首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of an increase in UV-B radiation on growth and yield of maize (Zea mays L.) were investigated at four levels of applied nitrogen (0, 100, 200 and 300 kg ha−1 of N) under Mediterranean field conditions. The experiment simulated a 20% stratospheric ozone depletion over Portugal. Enhanced UV-B and N deficiency decreased yield and total biomass production by 22–49%. High UV-B dose reduced yield, total biomass and growth of N-fertilized maize plants but did not affect N-stressed plants to the same extent. The response of grain yield to N was smaller with enhanced UV-B radiation. The underlying mechanisms for these results are discussed.  相似文献   

2.
Long term investigations on the combined effects of tillage systems and other agronomic practices such as mineral N fertilization under Mediterranean conditions on durum wheat are very scanty and findings are often contradictory. Moreover, no studies are available on the long term effect of the adoption of conservation tillage on grain yield of maize and sunflower grown in rotation with durum wheat under rainfed Mediterranean conditions. This paper reports the results of a 20-years experiment on a durum wheat-sunflower (7 years) and durum wheat–maize (13 years) two-year rotation, whose main objective was to quantify the long term effects of different tillage practices (CT = conventional tillage; MT = minimum tillage; NT = no tillage) combined with different nitrogen fertilizer rates (N0, N1, N2 corresponding to 0, 45 and 90 kg N ha−1 for sunflower, and 0, 90 and 180 kg N ha−1 for wheat and maize) on grain yield, yield components and yield stability for the three crops. In addition, the influence of meteorological factors on the interannual variability of studied variables was also assessed. For durum wheat, NT did not allow substantial yield benefits leading to comparable yields with respect to CT in ten out of twenty years. For both sunflower and maize, NT under rainfed conditions was not a viable options, because of the unsuitable (i.e., too wet) soil conditions of the clayish soil at sowing. Both spring crops performed well with MT. No significant N × tillage interaction was found for the three crops. As expected, the response of durum wheat and maize grain yield to N was remarkable, while sunflower grain yield was not significantly influenced by N rate. Wheat yield was constrained by high temperatures in January during tillering and drought in April during heading. The interannual yield variability of sunflower was mainly associated to soil water deficit at flowering and air temperature during seed filling. Heavy rains during this latter phase strongly constrained sunflower grain yield. Maize grain yield was negatively affected by high temperatures in June and drought in July, this latter factor was particularly important in the fertilized maize. Considering both yield and yield stability, durum wheat and sunflower performed better under MT and N1 while maize performed better under both CT and MT and with N2 rates. The results of this long term study are suitable for supporting policies on sustainable Mediterranean rainfed cropping systems and also for cropping system modelling.  相似文献   

3.
Poor soil and drought stress are common in semiarid areas of China, but maize has a high demand for nitrogen (N) and water. Maize production using the technique of double ridges and furrows mulched with plastic film are being rapidly adopted due to significant increases in yield and water use efficiency (WUE) in these areas. This paper studied N use and water balance of maize crops under double ridges and furrows mulched with plastic-film systems in a semiarid environment over four growing seasons from 2007 to 2010. To improve precipitation storage in the non-growing season, the whole-year plastic-film mulching technique was used. There were six treatments which had 0, 70, 140, 280, 420 or 560 kg N ha−1 applied in every year for maize. In April 2011, spring wheat was planted in flat plots without fertilizer or mulch following four years of maize cultivation. After four years, all treatments not only maintained soil water balance in the 0–200 cm soil layer but soil water content also increased in the 0–160 cm soil layer compared to values before maize sowing in April 2007. However, under similar precipitation and only one season of spring wheat, soil water content in the 0–160 cm soil layer sharply decreased in all treatments compared to values before sowing in April 2011. Over the four years of maize cultivation, average yield in all treatments ranged from 4071 to 6676 kg ha−1 and WUE ranged from 18.2 to 28.2 kg ha−1 mm−1. In 2011, the yield of spring wheat in all treatments ranged from 763 to 1260 kg ha−1 and WUE from 3.5 to 6.5 kg ha−1 mm−1. The potential maximum grain yield for maize was 6784 kg ha−1 with 360 kg N ha−1 applied for four years, but considerable NO3N accumulated in the soil profile. A lesser application (110 kg N ha−1) to this tillage system yielded in 82% of the maximum, increased nitrogen use efficiency and mitigated the risk of nitrogen loss from the system. This study suggests that double ridge–furrow and whole-year plastic-film mulching could sustain high grain yields in maize with approximately 110 kg N ha−1 and maintain soil water balance when annual precipitation is >273 mm in this semiarid environment.  相似文献   

