首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Redox potentials (Eh) and pH values in the rhizosphere 0–2 mm from growing roots of field beans (Vicia faba L.) indicated reducing conditions near the root tip and along the zone of elongation which were probably caused by root exudates. For roots of other plant species (e.g. maize), a drop of Eh in the rhizosphere does not necessarily reflect reduction processes, but may be due to pH changes, according to the Nernst equation. Eh values near dying roots decreased due to the O2 consumption by microorganisms, this effect being detectable at a distance greater than 3 mm from the root surface.  相似文献   

2.
The exposure of legume nodulated‐roots to 100 mM NaCl resulted in a rapid decrease in plant growth associated with a short‐term inhibition of both nodule growth and nitrogenase activity (C2H2 reduction=ARA). However, these NaCl effects varied among species, common bean being more sensitive than soybean and alfalfa. The higher sensitivity of common bean was associated with a higher accumulation of sodium (Na) and chlorine (Cl) in the nodules and only a small difference between salt‐treated and control plants of common bean in their responses of ARA to raising rhizosphere pO2. By contrast, soybean and alfalfa plants showed a higher stimulation of ARA by pO2 for the salt‐treatment than for the control. It is concluded that the intraspecific variation in short‐term inhibition of ARA by salt may involve the regulation of O2 diffusion and the distribution of ions in nodules.  相似文献   

3.
The ability of plants to extract water from soil is controlled by the water‐potential gradient between root and soil, by the hydraulic conductivity of roots, and, as the soil dries, by that of the soil near the roots (rhizosphere). Recent experiments showed that the rhizosphere turned hydrophobic after drying and it remained temporarily dry after rewetting. Our objective was to investigate whether rhizosphere hydrophobicity is associated with a reduction in root water uptake after drying and rewetting. We used neutron radiography to trace the transport of deuterated water (D2O) in the roots of lupines growing in a sandy soil. The plants were grown in aluminum containers (28 × 28 × 1 cm3) filled with a sandy soil. The soil was initially partitioned into different compartments using a 1‐cm layer of coarse sand (three vertical × three horizontal compartments). We grew plants in relatively moist conditions (0.1 < θ < 0.2). Three weeks after planting, we let the upper left compartment of soil to dry for 2–3 d while we irrigated the rest of the soil. Then, we injected D2O in this compartment and in the upper right compartment that was kept wet. We monitored D2O transport in soil and roots with time‐series neutron radiography. From the changes of D2O concentration inside roots, we estimated the root water uptake. We found that root water uptake in the soil region that was let dry and rewetted was 4–8 times smaller than that in the region that was kept moist. The reduced uptake persisted for > 1–0.5 h. We conclude that a reduction in hydraulic conductivity occurred during drying and persisted after rewetting. This reduction in conductivity could have occurred in roots, in the rhizosphere, or more likely in both of them.  相似文献   

4.
Separation of root and microbial respiration: Comparison of three methods   总被引:1,自引:0,他引:1  
In a laboratory experiment, the following methods of separating the soil CO2 flux into the root respiration and the respiration of the rhizosphere and nonrhizosphere microorganisms were compared: (1) root exclusion, (2) component integration, and (3) 14C pulse labeling. Depending on the method used, the combined contribution of the rhizosphere microorganisms and roots varied from 18 to 40% of the total CO2 emission; the contribution of the roots alone was 8–19%, and that of the nonrhizosphere microorganisms was 51–82%. The nonisotope methods (1 and 2) gave similar results of the separation. The pulse labeling of plants satisfactorily separated the root and microbial respiration, but it is unsuitable for determining the respiration of the nonrhizosphere microorganisms. Advantages and disadvantages of each method are discussed.  相似文献   

5.
 O2 and pH microsensors were used to analyse the microdistribution of O2 and pH inside and outside roots of lowland rice (Oryza sativa L.). The roots of 3-week-old transplants had O2 concentrations of about 20% air saturation at the surface, but due to a high rate of O2 consumption in the rhizosphere, the oxic region only extended about 0.4 mm into the surrounding soil. Also the fine lateral roots created an oxic zone extending about 0.15 mm into the soil. The O2 concentration within the roots approached air saturation close to the base, but only about 40–60% of air saturation in a region about 8 cm below the base where lateral rootlets were present. A shift from air to N2 around the leaves led to a drop of 50% in the O2 concentration after 12 min at a distance of 8.5 cm from the base. Flowering plants did not export O2 to the soil from the majority of their roots, but high microbial activity was present in a very thin biofilm covering the root surface. A brown colour around the thin lateral roots indicated some O2 export from these also during flowering. No oxidized zone was present around the roots at later stages of crop growth. The roots caused only minor minima in pH (<0.2 pH units) in the rhizosphere as compared to the bulk soil. Illumination of the plants had no effect on rhizosphere pH. Received: 28 April 1998  相似文献   

6.
Soil surrounding a growing root must be displaced to accommodate the increased root volume. To ease soil penetration, root caps produce border cells and mucilage that lubricate the root surface, decreasing friction at the root‐soil interface. Rhizosphere deformations caused by roots with or without a functional root cap were compared to determine the effects of the root cap on sand displacement and penetration. Intact (KYS wild type) and decapped (agt1dec mutant) primary maize roots were grown in observation chambers filled with sand. Non‐destructive time‐lapse micro‐imaging combined with particle image velocimetry was used to visualize and quantify sand displacements as small as 0.5 µm caused by growing roots. Decapped (agt1dec) roots displayed typical responses of mechanically impeded roots at sand densities that did not affect intact KYS roots. Sand displacement decreased exponentially with distance from the root and extended four to eight root radii into the sand. The calculated mean sand density increase and the compressed sand area were doubled by decapping. Maximum density often occurred in front of the apex of decapped roots whereas it occurred along the sides of intact roots. