首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A survey of bacterial wilt in China collected 286 strains of Ralstonia solanacearum from 17 plant species in 13 Chinese provinces to investigate genetic diversity using the biovar (bv.) and phylotype classification schemes. A phylotype-specific multiplex-PCR showed that 198 isolates belonged to phylotype I (bv. 3, 4 and 5) and 68 to phylotype II (bv. 2 and bv. 1). A phylogenetic analysis examined the partial sequence of the egl and hrpB gene of all strains and the genetic diversity of 95 representatives was reported, demonstrating that Chinese strains are partitioned into phylotype I (Asia) and II (Americas). Phylotype I strains (historically typed bv. 3, 4 and 5), had considerable phylogenetic diversity, including 10 different sequevars: seven previously described sequevars 12 to 18 and three new sequevars: 34, 44 and 48. Chinese strains Z1, Z2, Z3, Z7, Pe74 and Tm82 were not genetically distinguishable from the edible ginger reference strain ACH92 (r4-bv. 4) for sequevar 16. This is believed to be the first report of this ginger group in China. All Chinese bv. 2 strains falling into the genetically and phenotypically diverse phylotype II were placed into phylotype IIB sequevar 1 (historically the Andean race3-bv. 2 potato brown rot agent). In both the egl and hrpB sequence-based trees, strains isolated from mulberry were present in two distinct branches found in sequevars 12 and 48 (reference strains R292 and M2, respectively).  相似文献   

2.
Bacterial wilt, caused by Ralstonia solanacearum, is a devastating disease resulting in tremendous losses of economic crops such as plants in the Solanaceae. Recent studies showed that R. solanacearum is spreading from the lowlands to the highlands in China. We studied 97 Chinese R. solanacearum strains that were isolated from four tobacco-growing zones over a wide range of elevations using phylotype specific multiplex polymerase chain reaction (Pmx-PCR) and phylogenetic relationships (egl and mutS). The results showed that all isolates belonged to phylotype I, which were further clustered into eight egl-sequence type groups (egl-group, sequevar): sequevars 13, 14, 15, 17, 34, 44, 54, and 55. In addition, Sequevar 55, found from the highlands, was a new/unknown one. Southeast China (Z3) had the largest number of egl-groups, containing six sequevars. The basin of the Yangzi River (Z1) and southwestern China (Z2) contained five egl-groups. The basin of the Huai River (Z4), near the north of China, where slight bacterial wilt occurred recently, contained a single group, sequevar 15. The distribution of sequevars was associated with elevation. Sequevar 15 was over-represented in lowland elevations, while sequevar 54 and the new/unknown one were only found in areas of moderate to high elevations. This finding suggested that the phylotype I strains infecting tobacco were diverse in China and regional integrated control strategies should be considered.  相似文献   

3.
The genetic diversity of 120 Ralstonia solanacearum strains isolated from a variety of host plants across Japan was assessed on the basis of hypersensitive response (HR) in tobacco leaves and phylogenetic analyses of endoglucanase gene egl, hrpB, and gyrB. Phylogenetic analysis of egl revealed that only three strains belonged to phylotype IV, and 117 strains belonged to phylotype I. Partial sequences of HrpB were identical among phylotype I strains except for one strain. Analyses using the partial nucleotide sequences of the gyrB and egl gene fragments grouped phylotype I strains into 11 gyrB and 8 egl types, respectively, whereas analyses using the partial amino acid sequences of GyrB and Egl grouped phylotype I strains into 4 GyrB and 5 Egl types, respectively. Using multilocus sequence typing of GyrB and Egl, we identified 10 unique sequence types within the Japanese phylotype I strains. Strains belonging to the GyrB42 or GyrB66 type caused wilt in tobacco, and strains belonging to GyrB2 or GyrB9 type elicited HR, demonstrating that HR induction in tobacco is genetically differentiated in the Japanese strains of R. solanacearum.  相似文献   