4.
A better understanding of the fate of fertilizer nitrogen (N) is critical to design appropriate N management strategies in plastic-mulched croplands. We evaluated the effects of plastic mulch on urea-N recovery by crops and loss from soil in furrow-ridge plots, with and without maize (Zea mays L.) cropping, in a semi-arid rain-fed site in China. We applied the same rate of urea-N (281 kg ha−1) to all treatments during the preparation of the furrow-ridges in 2011 and 2012 but 15N-labeled the urea in 2011 only. We used transparent film to cover all soil surfaces in the mulched treatments and seeded maize in furrows in treatments with crop. In 2011, plastic mulch increased the total N uptake in the aboveground biomass of maize by 53%, whereas it decreased the in-season labeled-N uptake by 19%, compared to non-mulched treatment. At harvest in 2011, in mulched treatments the total labeled-N remaining in the 0−170 cm soil layer was 25% greater whereas unaccounted labeled-N was 69% less, than in non-mulched treatments, regardless of whether maize was cropped. In 2012 the effect of mulch on total maize N uptake was comparable to that in 2011, but the residual soil labeled-N uptake by maize was 63% higher in mulched compared to non-mulched treatment. At harvest in 2012, plastic mulch increased total labeled-N remaining in the 0−170 cm depth in cropped soils and unaccounted labeled-N in non-cropped soils, compared with no mulch. Our results indicate that plastic mulch profoundly changes the fate of urea-N in maize production in cold and dry croplands.  相似文献   

5.
Maize breeding during the past 50 years has been associated with a delay of leaf senescence, but it is not clear whether this trait is likewise associated with higher grain yield in modern hybrids. Post-silking growth, leaf area dynamics, photosynthetic parameters and yield were compared in modern maize hybrids differing in canopy senescence rate. In the first two experiments, four hybrids were grown in the field at Balcarce, Argentina (37°45′ S, 58°18 W). In spite of differences in chlorophyll retention and photosynthesis of the ear leaf, post-silking growth and grain yield were very similar in all four hybrids while kernel N concentration was lower in the later-senescing hybrids. In a third experiment, a later-senescing (NK870) and an earlier-senescing (DK682) hybrid were grown to analyze the potential photosynthetic contribution of delayed leaf senescence. Leaf area and chlorophyll content were larger in NK870, especially at the lower canopy level (0.75 m above the ground). However, hybrids did not differ for canopy light interception. Because photosynthetic photon flux density below 1 m above the ground was less than 10% of incident radiation and photosynthesis quantum yield did not change during senescence, the potential photosynthetic output of lower leaves below 1 m was very low. Lower leaves of NK870 had N concentrations higher than those needed to sustain photosynthesis at the light conditions below 1 m. Therefore, we show that delayed senescence does not necessarily improve post-silking C accumulation because: (i) canopy light interception is not reduced by senescence except at very late stages of grain filling; (ii) contrasting hybrids show more pronounced senescence differences at canopy levels receiving less than 10% of incident radiation; (iii) delayed senescing hybrids present lower kernel N concentrations while extra N is retained in leaves exposed to a light limiting micro-environment. Delayed senescence at lower canopy levels may be unproductive, at least under non-stressing conditions.  相似文献   

6.
The reduction in crop diversity and specialization of cereal-based cropping systems have led to high dependence on synthetic nitrogen (N) fertilizer in many areas of the globe. This has exacerbated environmental degradation due to the uncoupling of carbon (C) and N cycles in agroecosystems. In this experiment, we assessed impacts of introducing grain legumes and cover crops to innovative cropping systems to reduce N fertilizer application while maintaining wheat yields and grain quality. Six cropping systems resulting from the combination of three 3-year rotations with 0, 1 and 2 grain legumes (GL0, GL1 and GL2, respectively) with (CC) or without (BF, bare fallow) cover crops were compared during six cropping seasons. Durum wheat was included as a common high-value cash crop in all the cropping systems to evaluate the carryover effects of rotation. For each cropping system, the water use efficiency for producing C in aerial biomass and yield were quantified at the crop and rotation scales. Several diagnostic indicators were analyzed for durum wheat, such as (i) grain yield and 1000-grain weight; (ii) aboveground biomass, grain N content and grain protein concentration; (iii) water- and N-use efficiencies for yield; and (iv) N harvest index. Compared to the GL0-BF cropping system, which is most similar to that traditionally used in southwestern France, N fertilizer application decreased by 58%, 49%, 61% and 56% for the GL1-BF, GL1-CC, GL2-BF and GL2-CC cropping systems, respectively. However, the cropping systems without grain legumes (GL0-BF and GL0-CC) had the highest water use efficiency for producing C in aerial biomass and yield. The insertion of cover crops in the cropping systems did not change wheat grain yield, N uptake, or grain protein concentration compared to those of without cover crops, demonstrating a satisfactory adaptation of the entire cropping system to the use of cover crops. Winter pea as a preceding crop for durum wheat increased wheat grain production by 8% (383 kg ha−1) compared to that with sunflower  the traditional preceding crop  with a mean reduction in fertilizer application of 40–49 kg N ha−1 during the six-year experiment. No differences in protein concentration of wheat grain were observed among preceding crops. Our experiment demonstrates that under temperate submediterranean conditions, properly designed cropping systems that simultaneously insert grain legumes and cover crops reduce N requirements and show similar wheat yield and grain quality attributes as those that are cereal-based.  相似文献   

