首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present field experiment, horse manure and compost derived from shrub and garden cuttings were supplied at nearly equivalent N amounts but different C amounts to field peas (Pisum sativum L.), either as a sole crop or intercropped with oat (Avena sativa L.). The objectives were: (1) to evaluate the beneficial effects of C-rich manure and compost on pea productivity in different cropping systems (2) to investigate whether these effects were reflected by microbial root colonization, microbial biomass and CO2 production and (3) to study the residual effects of the organic fertilizers on the yield of succeeding crop. Short term application of horse manure and compost greatly stimulated soil microbial biomass C, N, P, fungal ergosterol and CO2 evolution, but failed to stimulate productivity of the current crops. However, significant positive residual effects of organic fertilizer, especially horse manure were observed on the grain yield of the succeeding winter wheat. Mycorrhizal colonization and ergosterol concentration were significantly higher in pea than in oat roots. Intercropping is an important tool for controlling weeds on pea plots under organic farming conditions, but did not affect microbial root colonization, soil microbial biomass indices or CO2 evolution from the soil surface. According to the extrapolation of the CO2 evolution rates into amounts per hectare, approximately 40% of the manure C and 24% of the compost C were mineralized to CO2 during the 124-day experimental period. There were close relationships between grain N and P concentrations in both crops and microbial biomass C, N and P, suggesting that soil microbial biomass can be used as an indicator of nutrient availability to plants.  相似文献   

2.
The effects of nitrogen (N) availability related to fertilizer type, catch crop management, and rotation composition on cereal yield and grain N were investigated in four organic and one conventional cropping systems in Denmark using the FASSET model. The four-year rotation studied was: spring barley–(faba bean or grass-clover)–potato–winter wheat. Experiments were done at three locations representative of the different soil types and climatic conditions in Denmark. The three organic systems that included faba bean as the N fixing crop comprised a system with manure (stored pig slurry) and undersowing catch crops (OF + C + M), a system with manure but without undersowing catch crops (OF ? C + M), and a system without manure and with catch crops (OF + C ? M). A grass-clover green manure was used as N fixing crop in the other organic system with catch crops (OG + C + M). Cuttings of grass-clover were removed from the plots and an equivalent amount of total-N in pig slurry was applied to the cropping system. The conventional rotation included mineral fertilizer and catch crops (CF + C + F), although only non-legume catch crops were used. Measurements of cereal dry matter (DM) at harvest and of grain N contents were done in all plots. On average the FASSET model was able to predict the yield and grain N of cereals with a reasonable accuracy for the range of cropping systems and soil types studied, having a particularly good performance on winter wheat. Cereal yields were better on the more loamy soil. DM yield and grain N content were mainly influenced by the type and amount of fertilizer-N at all three locations. Although a catch crop benefit in terms of yield and grain N was observed in most of the cases, a limited N availability affected the cereal production in the four organic systems. Scenario analyses conducted with the FASSET model indicated the possibility of increasing N fertilization without significantly affecting N leaching if there is an adequate catch crop management. This would also improve yields of cereal production of organic farming in Denmark.  相似文献   

3.
Irrigation induces processes that may either decrease or increase greenhouse gas emissions from cropping systems. To estimate the net effect of irrigation on the greenhouse gas emissions, it is necessary to consider changes in the crop yields, the content of soil organic carbon and nitrous oxide emissions, as well as in emissions from the use and production of machinery and auxiliary materials. In this study the net greenhouse gas emissions of a cropping system on a sandy soil in northeast Germany were calculated based on a long-term field experiment coupled with two-year N2O flux measurements on selected plots. The cropping system comprised a rotation of potato, winter wheat, winter oil seed rape, winter rye and cocksfoot each under three nitrogen (N) fertilization intensities with and without irrigation. Total greenhouse gas emissions ranged from 452 to 3503 kg CO2-eq ha−1 and 0.09 to 1.81 kg CO2-eq kg−1 yield. Application of an adequate amount of N fertilizer led to a decrease in greenhouse gas emissions compared to zero N fertilization whereas excessive N fertilization did not result in a further decrease. Under N fertilization there were no significant differences between irrigation and non-irrigation. Increases in greenhouse gas emissions from the operation, production and maintenance of irrigation equipment were mainly offset by increases in crop yield and soil organic carbon contents. Thus, on a sandy soil under climatic conditions of north-east Germany it is possible to produce higher yields under irrigation without an increase in the yield-related greenhouse gas emissions.  相似文献   

