首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary

Cows affected with bovine spongiform encephalopathy (BSE) display chronic neurological signs consisting of behavioural changes, abnormalities of posture and movement, and/or hyperaesthesia. At present, there are no laboratory test available to diagnose BSE in the live animal. In this article, we describe the post‐mortem diagnostic examination of brains from BSE‐suspected cattle as currently performed at ID‐Lelystad. The routine laboratory diagnosis of BSE consists of histopathological examination of the brain and detection of the modified prion protein, PrPBSE, in brain tissue. These tests, however, have the disadvantage of being laborious and time consuming, so that results are available only after several days.

Recently, at ID‐Lelystad a new post‐mortem test has been developed that enables screening of larger volumes of brain samples for PrPBSE within 1 day. This BSE test is especially suited for slaughterline monitoring. A preliminary validation study has shown that both sensitivity and specificity are 100% compared to the gold diagnostic standard of histopathology.  相似文献   

2.
Transmissible spongiform encephalopathies (TSEs) or prion diseases are unique disorders that are not caused by infectious micro-organisms (bacteria or fungi), viruses or parasites, but rather seem to be the result of an infectious protein. TSEs are comprised of fatal neurodegenerative disorders affecting both human and animals. Prion diseases cause sponge-like degeneration of neuronal tissue and include (among others) Creutzfeldt–Jacob disease in humans, bovine spongiform encephalopathy (BSE) in cattle and scrapie in sheep. TSEs are characterized by the formation and accumulation of transmissible (infectious) disease-associated protease-resistant prion protein (PrPSc), mainly in tissues of the central nervous system. The exact molecular processes behind the conversion of PrPC into PrPSc are not clearly understood. Correlations between prion protein polymorphisms and disease have been found, however in what way these polymorphisms influence the conversion processes remains an enigma; is stabilization or destabilization of the prion protein the basis for a higher conversion propensity? Apart from the disease-associated polymorphisms of the prion protein, the molecular processes underlying conversion are not understood. There are some notions as to which regions of the prion protein are involved in refolding of PrPC into PrPSc and where the most drastic structural changes take place. Direct interactions between PrPC molecules and/or PrPSc are likely at the basis of conversion, however which specific amino acid domains are involved and to what extent these domains contribute to conversion resistance/sensitivity of the prion protein or the species barrier is still unknown.  相似文献   

3.
It has been suggested that exposure of cattle to the ectoparasiticide Phosmet in the 1980s caused a conformational change in the cellular prion protein (PrPC) to form the BSE prion (PrPSC), which initiated the epidemic of bovine spongiform encephalopathy (BSE).Recombinant mouse cellular prion (r[mouse]PrPC) was exposed to the organophosphorus pesticide Phosmet in vitro and the conformation of the prion before and after exposure was monitored using circular dichroism (CD) spectroscopy, utilizing synchrotron radiation at the Council for the Central Laboratory of the Research Councils (CLRC) facilities at Daresbury, UK. Metabolites of Phosmet, generated in situ by rat microsomes, were investigated in the same way, to determine whether they might initiate the conformational change due to their high chemical reactivity.Our studies showed that exposure of r[mouse]PrPC to Phosmet or microsomes-generated metabolites of Phosmet did not result in the conformational change in the protein from -helix to -pleated sheet that is characteristic of the PrPC to PrPSC conversion and, therefore, Phosmet is very unlikely to have initiated the BSE epidemic by a simple direct mechanism of conformational change in the prion protein.  相似文献   

4.
L-type bovine spongiform encephalopathy (L-BSE) is an atypical form of BSE that is transmissible to cattle and several lines of prion protein (PrP) transgenic mice, but not to wild-type mice. In this study, we examined the transmissibility of sheep-passaged L-BSE prions to wild-type mice. Disease-associated prion protein (PrPSc) was detected in the brain and/or lymphoid tissues during the lifespan of mice that were asymptomatic subclinical carriers, indicating that wild-type mice were susceptible to sheep-passaged L-BSE. The morphological characteristics of the PrPSc of sheep-passaged L-BSE included florid plaques that were distributed mainly in the cerebral cortex and hippocampus of subsequent passaged mice. The PrPSc glycoform profiles of wild-type mice infected with sheep-passaged L-BSE were similar to those of the original isolate. The data indicate that sheep-passaged L-BSE has an altered host range and acquired transmissibility to wild-type mice.  相似文献   