7.
Global warming has lengthened the theoretical growing season of spring maize in Northeast China (NEC), and the temperatures during the growing season have increased. In practise, crop producers adjust sowing dates and alternate crop cultivars to take advantage of the lengthening growing season and increasing temperatures. In this study, we used crop data and daily weather data for 1981–2007 at five locations in NEC to quantify the utilization of the lengthening growing season and increasing temperatures by adjusting sowing dates and cultivar selection for spring maize production. If these two positive factors are not fully utilized, then it is important to know the potential impacts of these climatic trends on spring maize grain yields. The results show that in NEC, both the actual and theoretical growing seasons are lengthening, i.e., the sowing dates have been advanced and the maturity dates have been delayed. The actual sowing dates are 1–8 days later and the actual maturity dates are 6–22 days earlier than the theoretical perspective. Advancing sowing dates and changing cultivars led to 0–5 days and 6–26 days extension of the growing season. For the potential thermal time (TT), adjusting the sowing dates decreased the unutilized TT before sowing, while the cultivar selection increased the utilized TT and decreased the unutilized TT after maturity. On average, the unutilized heating resource before sowing is less than that after the maturity date (0.3–1.9% vs. 2.1–7.8%). During 1981–2007, for per day extension of the growing season, the spring maize grain yield increased by 75.2 kg ha−1. The spring maize grain yields have increased by 7.1–57.2% when both early sowing and changing cultivars during 1981–2007. In particular, adjusting the sowing dates increased the grain yield by 1.1–7.3%, which was far less than the increase effect (6.5–43.7%) from switching to late maturing cultivars. Therefore, selecting late maturing cultivars is an important technique to improve maize grain yields in NEC under the global warming context. Nevertheless, if the currently unutilized TT were fully explored, the local spring maize grain yield would have increased by 12.0–38.4%.  相似文献   

8.
Nitrogen fertilisation of maize (Zea mays L.) has become an important economic and environmental issue, especially in high-yielding irrigated Mediterranean areas. Producers have traditionally applied more N fertiliser than required and, as a result, some environmental problems have appeared in recent decades. A 4-year study (2002–2005) was conducted and six N rates (0, 100, 150, 200, 250 and 300 kg N ha?1 year?1) were compared. Before planting 50 kg N ha?1 were applied. The rest of the N was applied in two sidedresses, the first at V3–V4 developing stage and the second at V5–V6. Yield, biomass, grain N uptake, plant N uptake and SPAD-units were greatly influenced by both N fertilisation rate and soil NO3?-N content before planting and fertilising [Nini (0–90 cm)]. At the beginning of the experiment, Nini was very high (290 kg NO3?-N ha?1) and there was therefore no yield response to N fertilisation in 2002. In 2003, 2004 and 2005, maximum grain yields were achieved with 96, 153 and 159 kg N ha?1, respectively. Results showed that N fertilisation recommendations based only on plant N uptake were not correct and that Nini should always be taken into account. On the other hand, the minimum amount of N available for the crop [N applied with fertilisation plus Nini (0–90 cm)] necessary to achieve maximum grain yields was 258 kg N ha?1. This value was similar to plant N uptake, suggesting that available N was able to predict N maize requirements and could be an interesting tool for improving maize N fertilisation.  相似文献   