4.
Intensive tillage by means of mouldboard ploughing can be highly effective for weed control in organic farming, but it also carries an elevated risk for rapid humus decomposition and soil erosion. To develop organic systems that are less dependent on tillage, a two-year study at Reinhardtsgrimma and Köllitsch, Germany was conducted to determine whether certain legume cover crops could be equally successfully grown in a no-till compared with a reduced tillage system. The summer annual legumes faba bean (Vicia faba L.), normal leafed field pea (Pisum sativum L.), narrow-leafed lupin (Lupinus angustifolius L.), grass pea (Lathyrus sativus L.), and common vetch (Vicia sativa L.) were examined with and without sunflower (Helianthus annuus L.) as a companion crop for biomass and nitrogen accumulation, symbiotic nitrogen fixation (N2 fixation) and weed suppression. Total cover crop biomass, shoot N accumulation and N2 fixation differed with year, location, tillage system and species due to variations in weather, inorganic soil N resources and weed competition. Biomass production reached up to 1.65 and 2.19 Mg ha−1 (both intercropped field peas), and N2 fixation up to 53.7 and 60.5 kg ha−1 (both common vetches) in the no-till and reduced tillage system, respectively. In the no-till system consistently low sunflower performance compared with the legumes prevented significant intercropping effects. Under central European conditions no-till cover cropping appears to be practicable if weed density is low at seeding. The interactions between year, location, tillage system and species demonstrate the difficulties in cover crop species selection for organic conservation tillage systems.  相似文献   

5.
The agricultural sector is highly affected by climate change and it is a source of greenhouse gases. Therefore it is in charge to reduce emissions. For a development of reduction strategies, origins of emissions have to be known. On the example of sugar beet, this study identifies the main sources and gives an overview of the variety of production systems. With data from farm surveys, calculations of greenhouse gas (GHG) emissions in sugar beet cultivation in Germany are presented. Emissions due to the production and use of fertilizers and pesticides, emissions due to tillage as well as field emissions were taken into account. All emissions related to the growing of catch crops during fall before the cultivation of sugar beet were also included. The emissions are related to the yield to express intensity.The median of total GHG emissions of sugar beet cultivation in Germany for the years 2010–2012 amounted to 2626 equivalents of CO2 (CO2eq) kg ha−1 year−1 when applying mineral plus organic fertilizer and to 1782 kg ha−1 when only organic fertilizer was applied. The CO2eq emissions resulting from N fertilization exclusively were 2.5 times higher than those caused by diesel and further production factors. The absence of emissions for the production of organic fertilizers led to 12% less total CO2eq emissions compared to the use of mineral fertilizer only. But by applying organic fertilizer only, there were more emissions via the use of diesel due to larger volumes transported (126 l diesel ha−1 vs. 116 l ha−1 by applying mineral fertilizer exclusively).As there exists no official agreement about calculating CO2eq emissions in crop production yet, the authors conclude that there is still need for further research and development with the aim to improve crop cultivation and crop rotations concerning GHG emissions and the therewith related intensity.  相似文献   

6.
In order to better understand how mixed crop cultures mitigate stressful conditions, this study aims to highlight the beneficial effect of the intercropping legume-cereal in enhancing soil phosphorus (P) availability for plant growth and productivity in a P-deficient soil of a northern Algerian agroecosystem. To address this question, common bean (Phaseolus vulgaris L. cv. El Djadida) and maize (Zea mays L. cv. Filou), were grown as sole- and inter-crops in two experimental sites; S1 (P-deficient) and S2 (P-sufficient) during two growing seasons (2011 and 2012). Growth, nodulation and grain yield were assessed and correlated with the rhizosphere soil P availability. Results showed that P availability significantly increased in the rhizosphere of both species, especially in intercropping under the P-deficient soil conditions. This increase was associated with high efficiency in use of the rhizobial symbiosis (high correlation between plant biomass and nodulation), plant growth and resource (nitrogen (N) and P) use efficiency as indicated by higher land equivalent ratio (LER > 1) and N nutrition index (for maize) in intercropping over sole cropping treatments. Moreover, the rhizosphere P availability and nodule biomass were positively correlated (r2 = 0.71, p < 0.01 and r2 = 0.62, p < 0.01) in the intercropped common bean grown in the P-deficient soil during 2011 and 2012. The increased P availability presumably improved biomass and grain yield in intercropping, though it mainly enhanced grain yield in intercropped maize. Our findings suggest that modification in the intercropped common bean rhizosphere-induced parameters facilitated P uptake, plant biomass and grain yield for the intercropped maize under P-deficiency conditions.  相似文献   