4.
In 2013 and 2014, an extensive survey of bacterial wilt in Myanmar was performed, and 70 strains of Ralstonia solanacearum (Rs) were collected from wilting plants of tomato, potato, chili and eggplant. Myanmar Rs strains were characterized by traditional and molecular methods. Polymerase chain reaction (PCR) test using Rs-specific primer set amplified one specific band (281-bp) from template DNA of all strains. Pathogenicity tests on the four solanaceous plants differentiated the strains into six pathogenic groups. Biovar determination tests showed that biovar 3 strains predominated (63%) among all Rs strains. Biovar 4 strains (7%) were obtained from both tomato and chili strains, whereas biovar 2 (30%) strains were isolated only from potato. Multiplex-PCR analysis indicated that tomato, eggplant and chili strains belonged to phylotype I, whereas potato strains comprised phylotype I and phylotype II. Strains in phylotype I, which was suggested to have originated from Asia, were the most prevalent in all surveyed areas. Phylogenetic analysis based on the endoglucanase (egl) gene sequences revealed that Myanmar strains partitioned into two major clusters that corresponded to phylotype I and II. Strains in phylotype I were further divided into seven subclusters, each corresponding to a distinct sequevar (15, 17, 46, 47, 48, unknown 1 or unknown 2). All strains in phylotype II belonged to sequevar 1. This is the first comprehensive report of the presence of diverse Rs strains in Myanmar.  相似文献   

5.
Ralstonia solanacearum is responsible for bacterial wilt disease. Specific and accurate identification of this pathogen is essential for protection of susceptible crops as well as breeding resistant varieties. Historically, R. solanacearum has been classified into biovars based on the use of sugar and alcohol as carbon sources, into races based on its ability to infect different hosts, more recently into phylotypes based on the intergenic transcribed sequence of the ribosomal RNA genes 16S and 23S and into sequevars based on the endoglucanase gene (egl) sequence. Race 3 biovar 2 (R3Bv2) is widespread in South and Central America, and in Brazil it is present in all potato-producing regions as the most prevalent strain. In this study, we classified 53 Brazilian R. solanacearum biovar 2 (Bv2) strains by traditional and molecular methods. PCR with specific primers confirmed all 53 bacterial strains as belonging to the R. solanacearum species complex, and all were classified as biovar 2A or 2T based on acidification of sugars and alcohols. Multiplex phylotype PCR assigned all strains to phylotype II. Phylogenetic analysis of egl sequences showed that most Bv2 strains from Brazil analyzed in this study did not cluster with known sequevars and are less clonal than the R3Bv2 strains reported for other countries. This is the first study to address the diversity of a collection of Brazilian R. solanacearum strains using the phylotype and sequevar classification scheme.  相似文献   

6.
Bacterial wilt is one of the important constraints in the cultivation of solanaceous vegetables in India. The disease is caused by Ralstonia solanacearum, a soil bacterium. We have collected 232 isolates of R. solanacearum infecting solanaceous vegetables (eggplant, tomato and chilli) and other crops from different parts of India. Pathogenicity of the isolates was tested on eggplant, tomato and chilli and the pathogen was confirmed by PCR. Multiplex PCR and biochemical tests indicated that all the isolates were phylotype I and biovar 3. Ninety-five representative isolates selected based on geographical region, host range and pathogenicity were subjected to further phylogenetic and diversity analysis. Sequence analysis of egl, pga and hrpB genes of 95 isolates and genetic diversity of 50 representative isolates was reported and discussed. Indian isolates within the Phylotype I did not group based on the host or geographical location, except clustering of isolates from the Andaman Islands. Indian isolates clustered into two sub groups based on egl and pga trees indicating the presence of two major population groups. Sub group 1 is the dominant group in the data set and consists of unknown/newer sequevars, and sub group 2 consist of mainly the isolates which are designated with sequevar numbers based on egl sequences. In the hrpB based tree, the sub group 2 is the dominant group in the data set and it is the same for the sub group 1 of the egl tree. Indian phylotpe I R. solanacearum strains are phenotypically diverse including the previously described sequevars 14, 17, 44, 47 and 48. Our studies indicated the existence of R. solanacearum isolates with unknown/newer sequevars; the diversity existing among the phylotype I isolates might be due to a continuous evolutionary process. To our knowledge this is the first detailed report on the diversity of phylotype I R. solanacearum strains infecting solanaceous vegetables and the existence of unknown/newer sequevars in India.  相似文献   