9.
The advantages and disadvantages of varying mixture proportion of crimson clover (Trifolium incarnatum L.) and Italian ryegrass (Lolium multiflorum Lam.), used as winter cover crops, and cover crop biomass management before maize sowing (Zea mays L.) were studied in a series of field experiments in Eastern Slovenia. Pure stands and mixtures of cover crops on the main plots were split into different cover crop biomass management subplots: whole cover crop biomass ploughed down before maize sowing, aboveground cover crop biomass removed before ploughing and sowing, or aboveground cover crop biomass removed before sowing directly into chemically killed residues.Cover crop and cover crop biomass management affected the N content of the whole aboveground and of grain maize yields, and the differences between actual and critical N concentrations in the whole aboveground maize yield. The whole aboveground and grain maize dry matter yields, and the apparent remaining N in the soil after maize harvesting, showed significant interaction responses to cover crop × management, indicating positive and negative effects. Crimson clover in pure stand provided high, and pure Italian ryegrass provided low maize dry matter yields and N content in the yields in all the observed methods of biomass management. However, within individual management, mixtures containing high proportions of crimson clover sustained maize yields and N contents similar to those produced by pure crimson clover. Considering the expected ecological advantages of the mixtures, the results thereby support their use.  相似文献   

10.
Nitrogen (N) deficiency and weed infestation are main factors limiting yield and yield stability in organic wheat. Organic fertilizers may be used to improve crop performance but off-farm input costs tend to limit profitability. Instead, forage legumes may be inserted into the crop rotation to improve the N balance and to control weed infestation. In opposition to simultaneous cropping, relay intercropping of legumes in organic winter wheat limits resource competition for the legume cover crop, without decreasing the performance of the associated wheat.The aim of this study is to evaluate the effect of spring organic fertilization on the performance of intercropped legumes and wheat, and on services provided by the legume cover.Two species of forage legumes (Trifolium pratense L. and Trifolium repens L.) were undersown in winter wheat (Triticum aestivum L. cv Lona) in five organic fields during two consecutive crop seasons. Organic fertilizer was composed of feather meal and applied on wheat at legume sowing. The cover crop was maintained after the wheat harvest and destroyed just before sowing maize.Spring organic nitrogen fertilization increased wheat biomass (+35%), nitrogen (+49%), grain yield (+40%) and protein content (+7%) whatever the intercropping treatment. At wheat harvest, red clover biomass was significantly higher than white clover one (1.4 vs. 0.7 t ha−1). Nitrogen fertilization decreased forage legume above-ground biomass at wheat harvest, at approximately 0.5 t ha−1 whatever the specie. No significant difference in forage legume biomass production was observed at cover killing. Nitrogen accumulation in legume above-ground tissues was significantly higher for white clover than for red clover. Both red and white clover species significantly decreased weed infestation at this date. Nitrogen fertilization significantly increased weed biomass whatever the intercropping treatment and decreased nitrogen accumulation in both clover species (−12%).We demonstrated that nitrogen fertilization increased yield of wheat intercropped with forage legume while the performance of legumes was decreased. Legume growth was modified by spring fertilization whatever the species.  相似文献   

11.
The expansion of biogas production from anaerobic digestion in the Po Valley (Northern Italy) has stimulated the cultivation of dedicated biomass crops, and maize in particular. A mid-term experiment was carried out from 2006 to 2010 on a silt loamy soil in Northern Italy to compare water use and energy efficiency of maize and sorghum cultivation under rain fed and well-watered treatments and at two rates of nitrogen fertilization. The present work hypothesis were: (i) biomass sorghum, for its efficient use of water and nitrogen, could be a valuable alternative to maize for biogas production; (ii) reduction of irrigation level and (iii) application of low nitrogen fertilizer rate increase the efficiency of bioenergy production. Water treatments, a rain fed control (I0) and two irrigation levels (I1 and I2; only one in 2006 and 2009), were compared in a split–split plot design with four replicates. Two fertilizer rates were also tested: low (N1, 60 kg ha−1 of nitrogen; 0 kg ha−1 of nitrogen in 2010) and high (N2, 120 kg ha−1 of nitrogen; 100 kg ha−1 of nitrogen in 2010). Across treatments, sorghum produced more aboveground biomass than maize, respectively 21.6 Mg ha−1 and 16.8 Mg ha−1 (p < 0.01). In both species, biomass yield was lower in I0 than in I1 and I2 (p < 0.01), while I1 and I2 did differ significantly. Nitrogen level never affected biomass yield. Water use efficiency was generally higher in sorghum (52 kg ha−1 mm−1) than in maize (38 kg ha−1 mm−1); the significant interaction between crop and irrigation revealed that water use efficiency did not differ across water levels in sorghum, whereas it significantly increased from I0 and I1 to I2 in maize (p < 0.01). The potential methane production was similar in maize and sorghum, while it was significantly lower in I0 (16505 MJ ha−1) than in I1 and I2 (21700 MJ ha−1). The only significant effect of nitrogen fertilization was found in the calculation of energy efficiency (ratio of energy output and input) that was higher in N1 than in N2 (p < 0.01). These results support the hypothesis that (i) sorghum should be cultivated rather than maize to increase energy efficiency, (ii) irrigation level should replace up to 36% of ETr and (iii) nitrogen fertilizer rate should be minimized to maximize the efficiency in biomass production for anaerobic digestion in the Po Valley.  相似文献   

