首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Marek's disease virus (MDV) vaccines of serotypes 1 and 2 administered in 18-day-old embryonated eggs induced better protection against post-hatch challenge at 3 days with virulent MDV than vaccines given at hatch. Embryonal vaccination with a polyvalent vaccine containing equal quantities of serotypes 1 and 2 of MDV and serotype 3 virus (turkey herpesvirus, HVT) was also significantly more effective than post-hatch vaccination. These and earlier results indicate that protective efficacy of single or combined Marek's disease vaccine serotypes against post-hatch challenge at 3 days can be substantially improved if the vaccines are injected into 18-day embryos rather than at hatch. Injection of vaccines of serotypes 1 or 2 into embryonated eggs or hatched chicks did not cause detectable gross or microscopic lesions in chickens. Vaccine viruses of serotypes 1 and 2 could be isolated from spleen cells of chickens 1 week post-vaccination, and the titer of recoverable viruses was higher in chickens that received the vaccines at the 18th day of embryonation than in chickens vaccinated at hatch. Although embryo vaccination with HVT usually provided better protection than post-hatch vaccination against early post-hatch challenge with variant pathotypes of MDV, the protection was poor regardless of vaccination protocol. If challenge with variant pathotypes of MDV was delayed until embryonally or post-hatch HVT-vaccinated chickens were 21 days of age, protection of chickens by HVT was not enhanced. Thus, resistance induced by embryonal vaccination with HVT was qualitatively similar to that induced by post-hatch vaccination with this virus.  相似文献   

2.
Avian metapneumovirus (aMPV) is an important cause of disease in chickens and turkeys. As infection can occur early in life and spread of the virus throughout a flock is rapid, an early onset of immunity post-vaccination would be advantageous. We have studied the serological immune response and the onset of protective immunity of an aMPV vaccine delivered to chickens via the in ovo route compared to oculonasal delivery at day old. A 1000-fold lower dose delivered in ovo to chicken specific pathogen free (SPF) embryos, than vaccination at day old, provided a significantly higher antibody response. In the presence of maternally derived antibody (MDA), there was no significant difference in antibody response between the vaccination routes. However, the onset of immunity (OOI) for the vaccine delivered to MDA positive chicken embryos was 5 days post-hatch in comparison to 8 days post-hatch for the same dose of vaccine given at day old indicating that chicks would be protected against disease earlier in the field if vaccinated by the in ovo route. In further experiments the OOI for a turkey vaccine delivered to MDA positive turkey embryos was shown to be 8 days post-hatch.  相似文献   

3.
J M Sharma 《Avian diseases》1985,29(4):1155-1169
Studies with specific-pathogen-free chickens revealed that chicks hatching from eggs inoculated at the 18th day of embryonation with infectious bursal disease (IBD) vaccine viruses of low virulence (isolates TC-IBDV and BVM-IBDV) developed antibody against IBD virus (IBDV) and resisted challenge with virulent IBDV at 3 weeks of age or older. Embryo vaccination did not adversely affect hatchability of chicks or survival of hatched chicks. Chicks embryonally vaccinated with TC-IBDV had transient histologic lesions in the bursa of Fabricius at hatch. Similar but milder lesions were also noted in chickens that received TC-IBDV at hatch. The level of protection following embryo vaccination with TC-IBDV and BVM-IBDV was similar to that following vaccination with the same vaccines at hatch. Vaccine viruses of moderate virulence (isolates BV-IBDV and 2512-IBDV) were not suitable as vaccines in embryos lacking maternal antibody to IBDV, because the vaccinated chicks developed acute IBD after hatch. Isolate 2512-IBDV was not pathogenic for embryos bearing maternal antibody to IBDV. Maternal antibody against IBDV interfered with efficacy of embryo vaccination with BVM-IBDV but not with 2512-IBDV. Embryo vaccination with a mixture of vaccines against IBD and Marek's disease resulted in protection of hatched chicks against challenge with virulent IBDV and Marek's disease virus.  相似文献   