7.
Cotton (Gossypium hirsutum L.) is the leading cash crop being grown across the globe including Pakistan. By the inclusion of insect resistant transgenic cotton (BT cotton), the cotton production has mounted many folds in Pakistan. BT cotton is mostly grown in Southern Punjab in cottonwheat cropping system of Pakistan; however there exists a time conflict among wheat harvest and BT cotton sowing in this system. Wheat is harvested during late April but the ideal sowing time of BT cotton is early-mid March indicating a time conflict of 46 weeks which is becoming the main concern leading to wheat exclusion from this system. Intercropping of BT cotton in standing wheat is one of the possible options to manage this overlapping period. This two year field study was, therefore, conducted at two locations (Multan, Vehari) to evaluate the economic feasibility of relay intercropping of BT cotton through different sowing methods in BT cottonwheat cropping system. BT cottonwheat cropping systems included in the study were: conventionally tilled cotton (CTC) on fallow land during early and late March, CTC during late April after harvest of flat sown wheat (FSW), bed sown wheat (BSW) + intercropped cotton during early and late March, and ridge sown wheat (RSW) + intercropped cotton during early and late March. Planting cotton in fallow land with conventional tillage during early March had more seed cotton yield; whereas planting in the same way during April after wheat harvest had minimum seed cotton yield. Likewise, FSW had more yield than ridge and bed sown wheat with intercropped BT cotton during early or late March. However, the system productivity in terms of net income, benefit: cost ratio and marginal rate of return of BSW + intercropped BT cotton during early March was the highest during both years at both locations. However, the system with sole crop of BT cotton sown on fallow land during late or early March was the least economical even than the system with CTC during late April after harvest of FSW. In conclusion, BSW + intercropped cotton during early March may be opted to manage the time conflict and improve the economic productivity of BT cottonwheat cropping system without wheat exclusion from the system.  相似文献   

8.
Compared to the short-term experiment, we have a lack of understanding about the long-term effect of fertilizers on rice yield and paddy soil properties under the conditions of frequent soil disturbance and intensive cropping cultivation. Thus, a 32-year (1984–2015) field experiment was established on a red clay soil (typical Ultisols) near Nanchang, Jiangxi province, China, to assess the effects of inorganic and organic fertilizers on rice yields, soil chemical properties and bacterial communities in early rice-late rice-Astragalus sinicus L. rotation system. Manure applications in combination with different proportions of chemical fertilizer in terms of nitrogen, particularly 70 M + 30CF (70% manure in combination with 30% chemical fertilizer), sustained high rice yields and increased soil OM, 1 N NaOH-hydrolyzed N, Olsen phosphorus, microbial biomass, and bacterial diversity but alleviated soil acidification. The soil receiving MCF had a great number of bacterial operational taxonomic units and high richness indexes. Compositions and abundances of predominant bacteria in soils varied among the fertilizer treatments and all of bacterial communities were dominated by three major phyla (Chloroflexi, Proteobacteria, and Acidobacteria), which were more than 70% of the total sequences in each of the soils examined. Among the top 15 predominant bacteria, seven were commonly found in all studied soils and only 1–2 phylotypes were unique in each soil. A large number of facultative anaerobic and aerobic bacteria, including Thiobacillus thioparus, Bradyrhizobium, and Nitrospira, were present in all studied soil. Therefore, bacterial community compositions can reflect soil processes such as acidification, greenhouse gas emission and nitrogen recycling in response to tillage and fertilizer managements.  相似文献   