12.
We studied the interaction between Eucalyptus saligna woodlots and maize crop in southern Rwanda. Three sites were selected and in each, a eucalypt woodlot with mature trees and a suitable adjoining crop field of 12.75 m × 30 m was selected. This was split into two plots of 6 m × 12 m and further subdivided into nine sub-plots running parallel to the tree-crop interface. Maize was grown in both 6 m × 12 m plots and one of these received fertiliser. Soil moisture, nutrients and solar radiation were significantly reduced near the woodlots, diminishing grain yield by 80% in the 10.5 m crop-field strip next to the woodlot. This reduction however affects only 10.5% of the maize crop field, leaving 89.5% unaffected. Spreading the loss to a hectare crop field, leads to an actual yield loss of 0.21 t ha−1, equivalent to 8.4%. Expressing yield loss in tree-crop systems usually presented as a percentage of yield recorded near the trees to that obtained in open areas may be misleading. Actual yields should be reported with corresponding crop field areas affected. Variation in grain yield coincided with those for soil moisture, soil N and K; all increasing from the woodlot-maize interface up to 10.5 m and remaining similar to the values in open areas thereafter. Solar radiation continued to increase with distance up to 18 m from the woodlot-maize interface. Harvest index in unfertilised maize exceeded that in the fertilised treatment reflecting the crop’s strategy to allocate resources to grain production under unfavourable conditions. Fertilisation increased maize yield from 1.3–2.6 t ha−1 but the trend in the woodlot effects on maize remained unaltered.  相似文献   

13.
APSIM Nwheat is a crop system simulation model, consisting of modules that incorporate aspects of soil water, nitrogen (N), crop residues, and crop growth and development. The model was applied to simulate above- and below-ground growth, grain yield, water and N uptake, and soil water and soil N of wheat crops in the Netherlands. Model outputs were compared with detailed measurements of field experiments from three locations with two different soil types. The experiments covered two seasons and a range of N-fertiliser applications. The overall APSIM Nwheat model simulations of soil mineral N, N uptake, shoot growth, phenology, kernels m−2, specific grain weight and grain N were acceptable. Grain yields (dry weight) and grain protein concentrations were well simulated with a root mean square deviation (RMSD) of 0.8 t ha−1 and 1.6 protein%, respectively. Additionally, the model simulations were compared with grain yields from a long-term winter wheat experiment with different N applications, two additional N experiments and regional grain yield records. The model reproduced the general effects of N treatments on yields. Simulations showed a good consistency with the higher yields of the long-term experiment, but overpredicted the lower yields. Simulations and earlier regional yields differed, but they showed uniformity for the last decade.In a simulation experiment, the APSIM Nwheat model was used with historical weather data to study the relationship between rate and timing of N fertiliser and grain yield, grain protein and soil residual N. A median grain yield of 4.5 t ha−1 was achieved without applying fertiliser, utilising mineral soil N from previous seasons, from mineralisation and N deposition. Application of N fertiliser in February to increase soil mineral N to 140 kg N ha−1 improved the median yield to 7.8 t ha−1 but had little effect on grain protein concentration with a range of 8–10%. Nitrogen applications at tillering and the beginning of stem elongation further increased grain yield and in particular grain protein, but did not affect soil residual N, except in a year with low rainfall during stem elongation. A late N application at flag leaf stage increased grain protein content by several per cent. This increase had only a small effect on grain yield and did not increase soil residual N with up to 40 kg N ha−1 applied, except when N uptake was limited by low rainfall in the period after the flag leaf stage. The economic and environmental optima in winter wheat were identified with up to 140 kg N ha−1 in February, 90 kg N ha−1 between tillering and beginning of stem elongation and 40 kg N ha−1 at flag leaf stage resulting in a median of 8.5 t ha−1 grain yield, 14.0% grain protein and 13 kg N ha−1 soil residual N after the harvest. The maximum simulated yield with maximum N input from two locations in the Netherlands was 9.9 t ha−1.  相似文献   