4.
Infection of maternal, antibody-negative chickens with chicken infectious anemia virus (CIAV) can cause clinical disease, while infection after maternal antibodies wane often results in subclinical infection and immunosuppression. Currently, vaccines are not available for vaccination in ovo or in newly hatched chickens. Development of CIAV vaccines for in ovo use depends on the ability to generate vaccines that do not cause lesions in newly hatched chicks and that can induce an immune response regardless of maternal immunity. Immune complex (IC) vaccines have been successfully used for control of infectious bursal disease, and we used a similar approach to determine if an IC vaccine is feasible for CIAV. Immune complexes were prepared that consisted of 0.1 ml containing 10(5.4) tissue culture infective dose 50% of CIA-1 and 0.1 ml containing 10 to 160 neutralizing units (IC Positive [ICP]10 to ICP160), in which one neutralizing unit is the reciprocal of the serum dilution required to protect 50% of CU147 cells from the cytopathic effects caused by CIA-1. Virus replication was delayed comparing ICP80 and ICP160 with combinations using negative serum (IC Negative [ICN]80 or ICN160). In addition, the number of birds with hematocrit values <28% were decreased with ICP80 or ICP160 compared to ICN80 or ICN160. Seroconversion was delayed in ICP80 and ICP160 groups. To determine if ICP80 or ICN 160 protected against challenge, we vaccinated maternal, antibody-free birds at 1 day of age and challenged at 2 wk or 3 wk of age with the 01-4201 strain. Both ICP80 and ICP160 protected against replication of the challenge virus, which was measured using differential quantitative PCR with primers distinguishing between the two isolates. Thus, in principle, immune complex vaccines may offer a method to protect newly hatched chicks against challenge with field virus. However, additional studies using maternal, antibody-positive chicks in combination with in ovo vaccination will be needed to determine if immune complex vaccines will be useful to protect commercial chickens.  相似文献   

5.
Vaccination with turkey herpesvirus (HVT) of 18-day-old chicken embryos from a commercial source or from a cross (15 X 7) of two inbred lines induced better protection against early post-hatch challenge with virulent Marek's disease virus (MDV) than vaccination at hatch, despite the presence in embryos of maternally derived antibodies to HVT or to HVT and MDV. However, 50%-protective-dose (PD50) assays revealed that maternal antibodies in embryos reduced vaccine efficacy. The PD50 assays were conducted by vaccinating 15 X 7 embryos with serial dilutions of HVT at the 18th day of incubation. Embryonally vaccinated and unvaccinated chicks were challenged with MDV on the day of hatch. In the absence of maternal antibodies, the PD50 values in plaque-forming units for cell-associated and cell-free HVT were 57 and 328, respectively. In the presence of maternal antibodies, PD50 values for cell-associated and cell-free HVT were 105 and greater than 4,000, respectively.  相似文献   

6.
The B1 strain of Newcastle disease virus (NDV-B1), which is nonpathogenic for newly hatched chickens, killed embryos when it was used to inoculate chicken eggs at embryonation day 18. Treatment of NDV-B1 with an alkylating agent, ethylmethane sulfonate (EMS) markedly reduced the pathogenicity of the virus for 18-day-old chicken embryos. Eggs inoculated with the modified virus (NDV-B1-EMS) hatched, and the virus was isolated from lungs and spleen of 1-day-old chickens. The hatched chickens developed antibody to NDV and were protected against challenge exposure (at 4 weeks of age) with a highly virulent GB-Texas strain of NDV. Presence of maternal antibody to NDV in embryonating eggs did not influence the protective ability of NDV-B1-EMS, which also induced protective immunity when administered to 4-week-old chickens. The 50% protective dose of NDV-B1-EMS in maternal antibody-negative and -positive embryos was calculated to be 10.77 and 17.70 embryo 50% lethal doses, respectively. Results of the study indicated that NDV-B1-EMS may be used as an embryo vaccine to protect chickens against Newcastle disease.  相似文献   

7.
J M Sharma 《Avian diseases》1987,31(3):570-576
Several oncogenic and non-oncogenic isolates of Marek's disease virus (MDV) were inoculated into embryonated eggs on embryonation day (ED) 16 to 18, and embryos or chicks hatching from inoculated eggs were examined for infectious virus and viral internal antigen (VIA) in lymphoid organs. There was no evidence of extensive replication of MDV in any of the embryonic tissues examined. Levels of VIA peaked 4-5 days after chicks hatched. This indicated that MDV remained inactive during embryonation and did not initiate pathogenic events until chicks hatched. Because HVT replicated rapidly in the embryo but MDV did not, in ovo inoculation of HVT simultaneously with oncogenic MDV or several days after MDV resulted in significant protection (P less than 0.025) of hatched chicks against Marek's disease (MD). Little protection was obtained if HVT was given simultaneously with MDV or after MDV to chicks already hatched. The relative susceptibility of the embryo to extensive replication of the vaccine virus but not the challenge virus apparently accounted for protection against MD in chicks hatching from dually infected eggs.  相似文献   