9.
A field experiment was carried out to assess the impact of elevated carbon dioxide (CO2) and temperature on phosphorous (P) nutrition in relation to organic acids exudation, soil microbial biomass P (MBP) and phosphatase activities in tropical flooded rice. Rice (cv. Naveen) was grown under chambered control (CC), elevated CO2 (EC, 550 μmol mol−1) and elevated CO2 + elevated temperature (ECT, 550 μmol mol−1 and 2 °C more than CC) in a tropical flooded soil under open top chambers (OTCs) along with unchambered control (UC) for three years. Root exudates were analyzed at different growth stages of rice followed by organic acids determination. Rhizospheric soil was used for analysis of soil phosphatase, MBP and available P. The total organic carbon (TOC) in root exudates was increased by 27.5% and 30.2% under EC and ECT, respectively over CC. Four different types of organic acids viz. acetic acid (AA), tartaric acid (TA), malic acid (MA) and citric acid (CA) were identified and quantified as dominant in root exudates, concentration of these was in the order of TA > MA > AA > CA. The TA, MA, AA and CA content were increased by 34.4, 31.1, 38.7 and 58.3% under ECT compared to that of UC over the period of 3 years. The P uptake in shoot, root and grain under elevated CO2 increased significantly by 29, 28 and 22%, respectively than CC. Soil MBP, acid and alkaline phosphatase activity was significantly higher under elevated CO2 by 35.1%, 27 and 36%, respectively, compared to the CC. Significant positive relationship exists among the organic acid exudation, MBP, phosphatase activities and P uptake by rice. The enhanced organic acid in root exudates coupled with higher soil phosphatase activities under elevated CO2 resulted in increased rate of soil P solubilization leading to higher plant P uptake.  相似文献   

10.
The experiment was conducted to evaluate the agronomic benefit of the application of organic fertilizers combined with different soil tillage on quantitative and qualitative components of winter wheat (Triticum durum Desf., cv. ‘Simeto’) and on chemical soil fertility parameters. The environmental impact, due to heavy metals introduced in soil-plant system, was further investigated. Soil tillage treatments consisted of conventional (CT) and minimum tillage (MT). Fertilization treatments were: mineral at 100 kg N ha−1 (Nmin); municipal solid waste compost at 100 kg N ha−1 (Ncomp); 50 kg N ha−1 of both compost and mineral fertilizers (Nmix); sewage sludge at 100 kg N ha−1 (Nss). These treatments were compared with an unfertilized control (N0). No significant difference was observed between the two soil tillage treatments for quantitative yield production, while among the fertilization treatments Nss did not show any significant difference compared to Nmin. At the end of the research, the fertility of the soil (oxidable carbon, total nitrogen, available phosphorus) was on average higher in Ncomp and Nss treatments compared to the N0 and Nmin ones. The overall distribution of heavy metals in soil-plant system respect to the different fertilizer treatments has not allowed to grouped their effects with Principal Components Analysis. This result showed that the amount of potential pollutants applied by organic amendments did not modified the dynamic equilibrium of the soil–plant system. The MT, as well as the fertilization with the application of sewage sludge (Nss), allowed to reach productive performance similar to conventional management (CT with Nmin). Here we demonstrate that, in the short term period, sustainable agronomical techniques can replace the conventional one with environmental benefit.  相似文献   

11.
An experiment was conducted on rice, in old alluvial soil zone, with bio-fertilizer and different doses of organic manure and chemical fertilizer to develop an alternative farming system which is productive, profitable, enhances soil health and conserves the natural resources over a long term. The experiment was conducted for four consecutive years (2007–2010) and it has been observed that 40% N and 25% P chemical fertilizer can safely be supplemented by low-cost, natural resource based bio-fertilizer (Azotobacter sp. and PSB) at 12 kg ha−1 and organic manure (FYM) at 10.00 t ha−1 to achieve long-term sustainability in rice cultivation that is more productive and profitable.  相似文献   