14.
Rice (Oryza sativa L.) grain yields vary considerably between seasons under subtropical irrigated conditions. Reports on comparisons of grain yield between early- and late-season rice in subtropical environments are lacking. In order to evaluate the role of climatic and physiological factors under double rice-cropping system in determining rice grain yield in farmers’ fields, six field experiments were conducted in both early and late seasons from 2008 to 2010 in Wuxue County, Hubei province, China. For early season crop, the attainable yield was highest under dense planting (38.5 hills m−2) when N was applied at a rate of 120–180 kg ha−1. However, the effect of hill density on grain yield was relatively smaller for late season crop, while moderate hill density (28.1 hills m−2) and nitrogen rate (120 kg ha−1) were advantageous in terms of grain yield and lodging resistance. Remarkably higher grain yields were achieved in late season crops compared with early season crops, as the former had superiority over the latter in sink size (sink capacity, such as spikelets per m2) and biomass production. The comparatively lower yield under early season mainly resulted from slower growth during the vegetative phase, which can be attributed to the lower temperature rather than reduced mean daily radiation. Summary statistics suggested that there was ample opportunity to improve rice yield in early season crops, compared with late season crops. Correlation analysis further showed that spikelets per m2, panicles per m2, leaf area index at panicle initiation and flowering, biomass at physiological maturity and biomass accumulation after flowering should be emphasized for increasing grain yield, especially in early season crops under the double rice-cropping system in central China. Current breeding programs need to target strong tillering ability, large panicle size and greater grain filling (%) for early season crops, and high yield potential and lodging-resistance for late season crops as primary objectives.  相似文献   

15.
Experiments were carried out to study the effects of N fertilizer rates and timing of application on the yield and grain quality of a rainfed emmer crop (Triticum dicoccum Shübler) under Mediterranean conditions. The following parameters were analyzed: hulled and net grain yield, hulled index, spikes m?2, spikelets per spike, kernels m?2, thousand-kernel weight, biomass, plant height, lodging, grain protein and ash content. In the first experiment, different N rates (30, 60 and 90 kg N ha?1 plus a control not fertilized) were split at three phenological stages (seeding 20%, tillering 40% and stem elongation 40%). In the second experiment, three N doses (30, 60 and 90 kg N ha?1) were applied to three crop stages (seeding, tillering and stem elongation). In the third experiment, the rate of 90 kg N ha?1 was distributed in different amounts (90-0-0, 0-90-0, 0-0-90, 45-45-0, 45-0-45, 0-45-45, 30-30-30) at the three mentioned crop stages. Increasing N rates resulted in higher hulled and net grain yield, as well as protein content. Fertilization (from 60 to 90 kg N ha?1) applied to tillering maximized hulled and net grain yield. Fertilization (90 kg N ha?1) applied to stem elongation gave the highest grain protein content (%) while splitting application (30 kg N ha?1 each) at three phenological stages maximized protein yield per hectare. Application of half or one-third of 90 kg N ha?1 to stem elongation improved grain protein content in comparison with applications at sowing, or at both sowing and tillering. The main factor determining higher yields with increasing N rates in this emmer crop was the number of kernels m?2. None of the yield components accounted for differences in grain yield when timing and splitting application were varied.  相似文献   