7.
Bacterial wilt, caused by the Ralstonia solanacearum species complex (RSSC), is a destructive plant disease in Guangxi, China. However, the diversity of RSSC populations in the area is unknown. To this end, we performed an extensive bacterial wilt survey from 2015 to 2018. Using phylotype-specific multiplex PCR (Pmx-PCR) and an egl-based tree, 189 strains collected from 20 plant species were identified as R. pseudosolanacearum phylotype I, which included 14 sequevars (12, 13, 14, 15, 16, 17, 18, 30, 34, 44, 48, 54, 70, and 71); two strains isolated from potato plants belonged to R. solanacearum phylotype II, sequevar 1. Sequevars 13, 17, and 44 were prevalent in Guangxi, and sequevar 13 dominated the RSSC sequevars of four Cucurbitaceae plants. The susceptibility of different Cucurbitaceae species to bacterial wilt and the host range of 16 representative strains were further tested. Members of the Cucurbita, Momordica, and Luffa genera were susceptible to bacterial wilt, with wilt incidence ranging from 73% to 100%. Most strains were pathogenic to solanaceous plants, mulberry, and ginger plants but not to melon crops; however, the strains from kidney bean, pepper, and Cucurbitaceae plants were highly virulent to melon crops. This is the first comprehensive report on the genetic and host range diversity of the RSSC in Guangxi and the susceptibility of different Cucurbitaceae species to bacterial wilt, which can provide valuable information for the development of bacterial wilt control strategies.  相似文献   

8.
The β‐proteobacterium Ralstonia solanacearum causes bacterial wilt of many plant species. Knowledge of phylotype and sequevar variability in populations of this microorganism is useful for implementing control measures, particularly host resistance. To this end, 301 isolates of R. solanacearum were collected from different geographic regions and hosts in Brazil. Their phylotype and sequevar characterization was used to determine the amount and distribution of phenetic and phylogenetic variability. Isolates were classified into phylotypes I (= 48), clade 1; and phylotype II, clades 2–5. Phylotype II was divided into subclusters IIA (= 112) and IIB (= 141). Phylotype II was widely distributed, whereas phylotype I isolates were found in Central, Northern, and Northeastern regions of Brazil. There were 108 haplotypes identified among endoglucanase (egl) gene sequences from 301 isolates and 32 haplotypes among DNA repair (mutS) gene regions from 176 isolates. The egl and mutS sequence analyses identified eight known (1, 4, 7, 18, 27, 28, 41 and 50) and four new (54, 55, 56 and 57) sequevars. Phylotype IIB showed high diversity in sequevars and host range. Multiplex PCR, using primers specific to the Moko ecotype, characterized banana and long pepper isolates as sequevar 4 and 4/NPB, respectively. This constitutes the first report of the emergent ecotype IIB/4NPB in a new host, long pepper. The majority of sequevars were associated with geographic regions. This high variability of R. solanacearum in Brazil suggests use of host resistance to control bacterial wilt should be mainly focused by region.  相似文献   

9.
Bacterial wilt caused by Ralstonia solanacearum is a destructive disease for many crops. The aim of this study was to investigate the phylogenetic relationships and genetic structure of an R. solanacearum population from diverse origins in Taiwan. All 58 tested isolates belonged to phylotype I, except the two biovar 2 isolates from potato. These belonged to phylotype IIB sequevar 1 and were identical to known potato brown rot strains, which were probably introduced. Phylotype I isolates were grouped into 10 sequevars. Sequevar 15 was predominant (34 out of 56 isolates). Its distribution covered the whole island and it was largely associated with solanaceous crops such as tomato, and with tomato field soil. A total of 14 haplotypes were identified based on a partial endoglucanase gene sequence. Parsimony network analysis revealed that haplotype A was the oldest haplotype in the local population. It encompassed all but one of the sequevar 15 isolates. Large variation in virulence on tomato was observed among the 58 isolates, and seven pathotypes were identified. Significant genetic differentiation was detected among pathotypes. Moreover, genetic differentiation was detected between biovar 3 and biovar 4 subgroups and between the strains associated with solanaceous and non‐solanaceous species, but none was detected between strains from different geographic origins. The results suggest that the phylotype I population in Taiwan is homogeneous, while mutation and local adaptation to specific ecological niches keep shaping the population.  相似文献   

10.
11.
Pathogenic characters of Japanese potato strains of Ralstonia solanacearum   总被引:1,自引:0,他引:1  
Ralstonia solanacearum (Rs) strains in phylotypes I and IV isolated from potato in Japan were investigated for pathogenicity on potato, tomato, eggplant, Solanum integrifolium, tobacco, groundnut, and pumpkin. The strains were divided into 17 types based on differences in their pathogenicity on the tested plants. Particularly, the pathogenicity of most phylotype I strains on eggplant was distinctly different from that of the phylotype IV strains. When nine potato varieties (included two breeding lines) were inoculated with several Rs strains, phylotype IV strains were highly virulent on the breeding lines that are regarded as resistant to phylotype I strains.  相似文献   