5.
A feature of transmissible spongiform encephalopathies is the accumulation of infectious prion proteins (PrPSc), which are formed by the conversion of physiological prion proteins (PrPC). As PrPC, which is modified posttranslationally with various types of glycoproteins, serves as the substrates for PrPSc conversion, various PrPC subtypes may play a role in the formation of PrPSc and species-specific transmission; the cattle disease BSE is transmissible naturally to humans, but the sheep disease scrapie is not. To reveal new mechanisms modulating prion conversion, we analyzed the PrPC profiles by determining the differential PrPC protein solubilities in the anionic and nonionic detergents N-lauroylsarcosine, N-octyl-β-d-glucopyranoside, CHAPS and deoxycholic acid. We compared the resulting solubility profiles of human PrPC with the solubility profiles of PrPC from sheep and cattle. The PrPC subtypes were differentially soluble. However, non-glycosylated PrPC from cattle and human was found explicitly in the insoluble fraction, while non-glycosylated ovine PrPC was detected in the soluble fraction. These findings indicate the existence of low-solubility PrPC phenotypes in cattle and humans.  相似文献   

6.
The transmissible spongiform encephalopathies of domesticated animals, scrapie in-sheep and bovine spongiform encephalopathy (BSE), and transmissible mink encephalopathy are more than a scientific curiosity; under certain circumstances their impact on commercial activities can be calamitous. Knowledge of their causation and pathogenesis is still rudimentary, but many consider than an unconventional agent, the prion (a brain protein, PrP), that is not associated with nucleic acid is involved in both. Others believe that conventional viruses, which replicate by virtue of their nucleic acid-defined genes, are involved in the causation and progression of the encephalopathies but that technical problems have prevented their identification. Others postulate even more exotic causative agents. While this paper will particularly address the possibility of a viral aetiology for these diseases, it is also emphasized that our knowledge of the state of the immune system in animals with encephalopathy needs broadening. There are remarkable gaps in our knowledge of the histopathology of these diseases, particularly the nature of the characteristic vacuoles. Much further work is needed on the biochemical changes in the brain and the serum, particularly of the latter as it could lead to an additional means of recognizing clinical cases without waiting for the animal to die with subsequent examination of the brain for characteristic lesions and the presence of protease-K-resistant PrP.Abbreviations AI artificial insemination - BSE bovine spongiform encephalopathy - CJD Creutzfeldt-Jakob disease - ET embryo transfer - GSSD Gerstmann-Sträussler-Scheinker disease - HDV hepatitis delta virus - MCF mink cell focus - PK proteinase K - PrP prion protein - PrPSc scrapie prion protein - PrP-C the proteinase-K sensitive homologue in normal brain - SAF scrapie-associated fibrils - TME transmissible mink encephalopathy  相似文献   

7.
Scrapie and bovine spongiform encephalopathy are fatal neurodegenerative diseases caused by the accumulation of a misfolded protein (PrPres), the pathological form of the cellular prion protein (PrPC). For the last decades, prion research has greatly progressed, but many questions need to be solved about prion replication mechanisms, cell toxicity, differences in genetic susceptibility, species barrier or the nature of prion strains. These studies can be developed in murine models of transmissible spongiform encephalopathies, although development of cell models for prion replication and sample titration could reduce economic and timing costs and also serve for basic research and treatment testing. Some murine cell lines can replicate scrapie strains previously adapted in mice and very few show the toxic effects of prion accumulation. Brain cell primary cultures can be more accurate models but are difficult to develop in naturally susceptible species like humans or domestic ruminants. Stem cells can be differentiated into neuron‐like cells and be infected by prions. However, the use of embryo stem cells causes ethical problems in humans. Mesenchymal stem cells (MSCs) can be isolated from many adult tissues, including bone marrow, adipose tissue or even peripheral blood. These cells differentiate into neuronal cells, express PrPC and can be infected by prions in vitro. In addition, in the last years, these cells are being used to develop therapies for many diseases, including neurodegenerative diseases. We review here the use of cell models in prion research with a special interest in the potential use of MSCs.  相似文献   

