. Metabolomics technology was explored to phenotype resistance. Spikelets of barley genotypes with contrasting levels of resistance to FHB, mock inoculated or with the pathogen, were extracted with aqueous methanol and the metabolites were analyzed using liquid chromatography and hybrid mass spectrometry. Peaks were de-convoluted using XCMS and annotated using CAMERA and IntelliXtract bioinformatics tools. A t-test, of a total of 1608 purified peaks, selected 626 metabolites with significant treatment effects, of which 161 were identified as resistance related (RR) metabolites. A total of 53 metabolites, that are RR or pathogenicity related (PR), were assigned with putative compound names. These mainly belonged to three metabolic pathways: fatty acid (jasmonic acid, methyl jasmonate, 9,10- dihydro-isojasmonate, linolenic acid, linoleic acid, traumatic acid), phenylpropanoid (p-coumaric acid, caffeyl alcohol, dimethoxy-4-phenylcoumarin, rosmarinic acid, diphyllin, 5-methoxypodophyllotoxin) and flavonoid (naringenin, catechin, quercetin, and alpinumisoflavone). A few PR/RR metabolites significantly reduced mycelial growth of G. zeae in vitro.  相似文献   

10.
Fusarium head blight (FHB) symptom development, relative spikelet weight (RSW), fungal DNA (FDNA) and deoxynivalenol (DON) content of grain was assessed in the FHB resistant winter wheat cv. WEK0609 and the FHB susceptible cv. Hobbit sib, and among doubled haploid progeny lines (DHLs) developed from a cross between these cultivars. In addition, the relationship between FHB resistance traits and germination on DON-containing medium (in vitro DON tolerance (IVDT)) was also investigated to assess the possibility of using this test as in vitro method of screening for FHB resistance in this cultivar. Analysis indicated that WEK0609 resistance significantly reduced symptom development, yield loss and the FDNA and DON content of grain relative to Hobbit sib. Although both the DON and FDNA content were greater in susceptible than in resistant progeny lines, the ratio of DON to FDNA decreased with increasing susceptibility. The resistance derived from WEK0609 appears to have a greater effect on colonisation of the grain by the fungus than on the accumulation of DON within the grain. In vitro tolerance to DON does not appear to relate to FHB resistance in WEK0609 and thus does not provide a means of selecting for FHB resistance derived from this cultivar.  相似文献   

11.
Determination of the Fusarium protein equivalent (FPE) levels in kernels for better characterisation of genotypes showing Fusarium head blight (FHB) resistance, and better detection of susceptibility to kernel infection among genotypes with slight symptom expression was carried out. Twelve wheat cultivars and eight hexaploid winter wheat lines derived from a cross of Triticum aestivum with related species T. macha, T. polonicum, and T. dicoccoides were evaluated for levels of spike and kernel infection, the content of the mycotoxin deoxynivalenol (DON) and FPE in kernels after artificial inoculation with the fungus Fusarium culmorum in the field in 2006–2007. The ELISA immunochemical method was employed for the quantitative analyses of DON and FPE. Three wheat lines had a significantly low infection of spikes and kernels compared to cvs Sumai 3 and Nobeoka Bozu, indicating the presence of specific resistance mechanisms to FHB. The significantly low AUDPC (area under the disease progress curve) and the high level of FPE and DON content in kernels indicated a lack of resistance in one wheat line (crossed with T. polonicum). The results showed highly significant correlations (P < 0.01) between FPE and DON content and between FPE and AUDPC. In addition, correlations between FPE and reductions in yield components were also highly significant. Quantification of Fusarium spp. in wheat kernels can be helpful for evaluating wheat genotypes for their levels of resistance to FHB.  相似文献   

12.
13.
ABSTRACT One of the major concerns with Fusarium head blight (FHB) of barley is the potential health risks to livestock and humans through the accumulation of the mycotoxin deoxynivalenol (DON) in infected grain. To define the role of the host in DON accumulation during the early stages of disease development, we conducted a series of greenhouse experiments. We inoculated single spikelets of greenhouse-grown plants with Fusarium graminearum, moved the plants to a dew chamber, and harvested the inoculated spikelets after 72 h for DON analysis. We conducted a quantitative trait locus (QTL) analysis using a genetic mapping population, constructed with the parents Stander and Frederickson, that segregated for DON accumulation after single-spikelet inoculation in two experiments. A single QTL on chromosome 3 explained 18 and 35% of the phenotypic variation in the two experiments. To validate this QTL for DON accumulation, we used a DNA marker to select near-isogenic lines from a family from the mapping population that was segregating at this QTL. Disease symptom development was similar between the nearisogenic lines; however, the mean DON concentration of the lines homozygous for the allele from the high DON parent was 2.5-fold more than the lines homozygous for the alternate allele. A time course experiment showed that this effect on toxin accumulation was observed at 10 days post inoculation. The near-isogenic lines developed in this study should prove useful for further exploration of the role of DON in FHB.  相似文献   