12.
We assessed the geographic distribution, biovar, phylotype, DNA fingerprints (rep-PCR), and/or endoglucanase sequence of potato bacterial wilt pathogen, Ralstonia solanacearum (Rs), in Japan. Rs has been isolated from potato fields in southwestern, warm, temperate regions. Of the 188 isolates, 74 belonged to biovar N2 (39%), 44 to biovar 3 (24%), and 70 to biovar 4 (37%). Biovars N2 and 4 strains were widely distributed, from northern (Hokkaido) to southern (Okinawa) Japan. Based on the results of multiplex-PCR analysis, every potato strains belonged to either phylotype I or IV. Phylotype I comprised both biovars 3 and 4 strains. On the other hand, phylotype IV included biovar N2 strains. None of the strains belonged to phylotype II or III or biovar 1 or 2. Phylogenetic analysis based on DNA fingerprints and endoglucanase gene sequences clarified the genetic diversity of the Japanese potato strains and the close genetic relationship between the Japanese strains and the Asian strains in phylotypes I and IV.  相似文献   

13.
Ralstonia solanacearum, which consists of five races/biovars, is considered a “species-complex” and is an important phytopathogen that causes wilt disease in more than 200 plant species. R. solanacearum race 1 biovar 4 (R1bv4) has caused yield losses of 30–80 % in the vegetable sweet potato (VSP) in the last decade in Taiwan. To identify the source of the initial inoculum of R1bv4 in VSP fields, soil and cuttings from these fields were examined from 2009 to 2010. The results of the investigation indicated that the population of R1bv4 was generally distributed throughout the natural soil of VSP fields at a density ranging from 1.3?×?102 to 9.5?×?105 cfu/g soil; however, the incidence of bacterial wilt was not significantly associated with the density of the R1bv4 population in soils (R2?=?0.084). In contrast, densities of R1bv4 ranging from 2.3?×?103 to 5.9?×?105 cfu/g tissue were detected in the vine tissue of asymptomatic plants in the fields. Additional experiments demonstrated that R1bv4-free VSP cuttings without visible symptoms planted in infested soils in the greenhouse setting could carry approximately 3.1?×?105 R1bv4 cfu/g tissue, which suggests the existence of a latent period for R1bv4 in VSP plants. The results of a BIO-PCR analysis showed that R1bv4 was detected in 2.0 to 98.0 % of the VSP cuttings used for propagation in fields; in addition, the percentage of VSP cuttings carrying R1bv4 and the incidence of bacterial wilt in fields were positively correlated (R2?=?0.909). The inoculation experiments conducted in greenhouses and in fields showed that the cutting inoculum (CI) contributed more to the incidence of bacterial wilt in VSP plants than the soil inoculum (SI). In the field experiments conducted in 2010, an incidence of disease of 27.1 to 38.5 % was detected in healthy field cuttings 8 months after transplantation; in contrast, the incidence of disease in field cuttings carrying R1bv4 was 49.0 to 68.8 %. The incidence of disease was significantly lower in healthy cuttings than in cuttings carrying R1bv4 (p?=?0.05).  相似文献   

14.
In the Philippines, bacterial wilt caused by Ralstonia solanacearum is one of the most important diseases affecting vegetables and banana. In this study, 89 strains of R. solanacearum isolated from various hosts were screened for their biovar, phylotype, pathogenicity, and genetic diversity. Foreign strains were included for comparison with these Philippine strains. Results of the biochemical and multiplex-PCR tests divided the Philippine strains into five biovars (1, 2, 3, 4, and N2) and three phylotypes (I, II, and IV). Three potato strains belonged to biovar N2/phylotype IV. Pathogenicity tests divided the strains into five pathogenicity types based on their virulence in tomato, potato, eggplant, sweet pepper, and tobacco. Strains classified as biovar N2 were weakly pathogenic to potato (pathogenicity type III) and almost all strains isolated from banana were not pathogenic to the test plants except potato (pathogenicity type V). The results of AFLP analysis divided the strains into four clusters. Cluster 1 was composed of strains isolated from solanaceous crops, ginger (Zingiber officinale), and Morus sp. from the Philippines and other Asian countries. Cluster 2 grouped the potato strains (biovar N2) from the Philippines and Japan and blood disease bacterium strains from Indonesia. Cluster 3 contained the local and foreign strains isolated from potato (biovar 2) and banana (biovar 1). Cluster 4 consisted only of the tomato strain from the USA.  相似文献   