8.
The immunologists' debt to the chicken   总被引:3,自引:0,他引:3  
The immune system of the chicken is an invaluable model for studying basic immunology and has made seminal contributions to fundamental immunological principles. Graft versus host responses and the key role of lymphocytes in adaptive immunity were first described in work with chicken embryos and chickens. 2. Most notably, the bursa of Fabricius provided the first substantive evidence that there are two major lineages of lymphocytes. Bursa-derived lymphocytes, or B cells, make antibodies while thymus-derived, or T cells, are involved in cell-mediated immune responses. 3. Gene conversion, the mechanism used by the chicken to produce its antibody repertoire, was first described in the chicken and requires the unique environment of the bursa. Subsequently it has been shown that some mammals also use gene conversion. 4. The chicken's Major Histocompatibility Complex (MHC), the first non-mammalian MHC to be sequenced, is minimal, compact and some 20-fold smaller than that of mammals. Uniquely, the chicken MHC is strongly associated with resistance to infectious diseases. 5. The first attenuated vaccine was developed by Louis Pasteur against a chicken pathogen, fowl cholera, and the first vaccine against a natural occurring cancer agent, Marek's disease virus, was developed for the chicken. 6. Vaccination of chick embryos on the 18th d of incubation, another breakthrough using chickens, provides protection early after hatching. In ovo vaccination now is widely practised by the poultry industry. 7. Evidence that widespread and intensive vaccination can lead to increased virulence with some pathogens, such as Marek's disease virus and infectious bursal disease virus, was first described with chicken populations. It warns of the need to develop mo resustainable vaccination strategies in future and provides useful lessons for other species, including in the human population. 8. Recombinant DNA technologies now provide the opportunity for the rational design of new vaccines. Such vaccines could contain the protective immunogenic elements from several pathogens and immunomodulatory molecules to direct and enhance immune responses so providing improved protection. The important thing will be to design vaccines that are sustainable and do not drive pathogens to ever-increasing virulence.  相似文献   

9.
In ovo vaccination against Marek's disease virus and infectious bursal disease virus (IBDV) in commercial broilers in the United States is common. Little information exists as to the safety and efficacy of intermediate IBDV vaccines given in ovo. Experiments were initiated to determine the safety and efficacy of three commercially available live intermediate IBDV vaccines by in ovo route. Commonly used vaccines were given at 18 days of embryonation to specific-pathogen-free (SPF) broiler embryos (first and second study) or to commercial broiler embryos (third study) that had maternal antibody against IBDV. When any of the antigenic standard vaccines was given at full dose to SPF embryos, embryonic and 3-wk posthatch mortality increased. Vaccines also caused significant microscopic lesions in the bursa of Fabricius at 1 and 3 wk posthatch. In contrast, there was no adverse effect on embryonic or posthatch mortality when vaccines were given at half dose to SPF or commercial broiler embryos. However, significant microscopic lesions were evident at 1 and 3 wk posthatch in the bursae of SPF embryos given the vaccines at half dose. When vaccines were given at half dose to commercial broiler embryos, lesions were evident at 1 but not 3 wk of age. In the third study, in ovo vaccinated chickens were challenged with either a virulent standard (APHIS) or antigenic variant (variant E) IBDV virus at 3 wk of age. All vaccines produced at least 87% protection against the standard and 60% protection against the variant challenge IBDV, as measured by bursal weight to body weight ratios. This study was the first to examine the safety and efficacy of the three commonly used intermediate IBDV vaccines given in ovo in protection against standard and antigenic variant IBDV challenge viruses.  相似文献   

10.
Chicken eggs at embryonation day (ED) 18 or newly hatched chicks were inoculated with turkey herpesvirus (HVT), Marek's disease virus (MDV), or virus-free diluent and, at intervals after inoculation, tissue homogenates of virus-exposed and virus-free chickens or chicken embryos were examined for interferon (IFN) activity. Homogenates of lung, thymus and spleen specimens from chickens given HVT at ED 18 had IFN activity. Activity of IFN in the lungs was studied further. Homogenates of lung specimens from chickens exposed to HVT at hatching also had IFN activity, although the concentration of IFN was lower than that in chickens given HVT at ED 18. The pathogenic isolates of MDV (JM-MDV), but not the attenuated (Md11/75C-MDV) or nonpathogenic (SB1-MDV) isolates, inoculated at ED 18 also induced high lung IFN activity. Exposure to a combination of HVT and SB1-MDV induced IFN activity comparable with that in chickens given HVT alone. The IFN activity in homogenates of lung specimens from virus-exposed chickens was species specific and heat and pH stable, but was destroyed by trypsin treatment. Occasionally, low IFN activity also was detected in homogenates of tissue specimens from virus-free chickens or chicken embryos. This IFN activity could have been produced constitutively or may have been induced by substances (inducers) in the environment.  相似文献   