12.
Increased per capita food production in the tropics is closely tied to soil organic matter and water management, timely nitrogen (N) supply and crop N use efficiency (NUE) which are influenced by farming systems. However, there is lack of data on the effect of organic farming systems on NUE and how this compares to conventional farming systems under tropical conditions. Therefore, the objectives of this study were to determine the effect of conventional and organic farming systems at low and high management intensities on N uptake and N use efficiency of potato (Solanum tuberosum L.), maize (Zea mays L.), cabbage (Brassica oleracea var. Capitata), kale (Brassica oleracea var. Acephala) and Swiss chard (Beta vulgaris sub sp. Cicla). The organic high input (Org-High) and conventional high input (Conv-High) farming systems are managed as recommended by research institutions while organic low input (Org-Low) and conventional low input (Conv-Low) farming systems are managed as practiced by small scale farmers in the Central highlands of Kenya. The study was conducted during three cropping seasons between October 2012 and March 2014 in an ongoing long-term trial established since 2007 at Chuka and at Thika, Kenya. Synthetic N-based fertilizer and cattle manure were applied at ∼225 kg N ha−1 yr−1 for Conv-High and at ∼50 kg N ha−1 yr−1 for the Conv-Low. Composts and other organic inputs were applied at similar N rates for Org-High and Org-Low. Nitrogen uptake efficiency (NUpE) of potato was highest in Conv-Low and Org-Low at Thika and lowest in Org-High and Org-Low at Chuka site where late blight disease affected potato performance. In contrast, the NUpE of maize was similar in all systems at Chuka site, but was significantly higher in Conv-High and Org-High compared to the low input systems at Thika site. The NUpE of cabbage was similar in Conv-High and Org-High while the NUpE of kale and Swiss chard were similar in the low input systems. Potato N utilization efficiencies (NUtE) and agronomic efficiencies of N use (AEN) in Conv-Low and Conv-High were 11–21 % and 1.4–3.4 times higher than those from Org-Low and Org-High, respectively. The AEN of maize was similar in all the systems at Chuka but was 3.2 times higher in the high input systems compared to the low input systems at the Thika site. The AEN of vegetables under conventional systems were similar to those from organic systems. Nitrogen harvest index (NHI) of potato was similar between Conv-High and Org-High and between Conv-Low and Org-Low. N partitioned into maize grain was similar in all the system at Chuka, but significantly lower (P < 0.001) in Conv-low and Org-Low at Thika site. The NHI of cabbage in Org-High was 24 % higher than that of Conv-High. The study concluded that for maize and vegetables, conventional and organic farming systems had similar effects on NUpE, AEN, NUtE and NHI, while for potato conventional systems improved NUE compared to organic systems. The study recommends that management practices for potato production in organic systems should be improved for a more efficient NUE.  相似文献   

13.
In the rainfed mid-hill region of Nepal, most fields receive 2–3 t ha−1 of organic compost application every year. Despite efficient recovery and use of organics in the mixed crop-animal systems that predominant in the mid-hills, depleted soil fertility is widely understood to be a significant constraint to crop productivity, with most farmers achieving maize grain yields below 2 t ha−1. Increased use of fertilizer may arrest and even reverse long-term soil quality degradation, but few farmers in the mid-hills use them at present and existing recommendations are insufficiently responsive to site, varietal, and management factors that influence the productivity and profitability of increased fertilizer use. Moreover, policy makers and development practitioners often hold the perception that returns to fertilizer use in the mid-hills are too low to merit investment. In this study, on-farm experiments were conducted at 16 sites in the Palpa district, Nepal to assess the responsiveness of a maize hybrid (DKC 9081) and an ‘improved’ open-pollinated maize variety (‘OPV’, Manakamana-3) to four nitrogen (N) rates, i.e., 0, 60, 120 and 180 kg ha−1, with each N rate response evaluated at 30:30 and 60:60 kg ha−1 rates of phosphorus (P2O5) and potassium (K2O), respectively. With sound agronomy and high rates of fertilizer (180:60:60 kg N:P2O5:K2O ha−1), grain yields observed in the field experiments exceeded 8 t ha−1 with hybrids and 6 t ha−1 with OPV. Yield levels were lower for OPV than hybrid at every level of applied N, but both genotypes responded linearly to N with partial factor productivity for N (PFPN) ranging from 14 to 19 for OPV versus 26–30 for hybrid, with improved N efficiencies obtained when P and K rates were significantly higher. Averaged across phosphorus (P) and potassium (K) levels, a $ 1 incremental investment in fertilizer increased the gross margin (GM) by $ 1.70 ha−1 in OPV and by $ 1.83 ha−1 in the hybrid. For the full response of N, requires higher rate of P2O5:K2O and vice-versa and full response to P2O5:K2O does not occur if N is absent. These results suggest that, i) degraded soils in the mid-hills of Nepal respond favorably to macronutrient fertilizers – even at high rates, ii) balanced fertilization is necessary to optimize returns on investments in N but must be weighed against additional costs, iii) OPVs benefit from investments in fertilizer, albeit at a PFPN that is 36–47% lower than for hybrids, and, consequently iv) hybrids are an effective mechanism for achieving a higher return on fertilizer investments, even when modest rates are applied. To extend these findings across years and sites in the mid-hills, crop growth simulations using the CERES-maize model (DSSAT) were conducted for 11 districts with historical weather and representative soils data. Average simulated (hybrid) maize yields with high fertilizer rate (180:60:60 kg N:P2O5:K2O ha−1) ranged from 3.9 t ha−1 to 7.5 t ha−1 across districts, indicating a high disparity in attainable yield potential. By using these values to estimate district-specific attainable yield targets, recommended N fertilizer rates vary between 65 and 208 kg N ha−1, highlighting the importance of developing domain-specific recommendations. Simulations also suggest the potential utility of using weather forecasts in tandem with site and planting date information to adjust fertilizer recommendations on a seasonal basis.  相似文献   