15.
The genetic diversity of Ralstonia solanacearum causing bacterial wilt of tomato in Trinidad was assessed using the hierarchical phylotyping scheme and rep‐PCR DNA fingerprinting. Seventy‐one isolates were collected in 2003 on infected tomato crops in the four main vegetable cropping areas of Trinidad (North, Central, South‐East and South). Two phylotypes were present, with phylotype II being much more prevalent (66%) than phylotype I (34%). Phylotype II strains consisted mainly of sequevar 7 in Central and South‐East, and sequevar 35 in North, South‐East and South. This is the first report of sequevar 7 outside south‐eastern USA. In contrast, no ‘brown rot’ (phylotype IIB/1, race 3 biovar 2) or emerging strains of phylotype IIB/4NPB were identified. Rep‐PCR data were used to assess population genetic structure. No significant clustering by geographical distance was found, suggesting regular gene flow among cropping areas (via waterways, plant or soil). However, the population from Central was significantly differentiated from the others, containing only phylotype II/seq 7 strains, with a high degree of clonality, suggesting a possible recent introduction from abroad. The South population was less aggressive and more genetically diverse, suggesting horizontal gene transfers within the population, even among isolates of different phylotypes. Phylotype I and phylotype II populations differed slightly in clonality levels, with indications of more frequent recombination events within phylotype I populations. Possible factors influencing genetic diversity and distribution within the island are discussed.  相似文献   

16.
Ralstonia solanacearum “species complex” (RSSC) represents soil-borne plant pathogenic bacteria, consisting of diverse and widespread strains that cause bacterial wilt on a wide range of host plants. A recent polyphasic taxonomic study has divided the RSSC into three bacterial species; Ralstonia pseudosolanacearum (phylotypes I and III), Ralstonia solanacearum (phylotype II) and Ralstonia syzygii (phylotype IV). Currently, standard identification of RSSC in plant health laboratories mainly relies on performance of two tests that are based on a different principle. However, these tests are inadequate to precisely discriminate among the three bacterial species in the RSSC. The accurate identification of each of the three bacterial species in the RSSC requires additional molecular tests, including a phylotype determination. These methodologies are labor-intensive, time consuming and rather impractical for routine identification purposes in a plant health laboratory. We explored the potential for an accurate identification of R. pseudosolanacearum (phylotypes I and III) and R. solanacearum (phylotype II) in RSSC, upon implementation of the MALDI-TOF MS tool, and after the creation and validation of an in-house database supplementing the commercial database and covering the entire known genetic diversity in RSSC. MALDI-TOF MS is an emerging approach for identification of bacterial plant pathogens and has been shown to be robust and reproducible. Additionally, when compared to the conventional microbial identification methods it is shown to be less laborious and less expensive. Validation data demonstrated that our in-house database (Mass Spectra Profiles, MSPs) was very specific resulting in the rapid and accurate identification of Ralstonia solanacearum (phylotype II), and Ralstonia pseudosolanacearum (phylotypes I and III). Additionally, no false positive results were obtained with our in-house database for other related Ralstonia sp., such as the R. picketii isolate PD 3286, or for the Pseudomonas syringae and Pseudomonas spp. isolates.  相似文献   

17.
Fifty-nine Ralstonia solanacearum isolates from diverse crops and regions were collected and characterized to determine the distribution and diversity of this soilborne pathogen in Guatemala. Three distinct types were present: a phylotype I, sequevar 14 strain, probably originating from Asia, infecting tomatoes and aubergines at moderate elevations; a phylotype II, sequevar 6 strain of American origin causing Moko disease in lowland banana plantations; and a phylotype II, sequevar 1 (race 3 biovar 2) strain causing brown rot on potatoes, Southern wilt of Pelargonium spp. and bacterial wilt of greenhouse tomatoes at high elevations. These data on strain diversity will inform effective regional efforts to breed for wilt resistance. A sensitive enrichment method did not detect the pathogen in fruits from naturally infected commercial tomato plants in Guatemalan fields and greenhouses, although it was detected in 6% of fruits from a wilt-resistant hybrid. Low numbers of R. solanacearum cells were also infrequently detected in fruits from plants artificially inoculated in the growth chamber with either race 3 biovar 2 or a phylotype II tomato strain.  相似文献   