11.
The effect of tuftsin of embryo and post-hatch vaccination with NDV-F was studied. The embryo vaccination with NDV-F resulted in more number of dead-in-shell embryos. To overcome this problem, the vaccine was treated separately with ethyl methane sulfate (EMS) and 5-fluorouracil (5-FU) and administered. Treating the vaccine with 5-FU resulted in better hatchability as compared to EMS treatment. In embryo, NDV antibody titres increased upto 2 weeks of age and declined thereafter, whereas in post-hatch vaccination, the antibody titre increased from second to fourth week of age and declined thereafter. The seroconversion was better when the vaccine was given along with tuftsin either to embryos or chicks (post-hatch vaccination) as compared to those vaccinated without tuftsin. Moreover, the percentage of hatchability was more in tuftsin administered groups. It was found that embryo vaccination can ensure definite protection during the early life of the chicks despite the presence of maternal antibodies. In cases where breeder vaccinations do not result in concomitant transfer of antibody to progeny chicks, embryo vaccination would give only neonatal resistance. During the later stages, embryo vaccination did not confer any advantage over post-hatch vaccination.  相似文献   

12.
本试验进行了三批鸡的免疫研究。第一批试验检测不同类型新城疫疫苗在不同母源抗体水平(高和低)的鸡体上的免疫效果。结果显示,在高母源抗体时免疫,V4组和油乳剂灭活苗级抗体水平表现较低,而在低母源抗体时免疫,几种疫苗的抗体水平上升得很快,特别Lasota-克隆30组最明显,而油乳剂灭活苗组的抗体水平保持最长。根据此结果而制定了不同的免疫程序,进行了第二、第三批免疫试验,并分别在45天龄及70天龄时进行强  相似文献   

13.
Control of infectious bursal disease virus (IBDV) by vaccination is important for poultry production worldwide. Two vaccines, an IBDV immune complex (ICX) vaccine and an IBDV-2512 vaccine, were administered at 100 mean embryo infectious dose to specific-pathogen-free 18-day-old broiler embryos in ovo. At 3, 6, 9, 15, and 21 days post in ovo vaccination (PIOV), bursa, spleen, and thymus tissues were collected and analyzed for virus protein by antigen capture chemiluminescent enzyme-linked immunosorbent assay (ELISA). Chicks were bled and antibody titers were determined by the antibody ELISA. At 21 days PIOV, chickens were challenged with a 1:500 dilution of an antigenic standard IBDV strain. At 28 days PIOV, birds were euthanatized and bursa weight:body weight ratios were determined. Embryos vaccinated with either vaccine exhibited 92% hatchability; however, within 1 wk of hatch, birds vaccinated with IBDV-2512 showed 56% mortality, whereas those given IBDV-ICX had only 3.2% mortality. Both IBDV-ICX and IBDV-2512 vaccines were detected in bursa, spleen, and thymus at day 3 PIOV. A 5-day delay in virus replication was observed with IBDV-ICX vaccine. By day 15 PIOV, the IBDV-ICX was no longer detectable in the bursa and spleen but persisted in the thymus. The IBDV-2512 vaccine persisted in the spleen and thymus on day 15 PIOV. By day 21 PIOV, neither vaccine virus was detected in any lymphoid organ. This assay can be useful in the early detection of vaccine virus in the tissues of chickens vaccinated via the in ovo route. Both vaccines caused bursal atrophy at all times PIOV. The IBDV-2512 caused splenomegaly at day 6 PIOV, whereas splenomegaly was not seen in IBDV-ICX-vaccinated birds until day 9 PIOV. Thymus atrophy was observed in IBDV-2512-vaccinated chicks from day 3 PIOV, whereas this occurred on day 15 PIOV in IBDV-ICX-vaccinated birds. Bursa weight: body weight ratios in IBDV-ICX-vaccinated unchallenged and vaccinated challenged birds were not different (P < 0.05).  相似文献   

14.
Subpopulations of T-cells, B-cells, macrophages and ellipsoid-associated reticular cells (EARC) could be demonstrated by immunohistochemical staining early in the development of chicken spleen. However, the typical structures of the spleen, such as the peri-arteriolar lymphoid sheath (PALS) and the ellipsoids with their surrounding ring of macrophages, were only formed around embryonic day (ED) 20. These structures and especially the B-cell compartment, i.e., the peri-ellipsoid lymphoid sheath (PELS) gradually matured during the first week posthatch.