14.
Biological nitrogen (N) fixation (BNF) by legumes in organic cropping systems has been perceived as a strategy to substitute N import from conventional sources. However, the N contribution by legumes varies considerably depending on legumes species, as well as local soil and climatic conditions. There is a lack of knowledge on whether the N contribution of legumes estimated using short-term experiments reflects the long-term effects in organic systems varying in fertility building measures. There is also limited information on how fertilizer management practices in organic crop rotations affect BNF of legumes. Therefore, this study aimed to estimate BNF in long-term experiments with a range of organic and conventional arable crop rotations at three sites in Denmark varying in climate and soils (coarse sand, loamy sand and sandy loam) and to identify possible causes of differences in the amount of BNF. The experiment included 4-year crop rotations with three treatment factors in a factorial design: (i) rotations, i.e. organic with a year of grass-clover (OGC), organic with a year of grain legumes (OGL), and conventional with a year of grain legumes (CGL), (ii) with (+CC) and without (−CC) cover crops, and (iii) with (+M) and without (−M) animal manure in OGC and OGL, and with (+F) mineral fertilizer in CGL. Cover crops consisted of a mixture of perennial ryegrass and clover (at the sites with coarse sand and sandy loam soils) or winter rye, fodder radish and vetch (at the site with loamy sand soil) in OGC and OGL, and only perennial ryegrass in CGL at all sites. The BNF was measured using the N difference method. The proportion of N derived from the atmosphere (%Ndfa) in aboveground biomass of clover grown for an entire year in a mixture with perennial ryegrass and harvested three times during the growing season in OGC was close to 100% at all three sites. The Ndfa of grain legumes in both OGL and CGL rotations ranged between 61% and 95% depending on location with mostly no significant difference in Ndfa between treatments. Cover crops had more than 92% Ndfa at all sites. The total BNF per rotation cycle was higher in OGC than in OGL and CGL, mostly irrespective of manure/fertilizer or cover crop treatments. There was no significant difference in total BNF between OGL and CGL rotations, but large differences were observed between sites. The lowest cumulated BNF by all the legume species over the 4-year rotation cycle was obtained at the location with sandy loam soil, i.e. 224–244, 96–128, and 144–156 kg N ha−1 in OGC, OGL and CGL, respectively, whereas it was higher at the locations with coarse sand and loamy sand soil, i.e. 320–376, 168–264, and 200–220 kg N ha−1 in OGC, OGL and CGL, respectively. The study shows that legumes in organic crop rotations can maintain N2 fixation without being significantly affected by long-term fertilizer regimes or fertility building measures.  相似文献   

15.
The efficient use by crops of nitrogen from manures is an agronomic and environmental issue, mainly in double-annual forage cropping systems linked to livestock production. A six-year trial was conducted for a biennial rotation of four forage crops: oat-sorghum (first year) and ryegrass-maize (second year) in a humid Mediterranean area. Ten fertilization treatments were introduced: a control (without N); two minerals equivalent to 250 kg N ha−1 year−1 applied at sowing or as sidedressing; dairy cattle manure at a rate of 170, 250 and 500 kg N ha−1 year−1 and four treatments where the two lowest manure rates were supplemented with 80 or 160 kg mineral N ha−1 year−1. They were distributed according to a randomized block design with three blocks. The highest N mineral soil content was found in the summer of the third rotation, in plots where no manure was applied. The yearly incorporation of manure reduced, in successive cropping seasons, the amount of additional mineral N needed as sidedressing to achieve the highest yields. Besides, in the last two years, there was no need for mineral N application for the manure rate of 250 kg N ha−1 year−1. This amount always covered the oat-sorghum N uptake. In the ryegrass-maize sequence uptakes were as high as 336 kg N ha−1 year−1. In the medium term, the intermediate manure rate (250 kg N ha−1 year−1) optimizes nutrient recycling within the farming system, and it should be considered in the analysis of thresholds for N of organic origin to be applied to systems with high N demand.  相似文献   