8.
To examine the sensitivity of a commercially available bovine spongiform encephalopathy (BSE) kit (NippIBL) for the detection of ovine scrapie, 50 scrapie‐positive ovine samples from the UK, and 54 scrapie‐negative ovine samples from Japan were obtain and tested using this kit. The sensitivity and specificity of NippIBL for ovine samples were 96% and 100%, respectively. The detection limit of the abnormal isoform of prion protein (PrPSc) of NippIBL was examined using diluted scrapie‐positive samples. The sensitivity of NippIBL to ovine scrapie was 3–10 times superior to that of another commercial BSE diagnosis kit. Thus, the NippIBL kit proved more effective for the detection of ovine scrapie.  相似文献   

9.
Chronic wasting disease (CWD) is classified as a transmissible spongiform encephalopathy or prion disease that affects cervids. CWD has been reported in 15 US states, two Canadian provinces, and in imported elk on several farms in Korea. This study was conducted to examine the molecular biological and pathogenic characteristics of a CWD-associated prion isolated in Korea. The epidemiological origin of this pathogen was also determined. Homozygous TgElk mice were infected with a CWD-affected elk brain pool prepared from the brain of an imported Canadian elk. We measured the incubation time of the pathogen, neuropathological changes by immunohistochemical staining, the pattern(s) of scrapie prion protein (PrPSc) deposition, and PrPSc protein profiles by Western blotting. We found that TgElk mice infected with brain homogenate from the elk suffering from CWD showed incubation times, vacuolar degeneration, and PrPSc accumulation similar to those previously reported in the literature. Our results suggest that homozygous TgElk mice efficiently transmit CWD with short incubation times and that this animal can serve a valuable research model and reliable in vivo diagnostic tool.  相似文献   

10.
We observed the changes in the central nervous system (CNS) of transgenic mice expressing bovine prion protein (Bo-PrP) as a contribution to our knowledge of the pathogenesis of bovine spongiform encephalopathy (BSE). The main result was the detection of hyperphosphorylated tau. This protein was detected for the first time, using immunohistochemical techniques, in the neurons and glial cells of mice experimentally infected with BSE. The results highlighted the involvement of tau protein in the pathogenesis of BSE and the close link between hyperphosphorylated tau deposits and prion protein. Ultrastructural examination revealed a novel arrangement of intraneuronal tau deposits not hitherto reported.  相似文献   

11.
Summary

The present article (part I) reviews recent developments in animal spongiform encephalopathies (SEs), with the exception of bovine spongiform encephalopathy (BSE), which is dealt with in part II.

The article focuses on scrapie and describes epidemiological aspects and the prospects for a preclinical diagnosis. Up to now, confirmatory diagnosis of scrapie depended on histological examination of the brain, collected during post‐mortem examination from sheep with clinical signs of the disease. An altered protein, PrPSc, can be detected in the brain of diseased animals. The demonstration of the same protein in the spleen and in peripheral lymph nodes of infected animals seems to offer interesting possibilities of arriving at a method for a preclinical diagnosis, and thus a diagnosis in the live animal. Progress has also been made in our understanding of the relationship between the genetic constitution and susceptibility of the host. Susceptibility is expressed as the survival time of sheep inoculated with scrapie. This was thought to be determined by a single genetic locus designated the Sip gene (scrapie incubation period gene). Putative markers for the two alleles of the Sip gene, sA and pA, have been discovered, consisting of restriction fragment length polymorphisms (RFLPs). In field tests, however, the link between these markers and the length of incubation time was far from consistent. These RFLPs were found to be situated outside the prion‐protein‐co‐ding region of the ovine gene. In later studies, RFLPs were detected inside this region. These markers appear to be more informative, i.e. they correspond with a difference in the length of the scrapie incubation period.

Finally, the article briefly describes recent developments in other, lesser known, animal spongiform encephalopathies: chronic wasting disease and other spongiform encephalopathies in exotic ungulates, transmissible mink encephalopathy, and feline spongiform encephalopathy, focusing on their possible links with scrapie or bovine spongiform encephalopathy.  相似文献   