Therefore, we analysed at what age broiler chickens could generate a humoral response against the thymus-dependent antigen bovine serum albumin (BSA). Chickens were immunised in ovo (ED16 and ED18) and at 1, 7 and 12 days of age and subsequent BSA-specific immunoglobulin (Ig) M and IgG responses were measured up to 10 days postimmunisation (DPI). No major differences were observed in the relative growth rates, while hatchability was only slightly reduced. Only in chicks immunised on 12 days of age, IgM and IgG responses were high with a normal kinetic pattern. In chicks immunised on 7 days of age, responses were just detectable, but they were absent in chicks immunised in ovo and on the day of hatching (Day 1).

In a subsequent experiment, 1-, 7- and 12-day-old chicks were BSA-immunised and Ig responses were measured for a longer period up to the age of 28 days. The IgG response of chicks immunised at 1 day of age was lower and occurred later (from 28 DPI) than the response of chicks immunised at 7 and 14 days of age (from 14 DPI). It was not increased by a booster immunisation on 29 days of age, in contrast to the response of chicks immunised at 7 and 14 days of age. These findings indicate that vaccination at 1 day of age does not activate the B-cell response resulting in antibody production and support the idea that the immune function of the late embryonic and neonatal chickens is not entirely developed due to the incomplete structural organisation of their secondary immune organs.  相似文献   


15.
Not much is known about IBDV-pathogenesis and immune mechanisms following in ovo vaccination. In this study, we compared the immunopathogenesis of an intermediate IBDV-vaccine in post-hatch- and in ovo-inoculated chickens. In ovo-vaccinated birds recovered significantly faster from lesions of the bursa of Fabricius than post-hatch vaccinated (P<0.05). A significant accumulation of intrabursal CD8(+) T cells was observed in post-hatch but not in in ovo-vaccinated chickens (P<0.05). The innate immunity was comparable between in ovo- and post-hatch-vaccinated groups as indicated by comparable intrabursal macrophage accumulation and intrabursal IBDV-clearance. Overall, our observations indicate that IBDV in ovo vaccination may be advantageous over post-hatch. In ovo-vaccinated birds recover faster from bursa lesions and exhibit similar protection against challenge in comparison to post-hatch vaccinated.  相似文献   

16.
鸡马立克氏病胚胎免疫的研究   总被引:1,自引:1,他引:0  
用MD京CV1988/Rispens冷冻疫苗对孵化至18日龄的鸡胚进行免疫接种,试验结果表明:胚胎免疫不影响孵化率,对鸡的生长发育也无影响,与1日龄免疫的雏鸡比较,可明显提高对MD强毒攻击的抵抗力。  相似文献   

17.
An enzyme-linked immunosorbent assay (ELISA) was applied to evaluate the antibody response of commercial White Leghorn chickens to vaccination against Marek's disease (MD) at hatch (day 0) with serotype-1 (Rispens), -2 (SB-1), or -3 (turkey herpesvirus, HVT) vaccine virus and to challenge on day 21 with MD virus. Antigens for the test were whole chicken embryo fibroblast cells infected with Rispens, SB-1, or HVT. The chickens were progeny of stock that had been vaccinated with HVT, and on day 21 the nonvaccinated group had higher levels of maternal antibodies to HVT than to other antigens (P < 0.05). Only SB-1 vaccine had induced antibodies by day 21, and this was detected only against homologous antigens. On day 49, all three vaccines had induced higher levels of antibodies to homologous than to heterologous antigens. Marek's Disease virus (MDV) induced antibodies to all three antigens, but challenging vaccinated chicks did not significantly increase levels of antibodies on day 81 to any of the three antigens. It was concluded that an ELISA using whole cells as antigens would have potential value for monitoring the antibody response induced by MD vaccines and virulent MDV.  相似文献   