16.
For biomethane production, the cup plant (Silphium perfoliatum L.) is considered a promising alternative substrate to silage maize (Zea mays L.) due to its high biomass potential and associated ecological and environmental benefits. It has also been suggested to grow cup plant on less productive soils because of its presumed drought tolerance, but robust information on the impact of water shortage on biomass growth and substrate quality of cup plant is rare. Therefore, this study assesses the effects of soil water availability on the chemical composition and specific methane yield (SMY) of cup plant. Furthermore above-ground dry matter yield (DMY) was analysed as a function of intercepted photosynthetic active radiation (PAR) and radiation use efficiency (RUE). Data were collected in a two-year field experiment under rainfed and irrigated conditions with cup plant, maize, and lucerne-grass (Medicago sativa L., Festuca pratensis Huds., Phleum pratense L.). The cup plant revealed a slight decrease of −6% in the SMY in response to water shortage (less than 50% of plant available water capacity). The average SMY of cup plant [306 l (kg volatile solids (VS))−1] was lower than that of maize [362 l (kg VS)−1] and lucerne-grass [334 l (kg VS)−1]. The mean drought-related reduction of the methane hectare yield (MHY) was significantly greater for cup plant (−40%) than for maize (−17%) and lucerne-grass (−13%). The DMY reduction in rainfed cup plant was mainly attributed to a more severe decrease in RUE (−29%) than for maize (−16%) and lucerne-grass (−12%). Under water stress, the mean cup plant RUE (1.3 g MJ−1) was significantly lower than that of maize (2.9 g MJ−1) and lucerne-grass (1.4 g MJ−1). Compared to RUE, the reduced PAR interception was less meaningful for DMY in rainfed crops. Hence, the cup plant is not suitable for growing on drought prone lands due to its high water demand required to produce reasonably high MHYs.  相似文献   

17.
In order to better understand how mixed crop cultures mitigate stressful conditions, this study aims to highlight the beneficial effect of the intercropping legume-cereal in enhancing soil phosphorus (P) availability for plant growth and productivity in a P-deficient soil of a northern Algerian agroecosystem. To address this question, common bean (Phaseolus vulgaris L. cv. El Djadida) and maize (Zea mays L. cv. Filou), were grown as sole- and inter-crops in two experimental sites; S1 (P-deficient) and S2 (P-sufficient) during two growing seasons (2011 and 2012). Growth, nodulation and grain yield were assessed and correlated with the rhizosphere soil P availability. Results showed that P availability significantly increased in the rhizosphere of both species, especially in intercropping under the P-deficient soil conditions. This increase was associated with high efficiency in use of the rhizobial symbiosis (high correlation between plant biomass and nodulation), plant growth and resource (nitrogen (N) and P) use efficiency as indicated by higher land equivalent ratio (LER > 1) and N nutrition index (for maize) in intercropping over sole cropping treatments. Moreover, the rhizosphere P availability and nodule biomass were positively correlated (r2 = 0.71, p < 0.01 and r2 = 0.62, p < 0.01) in the intercropped common bean grown in the P-deficient soil during 2011 and 2012. The increased P availability presumably improved biomass and grain yield in intercropping, though it mainly enhanced grain yield in intercropped maize. Our findings suggest that modification in the intercropped common bean rhizosphere-induced parameters facilitated P uptake, plant biomass and grain yield for the intercropped maize under P-deficiency conditions.  相似文献   

18.
Because of the complexity of farming systems, the combined effects of farm management practices on nitrogen availability, nitrogen uptake by the crop and crop performance are not well understood. To evaluate the effects of the temporal and spatial variability of management practices, we used data from seventeen farms and projections to latent structures analysis (PLS) to examine the contribution of 11 farm characteristics and 18 field management practices on barley performance during the period 2009–2012. Farm types were mixed (crop-livestock) and arable and were categorized as old organic, young organic or conventional farms. The barley performance indicators included nitrogen concentrations in biomass (in grain and whole biomass) and dry matter at two growing stages. Fourteen out of 29 farm characteristics and field management practices analysed best explained the variation of the barley performance indicators, at the level of 56%, while model cross-validation revealed a goodness of prediction of 31%. Greater crop diversification on farm, e.g., a high proportion of rotational leys and pasture, which was mostly observed among old organic farms, positively affected grain nitrogen concentration. The highest average grain nitrogen concentration was found in old organic farms (2.3% vs. 1.7 and 1.4% for conventional and young organic farms, respectively). The total nitrogen translocated in grain was highest among conventional farms (80 kg ha−1 vs. 33 and 39 kg ha−1 for young and old organic farms, respectively). The use of mineral fertilizers and pesticides increased biomass leading to significant differences in average grain yield which became more than double for conventional farms (477 ± 24 g m−2) compared to organic farms (223 ± 37 and 196 ± 32 g m−2 for young and old organic farms, respectively). In addition to the importance of weed control, management of crop residues and the organic fertilizer application methods in the current and three previous years, were identified as important factors affecting the barley performance indicators that need closer investigation. With the PLS approach, we were able to highlight the management practices most relevant to barley performance in different farm types. The use of mineral fertilizers and pesticides on conventional farms was related to high cereal crop biomass. Organic management practices in old organic farms increased barley N concentration but there is a need for improved management practices to increase biomass production and grain yield. Weed control, inclusion of more leys in rotation and organic fertilizer application techniques are some of the examples of management practices to be improved for higher N concentrations and biomass yields on organic farms.  相似文献   