18.
我国长江流域和南方地区花生青枯菌遗传多样性分析   总被引:1,自引:0,他引:1  
为明确不同青枯菌的遗传多样性和其在花生植株上的致病力差异,采用国际上新的青枯菌演化型分类模式,对从我国长江流域和南方地区9个花生种植区分离的95株花生青枯菌Ralstonia solanacearum菌株进行遗传多样性分析,基于内源葡聚糖酶基因egl对青枯菌进行系统发育研究,并对供试青枯菌的致病力进行测定。结果表明,所有95株菌株均属于青枯菌演化型I型,即亚洲分支类型。在序列变种分类上,所检测的9个花生种植区中有8个种植区的花生青枯菌菌株属于序列变种14,仅有1个种植区(广西壮族自治区贺州市)的花生青枯菌菌株属于序列变种48,表明我国长江流域和南方地区花生青枯菌群体遗传多样性水平较低。青枯菌致病力测定结果表明,来自赣州市的菌株GZ-1、贺州市的菌株HZ-2和宜昌市的菌株YC接种到花生植株14 d后,花生的病情指数分别为43.8、75.0和87.5,而来自其它6个花生种植区的菌株接种花生后,其病情指数均为100.0,表明菌株GZ-1和HZ-2的致病力较弱,而其它7个花生种植区代表性菌株的致病力均较强。  相似文献   

19.
Several outbreaks of bacterial wilt disease caused by the quarantine bacterium Ralstonia solanacearum were identified in Portugal. Intensive surveys recognized the bacterium as endemic in the main irrigated agricultural ecosystems. Between 1999 and 2006 all isolates of R. solanacearum were characterized as belonging to biovar 2A. In 2007, biovar 1 strains were recorded in potato fields under a confined area. A panel of 101 Portuguese isolates obtained from biotic and environmental samples was studied. Following a polyphasic approach, these isolates were analysed by SDS-PAGE of the whole cell proteins, MSP-PCR (csM13), rep-PCR (BOXA1R and ERIC-2) and FAFLP (EcoRI?+?0/MseI?+?C). A 750?bp sequence of endoglucanase (egl) gene was studied for 17 representative isolates and 95 accessions retrieved from the GeneBank. Numerical analysis of protein profiles correlated quite well with biovar subphenotype, producing a unique megacluster (r?=?71.1%). MSP-PCR was more discriminative (r?=?62%). Rep-PCR approaches displayed higher polymorphism levels with ERIC 2 primer producing high diversity indexes (D and J′). FAFLP was the most reproducible method (95%) displaying 229 polymorphic characters and the highest evenness (J′). For all the methods small clusters disclosed a clonal origin for isolates with a common geographical origin/matrix. FAFLP identified an adaptative microevolution phenomenon for surface water strains. Polyphasic approach congruence highlighted the inability of individual methods to explain the whole diversity. Mr. Bayes egl-based phylogenetic tree allocated the 17 Portuguese isolates into the sub-clusters of narrow (nhr) and broad host range (bhr) of Phylotype II unveiling the epidemiological story of R. solanacearum in Portugal and identified different populations coexisting in the same habitats. This is the first report of the presence of R. solanacearum Phylotype II, bhr strains in Western Europe.  相似文献   

20.
The emergence of a new genotype and pathogenic variant of Ralstonia solanacearum in Martinique is described. Bacterial wilt of solanaceous crops caused by phylotype‐I and ‐II strains (‘historical strains’), was reported in Martinique in the 1960s. From 1999, Anthurium and cucurbit production was strongly affected by strains described as a new pathogenic variant genotyped phylotype IIB/sequevar4NPB (phIIB/4NPB). The following questions concerning these strains were investigated: (i) were they introduced or endemic, (ii) was their distribution widespread in Martinique, and (iii) which factors could explain this emergence? This study examined 221 isolates collected from 1989 to 2003 after several surveys. The main survey (2002–03) included 115 vegetable and ornamental crop farms. From 1999 to 2001, these phIIB/4NPB strains were initially described as the ‘Anthurium‐cucurbit’ strain. In 2003, they made up one‐third of the isolates recovered from solanaceous hosts, particularly tomato. This pathogenic variant of R. solanacearum was consistently recovered from wild species and several weeds throughout Martinique, suggesting that these strains were well established in Martinique. Data reported are consistent with the emergence of a new population of R. solanacearum in Martinique, which has spread rapidly across the entire island and may overtake the previously established population, particularly on tomatoes. Evidence is presented which suggests that the emergence of these new strains is more frequent on vegetable crops when cucurbitaceous and musaceous plants are grown in succession.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号