16.
This work was aimed at providing a sustainable approach in the use of manure in irrigated maize crop under Mediterranean climatic conditions. To this end, the effect of continuous annual applications of dairy cattle manure, combined or not with mineral N fertilizer, on the following parameters was studied: grain yield, grain and plant N concentration, N uptake by plant, N use efficiency, and soil N and organic carbon. The experiment was conducted in a furrow-irrigated sandy soil under dry Mediterranean conditions during seven years. Three different rates of cattle manure (CM): 0, 30 and 60 Mg ha−1, were applied each year before sowing. These CM rates were combined with four mineral N rates (0, 100, 200 and 300 kg N ha−1) applied at sidedress.On average, the highest grain yields during the 7 years were obtained with the combination of CM at 30 Mg ha−1 and mineral fertilizer and with CM at 60 Mg ha−1 without mineral fertilizer. With CM at 30 Mg ha−1, mineral fertilizer increased yields during most of the growing seasons, meanwhile with CM at 60 Mg ha−1, there was not any significant effect of the joint application of mineral fertilizer on yields. Overall, best results were obtained exceeding maximum rates according to present legislation. The mean apparent nitrogen recovery (ANR) fraction during the 7 seasons was 29% for N exclusively applied as CM. Overall, increased N rates applied as CM resulted in decreased ANRs. However, ANR with CM at 30 and 60 Mg ha−1 increased during the first two seasons. This increased ANR ascribed to mineralization of residual organic N applied in previous seasons explained the increasing yields observed in the treatments along the study.The application of CM during 7 years increased the soil organic carbon in the first 30 cm by 5.7 and 9.9 Mg ha−1 with CM at 30 and 60 Mg ha−1, respectively, when compared to the initial stock. Thus, manure-based fertilization could be an alternative to mineral fertilizer in order to achieve high maize yields while improving soil quality under dry Mediterranean conditions.  相似文献   

17.
Nitrogen (N) deficiency and weed infestation are main factors limiting yield and yield stability in organic wheat. Organic fertilizers may be used to improve crop performance but off-farm input costs tend to limit profitability. Instead, forage legumes may be inserted into the crop rotation to improve the N balance and to control weed infestation. In opposition to simultaneous cropping, relay intercropping of legumes in organic winter wheat limits resource competition for the legume cover crop, without decreasing the performance of the associated wheat.The aim of this study is to evaluate the effect of spring organic fertilization on the performance of intercropped legumes and wheat, and on services provided by the legume cover.Two species of forage legumes (Trifolium pratense L. and Trifolium repens L.) were undersown in winter wheat (Triticum aestivum L. cv Lona) in five organic fields during two consecutive crop seasons. Organic fertilizer was composed of feather meal and applied on wheat at legume sowing. The cover crop was maintained after the wheat harvest and destroyed just before sowing maize.Spring organic nitrogen fertilization increased wheat biomass (+35%), nitrogen (+49%), grain yield (+40%) and protein content (+7%) whatever the intercropping treatment. At wheat harvest, red clover biomass was significantly higher than white clover one (1.4 vs. 0.7 t ha−1). Nitrogen fertilization decreased forage legume above-ground biomass at wheat harvest, at approximately 0.5 t ha−1 whatever the specie. No significant difference in forage legume biomass production was observed at cover killing. Nitrogen accumulation in legume above-ground tissues was significantly higher for white clover than for red clover. Both red and white clover species significantly decreased weed infestation at this date. Nitrogen fertilization significantly increased weed biomass whatever the intercropping treatment and decreased nitrogen accumulation in both clover species (−12%).We demonstrated that nitrogen fertilization increased yield of wheat intercropped with forage legume while the performance of legumes was decreased. Legume growth was modified by spring fertilization whatever the species.  相似文献   

18.
The Nitrates Directive (91/676/EEC, Anonymous, 1991) was developed in Europe to limit environmental threats from intensive livestock farming and N fertilizer applications to crops. It imposed several rules on farmers and public bodies, one of which was nutrient fertilization plan adoption. Here we use results from the Tetto Frati (Northern Italy) Long-Term Experiment to verify the terms and coefficients in the official Italian guidelines and evaluate the limitations imposed to organic fertilization amounts. For this purpose, we mined long-term experimental data of crop yield, N uptake, N use efficiency, and soil organic matter content from miscellanea cropping systems fertilized with farmyard manure (FYM) and bovine slurry (SLU), typical of a dairy farm in Northern Italy. N fertilization efficiency indicators (Removal to Fertilizer ratio, Apparent Recovery and Nitrogen Fertilizer Replacement Value) indicated that in the long run, FYM behaved similarly to urea, and better than SLU. Even N supply rates as high as 250 kg N ha−1 were justified by high rates of crop removal. In fact, among the terms of the mass-balance equation, SOM mineralization was found to be most relevant, followed by meadow rotation residual effects. We conclude that a revised Nitrates Directives application scheme could be more relaxed in its application limit of manure-N, but should be more ambitious in setting efficiency coefficients for manure fertilization.  相似文献   