19.
The sustainability of growing a maize—winter wheat double crop rotation in the North China Plain (NCP) has been questioned due to its high nitrogen (N) fertiliser use and low N use efficiency. This paper presents field data and evaluation and application of the soil–vegetation–atmosphere transfer model Daisy for estimating crop production and nitrate leaching from silty loam fields in the NCP. The main objectives were to: i) calibrate and validate Daisy for the NCP pedo-climate and field management conditions, and ii) use the calibrated model and the field data in a multi-response analyses to optimise the N fertiliser rate for maize and winter wheat under different field managements including straw incorporation.The model sensitivity analysis indicated that a few measurable crop parameters impact the simulated yield, while most of the studied topsoil parameters affect the simulated nitrate leaching. The model evaluation was overall satisfactory, with root mean squared residuals (RMSR) for simulated aboveground biomass and nitrogen content at harvest, monthly evapotranspiration, annual drainage and nitrate leaching out of the root zone of, respectively, 0.9 Mg ha−1, 20 kg N ha−1, 30 mm, 10 mm and 10 kg N ha−1 for the calibration, and 1.2 Mg ha−1, 26 kg N ha−1, 38 mm, 14 mm and 17 kg N ha−1 for the validation. The values of mean absolute deviation, model efficiency and determination coefficient were also overall satisfactory, except for soil water dynamics, where the model was often found erratic. Re-validation run showed that the calibrated Daisy model was able to simulate long-term dynamics of crop grain yield and topsoil carbon content in a silty loam field in the NCP well, with respective RMSR of 1.7 and 1.6 Mg ha−1. The analyses of the model and the field results showed that quadratic, Mitscherlich and linear-plateau statistical models may estimate different economic optimal N rates, underlining the importance of model choice for response analyses to avoid excess use of N fertiliser. The analyses further showed that an annual fertiliser rate of about 300 kg N ha−1 (100 for maize and 200 for wheat) for the double crop rotation with straw incorporation is the most optimal in balancing crop production and nitrate leaching under the studied conditions, given the soil replenishment with N from straw mineralisation, atmospheric deposition and residual fertiliser.This work provides a sound reference for determining N fertiliser rates that are agro-environmentally optimal for similar and other cropping systems and regions in China and extends the application of the Daisy model to the analyses of complex agro-ecosystems and management practices under semi-arid climate.  相似文献   

20.
Soil acidity and low natural fertility are the main limiting factors for grain production in tropical regions such as the Brazilian Cerrado. The application of lime to the surface of no-till soil can improve plant nutrition, dry matter production, crop yields and revenue. The present study, conducted at the Lageado Experimental Farm in Botucatu, State of São Paulo, Brazil, is part of an ongoing research project initiated in 2002 to evaluate the long-term effects of the surface application of lime on the soil’s chemical attributes, nutrition and kernel/grain yield of peanut (Arachis hypogaea), white oat (Avena sativa L.) and maize (Zea mays L.) intercropped with palisade grass (Urochloa brizantha cv. Marandu), as well as the forage dry matter yield of palisade grass in winter/spring, its crude protein concentration, estimated meat production, and revenue in a tropical region with a dry winter during four growing seasons. The experiment was designed in randomized blocks with four replications. The treatments consisted of four rates of lime application (0, 1000, 2000 and 4000 kg ha−1), performed in November 2004. The surface application of limestone to the studied tropical no-till soil was efficient in reducing soil acidity from the surface down to a depth of 0.60 m and resulted in greater availability of P and K at the soil surface. Ca and Mg availability in the soil also increased with the lime application rate, up to a depth of 0.60 m. Nutrient absorption was enhanced with liming, especially regarding the nutrient uptake of K, Ca and Mg by plants. Significant increases in the yield components and kernel/grain yields of peanut, white oat and maize were obtained through the surface application of limestone. The lime rates estimated to achieve the maximum grain yield, especially in white oat and maize, were very close to the rates necessary to increase the base saturation of a soil sample collected at a depth of 0–0.20 m to 70%, indicating that the surface liming of 2000 kg ha−1 is effective for the studied tropical no-till soil. This lime rate also increases the forage dry matter yield, crude protein concentration and estimated meat production during winter/spring in the maize-palisade grass intercropping, provides the highest total and mean net profit during the four growing seasons, and can improve the long-term sustainability of tropical agriculture in the Brazilian Cerrado.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号