14.
Host resistance is the main way to control Fusarium head blight (FHB) in wheat. Despite improved levels of resistance to infection and spread in vegetative tissue, the toxin deoxynivalenol (DON) can still accumulate to unacceptable concentration levels. In this study, our objectives were to assess the genetic variation for resistance to kernel infection (RKI) and resistance to toxin accumulation (RTA) and their role in controlling DON. We collected spikes with different levels of visual symptoms from each of 32 wheat genotypes and at four environments and determined DON and fungal biomass (FB) from each sample. We assessed RKI by regressing FB on the level of visual symptoms and RTA by regressing DON on FB for each genotype. Significant genetic effects were found for RKI and RTA. Some genotypes consistently had low FB in their grain despite increasing visual symptoms suggesting RKI. Additionally, some genotypes consistently had low DON in their grain despite increasing FB levels suggesting a higher RTA in these genotypes. The variation for RKI and RTA explained a significant fraction of the variation for DON among genotypes with moderate visual symptoms using independent grain samples. Although RKI and RTA were significantly correlated (r = 0.58, P = 0.05), RTA was more predictive of DON accumulation because it modeled 32 to 44% of the genotype sum of squares for DON, while only 9 to 10% were predicted using RKI. Thus, variation for RTA was important in explaining variation for DON among genotypes with acceptable levels of resistance to fungal infection and spread. This work indicates that there is a need to develop a better understanding of RTA and rapid screening methods for this trait.  相似文献   

15.
ABSTRACT Crown rust of barley, caused by Puccinia coronata var. hordei, occurs sporadically and sometimes may cause yield and quality reductions in the Great Plains region of the United States and Canada. The incompletely dominant resistance allele Rpc1 confers resistance to P. coronata in barley. Two generations, F(2) and F(2:3), developed from a cross between the resistant line Hor2596 (CIho 1243) and the susceptible line Bowman (PI 483237), were used in this study. Bulked segregant analysis combined with random amplified polymorphic DNA (RAPD) primers were used to identify molecular markers linked to Rpc1. DNA genotypes produced by 500 RAPD primers, 200 microsatellites (SSRs), and 71 restriction fragment length polymorphism (RFLP) probes were applied to map Rpc1. Of these, 15 RAPD primers identified polymorphisms between resistant and susceptible bulks, and 62 SSR markers and 32 RFLP markers identified polymorphisms between the resistant and susceptible parents. The polymorphic markers were applied to 97 F(2) individuals and F(2:3) families. These markers identified 112 polymorphisms and were used for primary linkage mapping to Rpc1 using Map Manager QT. Two RFLP and five SSR markers spanning the centromere on chromosome 3H and one RAPD marker (OPO08-700) were linked with Rpc1 and, thus, used to construct a 30-centimorgan (cM) linkage map containing the Rpc1 locus. The genetic distance between Rpc1 and the closest marker, RAPD OPO08-700, was 2.5 cM. The linked markers will be useful for incorporating this crown rust resistance gene into barley breeding lines.  相似文献   

16.
赤霉病是我国小麦上的重要病害,品种抗病性利用是控制病害发生的重要措施,明确小麦抗赤霉病资源的抗性类型,有利于小麦抗赤霉病育种。2003年和2004年对9个常用抗源在穗期进行单花滴注和喷雾接种,研究其抗侵染和抗扩展性,并对病穗中的脱氧雪腐镰刀菌烯醇(DON)的含量进行分析。结果表明,望水白和苏麦3号具较好的抗侵染和抗扩展能力,其中望水白的抗扩展性最好;感染赤霉病后,DON在5个抗源穗组织中的含量差异显著,DON在望水白和繁60096穗组织中积累量明显比在苏麦3号、延岗坊主和翻山小麦低。通过对望水白/安农8455遗传群体两年的病小穗率和病穗中DON毒素含量的比较,发现二者具有一定的相关性,且受环境影响比较大。  相似文献   

17.
Ma HX  Bai GH  Zhang X  Lu WZ 《Phytopathology》2006,96(5):534-541
ABSTRACT Chinese Spring Sumai 3 chromosome 7A disomic substitution line (CS-SM3-7ADS) is highly resistant to Fusarium head blight (FHB), and an F(7) population of recombinant inbred lines derived from the cross CS-SM3-7ADS x Annong 8455 was evaluated for resistance to FHB to investigate main effects, epistasis, and environmental interactions of quantitative trait loci (QTLs) for FHB resistance. A molecular linkage map consists of 501 simple sequence repeat and amplified fragment length polymorphism markers. A total of 10 QTLs were identified with significant main effects on the FHB resistance using MapQTL and QTLMapper software. Among them, CS-SM3-7ADS carries FHB-resistance alleles at five QTLs on chromosomes 2D, 3B, 4D, and 6A. One QTL on 3BS had the largest effect and explained 30.2% of the phenotypic variance. Susceptible QTLs were detected on chromosomes 1A, 1D, 4A, and 4B. A QTL for enhanced FHB resistance was not detected on chromosome 7A of CS-SM3-7ADS; therefore, the increased FHB resistance in CS-SM3-7ADS was not due to any major FHB-resistance QTL on 7A of Sumai 3, but more likely was due to removal of susceptible alleles of QTLs on 7A of Chinese Spring. QTLMapper detected nine pairs of additive-additive interactions at 17 loci that explained 26% phenotypic variance. QTL-environment interactions explained 49% of phenotypic variation, indicating that the environments significantly affected the expression of the QTLs, especially these epistasis QTLs. Adding FHB-enhancing QTLs or removal of susceptible QTLs both may significantly enhance the degree of wheat resistance to FHB in a wheat cultivar.  相似文献   