18.
We used in ovo technology to protect chickens against multiple diseases by inoculating vaccines containing mixtures of live viral agents. A single in ovo injection of a vaccine containing serotypes 1, 2, and 3 of Marek's disease virus (MDV), a vaccine strain of serotype 1 infectious bursal disease virus (IBDV), and recombinant fowl pox vaccine with HN and F genes of Newcastle disease virus (rFP-NDV) induced protection against virulent MDV, IBDV, Newcastle disease virus, and fowl poxvirus. The multiple-agent vaccine induced specific antibodies against the viral agents present in the mixture and did not adversely affect the survival of hatched chickens. Inoculation of a vaccine containing serotypes 1, 2, and 3 of MDV and IBDV did not affect hatchability of eggs, although the addition of rFP-NDV to the mixture reduced hatchability by 23%-26%. In ovo vaccination with a vaccine containing MDV and IBDV vaccine viruses did not exacerbate the inhibitory effect of individual viral agents on humoral and cellular immune competence.  相似文献   

19.
Chickens were vaccinated with the herpesvirus of turkeys (HVT) at embryonation day 17 or 18 or at hatch and various responses of the 2 vaccinated groups were compared. In embryo-vaccinated chickens, HVT titers were high in the lungs before HVT could be isolated from other tissues. Seemingly, embryos acquired infection via the respiratory tract. In hatch-vaccinated chickens, HVT was first isolated from spleen and then from other tissues. Titers of recoverable HVT in tissues of embryo-vaccinated chickens were higher than in those of hatch-vaccinated chickens, particularly during the 1st week of age. Anti-HVT antibodies and natural killer cell reactivity in spleen effector cells were comparably increased in both vaccinated groups. Embryo vaccination with HVT did not cause progressive lesions, reduction in body weight gain, or impairment of humoral and cellular immune functions. Seemingly, HVT can be used safely as an embryonal vaccine in chickens.  相似文献   

20.
Protective immunity against avian influenza (AI) can be elicited in chickens in a single-dose regimen by in ovo vaccination with a replication-competent adenovirus (RCA)-free human adenovirus serotype 5 (Ad)-vector encoding the AI virus (AIV) hemagglutinin (HA). We evaluated vaccine potency, antibody persistence, transfer of maternal antibodies (MtAb), and interference between MtAb and active in ovo or mucosal immunization with RCA-free recombinant Ad expressing a codon-optimized AIV H5 HA gene from A/turkey/WI/68 (AdTW68.H5(ck)). Vaccine coverage and intrapotency test repeatability were based on anti-H5 hemagglutination inhibition (HI) antibody levels detected in in ovo vaccinated chickens. Even though egg inoculation of each replicate was performed by individuals with varying expertise and with different vaccine batches, the average vaccine coverage of three replicates was 85%. The intrapotency test repeatability, which considers both positive as well as negative values, varied between 0.69 and 0.71, indicating effective vaccination. Highly pathogenic (HP) AIV challenge of chicken groups vaccinated with increasing vaccine doses showed 90% protection in chickens receiving > or = 10(8) ifu (infectious units)/bird. The protective dose 50% (PD50) was determined to be 10(6.5) ifu. Even vaccinated chickens that did not develop detectable antibody levels were effectively protected against HP AIV challenge. This result is consistent with previous findings ofAd-vector eliciting T lymphocyte responses. Higher vaccine doses significantly reduced viral shedding as determined by AIV RNA concentration in oropharyngeal swabs. Assessment of antibody persistence showed that antibody levels of in ovo immunized chickens continued to increase until 12 wk and started to decline after 18 wk of age. Intramuscular (IM) booster vaccination with the same vaccine at 16 wk of age significantly increased the antibody responses in breeder hens, and these responses were maintained at high levels throughout the experimental period (34 wk of age). AdTW68.H5(ch)-immunized breeder hens effectively transferred MtAb to progeny chickens. The level of MtAb in the progenies was consistent with the levels detected in the breeders, i.e., intramuscularly boosted breeders transferred higher concentrations of antibodies to the offspring. Maternal antibodies declined with time in the progenies and achieved marginal levels by 34 days of age. Chickens with high maternal antibody levels that were vaccinated either in ovo or via mucosal routes (ocular or spray) did not seroconvert. In contrast, chickens without MtAb successfully developed specific antibody levels after either in ovo or mucosal vaccination. These results indicate that high levels of MtAb interfered with active Ad-vectored vaccination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号