12.
Bovine spongiform encephalopathy (BSE) is a transmissible spongiform encephalopathy of cattle, first detected in 1986 in the United Kingdom and subsequently in other countries. It is the most likely cause of variant Creutzfeldt-Jakob disease (vCJD) in humans, but the origin of BSE has not been elucidated so far. This report describes the identification and characterization of two cases of BSE diagnosed in the United States. Case 1 (December 2003) exhibited spongiform changes in the obex area of the brainstem and the presence of the abnormal form of the prion protein, PrP(Sc), in the same brain area, by immunohistochemistry (IHC) and Western blot analysis. Initial suspect diagnosis of BSE for case 2 (November 2004) was made by a rapid ELISA-based BSE test. Case 2 did not exhibit unambiguous spongiform changes in the obex area, but PrP(Sc) was detected by IHC and enrichment Western blot analysis in the obex. Using Western blot analysis, PrP(Sc) from case 1 showed molecular features similar to typical BSE isolates, whereas PrP(Sc) from case 2 revealed an unusual molecular PrP(Sc) pattern: molecular mass of the unglycosylated and monoglycosylated isoform was higher than that of typical BSE isolates and case 2 was strongly labeled with antibody P4, which is consistent with a higher molecular mass. Sequencing of the prion protein gene of both BSE-positive animals revealed that the sequences of both animals were within [corrected] the range of the prion protein gene sequence diversity previously reported for cattle.  相似文献   

13.
Prion diseases such as scrapie in small ruminants, bovine spongiform encephalopathy (BSE) in cattle and Creutzfeldt-Jakob disease (CJD) in man, are fatal neurodegenerative disorders. These diseases result from the accumulation of misfolded conformers of the host-encoded prion protein (PrP) in the central nervous system. To date naturally-occurring PrP free animals have not been reported. Here we describe healthy non-transgenic animals, Norwegian Dairy Goats, lacking prion protein due to a nonsense mutation early in the gene. These animals are predicted to be resistant to prion disease and will be valuable for research and for production of prion-free products.  相似文献   

14.
In 2005, a prion disease identified in a goat from France was reported to be consistent with disease from the bovine spongiform encephalopathy (BSE) agent. Subsequent retrospective examination of UK goat scrapie cases led to the identification of one potentially similar, but as yet unconfirmed, case from Scotland. These findings strengthened concerns that small ruminant populations exposed to the BSE agent have become infected. The lack of data relating specifically to scrapie in goats has been contributory to past assumptions that, in general, sheep and goats respond similarly to prion infections. In this study, brain material from 22 archived caprine scrapie cases from the UK was reviewed by histopathology and by immunohistochemical examination for accumulations of disease-specific prion protein (PrP(Sc)) to provide additional data on the lesions of caprine scrapie and to identify any BSE-like features. The vacuolar change observed in the goats was characteristic of transmissible spongiform encephalopathies in general. PrP(Sc) immunohistochemical morphologic forms described in scrapie and experimental BSE infections of sheep were demonstrable in the goats, but these were generally more extensive and variable in PrP(Sc) accumulation. None of the cases examined showed a PrP(Sc) immunohistochemical pattern indicative of BSE.  相似文献   

15.
An amino acid sequence homology has been identified between the bovine prion sequence (RPVDQ) and the Acinetobacter calcoaceticus enzyme, uridine-diphosphate-N-acetyl glucosamine-1-carboxy-vinyl-transferase which also contains (RPVDQ). Class-specific IgA, IgG and IgM antibodies against synthetic peptides containing the structurally related sequences present in bovine prion and A. calcoaceticus were measured in 189 bovine spongiform encephalopathy (BSE) positive cattle, 127 BSE negative cattle and 87 healthy control animals using an ELISA technique. Class-specific IgA, IgG and IgM antibodies against the structurally related synthetic peptides were significantly elevated in BSE positive cattle when compared to BSE negative cattle (P < 0.001) and healthy control animals (P < 0.001). These autoantibodies may have a role in the pathogenesis of BSE.  相似文献   

16.
Transmissible spongiform encephalopathies (TSEs) or prion diseases are unique disorders that are not caused by infectious micro-organisms (bacteria or fungi), viruses or parasites, but rather seem to be the result of an infectious protein. TSEs are comprised of fatal neurodegenerative disorders affecting both human and animals. Prion diseases cause sponge-like degeneration of neuronal tissue and include (among others) Creutzfeldt-Jacob disease in humans, bovine spongiform encephalopathy (BSE) in cattle and scrapie in sheep. TSEs are characterized by the formation and accumulation of transmissible (infectious) disease-associated protease-resistant prion protein (PrP(Sc)), mainly in tissues of the central nervous system. The exact molecular processes behind the conversion of PrP(C) into PrP(Sc) are not clearly understood. Correlations between prion protein polymorphisms and disease have been found, however in what way these polymorphisms influence the conversion processes remains an enigma; is stabilization or destabilization of the prion protein the basis for a higher conversion propensity? Apart from the disease-associated polymorphisms of the prion protein, the molecular processes underlying conversion are not understood. There are some notions as to which regions of the prion protein are involved in refolding of PrP(C) into PrP(Sc) and where the most drastic structural changes take place. Direct interactions between PrP(C) molecules and/or PrP(Sc) are likely at the basis of conversion, however which specific amino acid domains are involved and to what extent these domains contribute to conversion resistance/sensitivity of the prion protein or the species barrier is still unknown.  相似文献   