18.
Fusarium head blight (FHB) caused by Fusarium graminearum (FG) is a destructive disease impacting barley worldwide. The disease reduces the grain yield and contaminates grains with mycotoxins, such as the trichothecene deoxynivalenol (DON). Although the infection mainly affects the grain yield, little is known about its impact on grain structural and biochemical properties. Yet, such information is instrumental to characterize the facets of resistance in the grains. After artificial inoculation of six barley cultivars with FG in a 2 years field test, different levels of symptoms on spikes, of colonisation of grains and of DON content were observed. The infections caused a reduction in grain weight and an average decrease of 10% of the β-glucan content in grains, indicating alterations of grain filling, composition and structure. According to our results, we postulate the presence of two distinct resistance mechanisms in the grain, tolerance to grain filling despite infection as well as the inhibition of mycotoxin accumulation. Differently to wheat, in barley, type IV resistance (tolerance of the grain to infection) is directly linked with type III resistance (resistance against kernel infection). The resistance against toxin accumulation (named type V resistance in wheat) appeared to be independent to all other resistance types. Generally, the resistance was significantly influenced by the environment and by genotype x environment interactions explaining the generally weak stability of resistance in barley. Interestingly, a significant and inverse relationship between DON contamination and β-glucan content in grains suggests that high β-glucan content in grains contributes to type V resistance.  相似文献   

19.
Fusarium head blight (FHB) resistance of 50 cultivars from the National List of winter wheat cultivars approved for sale (or were undergoing trails for approval in 2003) in the UK was compared with 21 reference cultivars from continental Europe which had previously been characterized for resistance. Only three UK National List cultivars (Soissons, Spark and Vector) had stable resistance over trial sites that was significantly greater than that of the FHB susceptible cultivar Wizard. In addition, under moderate disease pressure, 21 of the National List cultivars had levels of the trichothecene mycotoxin deoxynivalenol (DON) above the proposed European Union limit of 1·25 ppm in grain. Surveys show that levels of FHB and DON in the UK crop are currently very low, however, should disease pressure increase for any reason, then an improvement in the overall levels of FHB resistance of UK winter wheat germplasm will be required. In order to infer the origin of resistance and to identify potentially novel resistance, allele sizes of microsatellite (simple sequence repeat, SSR) markers linked to quantitative trait loci (QTL) for FHB resistance were compared between the test cultivars and known, characterized resistance sources. The major FHB resistance QTL from the Chinese cv. Sumai-3 (3BS, 5A and 6B), the Romanian cv. Fundulea F201R (1B and 5A) and the French cv. Renan (5AL) were screened with 17 SSRs. No National List cultivar had haplotypes similar to any of these QTL. However, the highly resistant German reference cultivar Petrus had an identical haplotype to cv. Fundulea F201R on 1B indicating that this cultivar has an allelic FHB resistance QTL at that location.  相似文献   

20.
Fusarium head blight (FHB) is a complex cereal disease associated with trichothecene production; these mycotoxins are factors of aggressiveness in wheat. Six species (bread and durum wheat, triticale, rye, barley and oats) were submitted to point inoculations with two isogenic strains of Fusarium graminearum; a wild strain (Tri5 +) produced trichothecenes and the mutated strain (Tri5 –) did not. The trichothecene-producing strain was generally more aggressive than the non-producing strain, but this varied according to crop species. The difference in aggressiveness was less pronounced in rye, a very resistant species. High resistance levels were observed in oats due to the large spacing between florets. In six-row barley, despite the existence of a moderate Type II resistance, the fungus was often observed to move externally from one floret to another within the dense spike, without penetrating the rachis. Bread wheat had low resistance to the trichothecene-producing strain and good resistance to the non-producing strain. Triticale responded to the strains in a similar way but was somewhat more resistant to both: symptoms on the spikelets and rachis of the triticales were restricted to below the point of inoculation. Durum wheat was susceptible to the trichothecene-producing strain and only moderately resistant to the non-producing strain, which was able to cause serious damage only to this species. Our study confirmed that the role of trichothecenes in FHB pathogenesis differs among species. The failure of the trichothecene non-producing F. graminearum strain to spread within the inflorescence of wheat, triticale, rye and barley, and the significant reduction of spread in the durum wheat spike strongly suggested that trichothecenes are a major determinant of fungal spread and disease development in Triticeae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号