19.
The expansion of biogas feedstock cultivation may affect a number of ecosystem processes and ecosystem services, and temporal and spatial dimensions of its environmental impact are subject to a critical debate. However, there are hardly any comprehensive studies available on the impact of biogas feedstock production on the different components of nitrogen (N) balance. The objectives of the current study were (i) to investigate the short-term effects of crop substrate cultivation on the N flows in terms of a N balance and its components (N fertilization, N deposition, N leaching, NH3 emission, N2O emission, N recovery in harvested product) for different cropping systems, N fertilizer types and a wide range of N rate, and (ii) to quantify the N footprint of feedstock production in terms of potential N loss per unit of methane produced. In 2007/08 and 2008/09, two field experiments were conducted at two sites in Northern Germany differing in soil quality, where continuous maize (R1), maize–whole crop wheat followed by Italian ryegrass as a double crop (R2), and maize–grain wheat followed by mustard as a catch crop (R3) were grown on Site 1 (sandy loam), and R1 and a perennial ryegrass ley (R4) at Site 2 (sandy soil rich in organic matter). Crops were supplied with varying amounts of N (0–360 kg N ha−1, ryegrass: 0–480 kg N ha−1) supplied as biogas digestate, cattle slurry, pig slurry or calcium-ammonium nitrate (CAN).Mineral-N fertilization of maize-based rotations resulted in negative N balances at N input for maximum yield (Nopt), with R2 having slightly less negative balances than R1 and R3. In contrast, N balances were close to zero for cattle slurry or digestate treatments. Thus, trade-offs between substrate feedstock production and changes of soil organic matter stocks have to be taken into consideration when evaluating biogas production systems. Nitrogen losses were generally dominated by N leaching, whereas for the organically fertilized perennial ryegrass ley the ammonia emission accounted for the largest proportion. Nitrogen balance of the ryegrass ley at Nopt was close to zero (CAN) or highly positive (cattle slurry, digestate). Nitrogen footprint (NFP) was applied as an eco-efficiency measure of N-loss potential (difference of N input and N recovery) related to the unit methane produced. NFP ranged between −11 and +6 kg N per 1000 m3 methane at Nopt for maize-based rotations, without a significant impact of cropping system or N fertilizer type. However, for perennial ryegrass ley, NFP increased up to 65 kg N per 1000 m3. The loose relation between NFP and observed N losses suggests only limited suitability for NFP.  相似文献   

20.
Based on the carboxylation kinetics of the C3 and C4 photosynthetic pathway, it is anticipated that C3 crops may be favored over C4 weeds as atmospheric CO2 increases. In the current study, tomato (Lycopersicon esculentum), a C3 crop species, was grown at ambient (~400 μmol mol−1) and enhanced carbon dioxide (~800 μmol mol−1) with and without two common weeds, lambsquarters (Chenopodium album), a C3 weed, and redroot pigweed (Amaranthus retroflexus), a C4 weed, from seedling emergence until mutual shading of crop-weed leaves. Because growth temperature is also likely to change in concert with rising CO2, the experiment was repeated at day/night temperatures of 21/12 and 26/18 °C. For both day/night temperatures, elevated CO2 exacerbated weed competition from both the C3 and C4 weed species. A model based on relative leaf area following emergence was used to calculate potential crop losses from weeds. This analysis indicated that potential crop losses increased from 33 to 55% and from 32 to 61% at the 21/12 and 26/18 °C day/night temperatures, for ambient and elevated CO2, respectively. For the current study, reductions in biomass and projected yield of tomato appeared independent of the photosynthetic pathway of the competing weed species. This may be due to inherent variation and overlap in the growth response of C3 and C4 species, whether weeds or crops, to increasing CO2 concentration. Overall, these results suggest that as atmospheric CO2 and/or temperature increases, other biological interactions, in addition to photosynthetic pathway, deserve additional consideration in predicting competitive outcomes between weeds and crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号