17.
Bovine spongiform encephalopathy (BSE), a member of the transmissible spongiform encepahlopathies, has been a notifiable disease in Turkey since 1997. In 2002, the BSE status of Turkey was assessed by the EU Scientific Steering Committee as "it is likely but not confirmed".This study presents the results of a targeted surveillance study to assess the presence of BSE in the age risk population of Bursa, Turkey. In the assessment procedure, the immunohistochemical detection of protease-resistant prion protein (PrP-Sc) was aimed at and applied to 420 brain tissues of cattle slaughtered in Bursa at an age of 30-months and older. None of the samples were positive for BSE.  相似文献   

18.
ABSTRACT: Atypical bovine spongiform encephalopathy (BSE) has recently been identified in Europe, North America, and Japan. It is classified as H-type and L-type BSE according to the molecular mass of the disease-associated prion protein (PrPSc). To investigate the topographical distribution and deposition patterns of immunolabeled PrPSc, H-type BSE isolate was inoculated intracerebrally into cattle. H-type BSE was successfully transmitted to 3 calves, with incubation periods between 500 and 600 days. Moderate to severe spongiform changes were detected in the cerebral and cerebellar cortices, basal ganglia, thalamus, and brainstem. H-type BSE was characterized by the presence of PrP-immunopositive amyloid plaques in the white matter of the cerebrum, basal ganglia, and thalamus. Moreover, intraglial-type immunolabeled PrPSc was prominent throughout the brain. Stellate-type immunolabeled PrPSc was conspicuous in the gray matter of the cerebral cortex, basal ganglia, and thalamus, but not in the brainstem. In addition, PrPSc accumulation was detected in the peripheral nervous tissues, such as trigeminal ganglia, dorsal root ganglia, optic nerve, retina, and neurohypophysis. Cattle are susceptible to H-type BSE with a shorter incubation period, showing distinct and distinguishable phenotypes of PrPSc accumulation.  相似文献   

19.
Molecular profiling of the proteinase K resistant prion protein (PrP(res)) is a technique that has been applied to the characterisation of transmissible spongiform encephalopathy (TSE) strains. An interesting example of the application of this technique is the ability to differentiate, at the experimental level, between bovine spongiform encephalopathy (BSE) and scrapie infection in sheep, and to distinguish between classical and atypical BSE and scrapie cases. Twenty-six BSE cases and two scrapie cases from an active TSE surveillance program and diagnosed at the PRIOCAT, TSE Reference Laboratory (Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, Catalunya, Spain) were examined by Western blotting. Molecular profiling was achieved by comparing the glycosylation profile, deglycosylated PrP molecular weight and 6H4/P4 monoclonal antibody binding ratio. The results obtained during the characterisation of these field cases indicated an absence of atypical BSE cases in Catalunya.  相似文献   

20.
The brains of 26 Bavarian bovines clinically suspected of bovine spongiform encephalopathy (BSE) were the subject of a neuropathological evaluation containing histopathology and immunohistochemistry. Six animals tested positive for BSE. In these six brains severe histological lesions that correlated with previous reports from the United Kingdom were observed. Immunohistochemistry with prion protein (PrP(Sc)), glial fibrillary acidic protein (GFAP) and synaptophysin were conducted on the mid-brain containing the red nucleus. All BSE-positive brains stained positively for PrP(Sc), and no plaques were observed. The BSE-affected brains showed a substantially more intense staining pattern for GFAP in comparison with the control groups, some of which were diagnosed with severe neuropathological disorders. Synaptophysin staining on BSE-positive brains was substantially reduced in the neuropil of the mid-brain, especially in the red nucleus. Twenty animals tested negative for BSE. The most common diagnoses were listeriosis, viral infections of unknown aetiology, brain oedema and hypomagnesaemia. These disorders may represent the most important clinical differential diagnoses for BSE in Bavaria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号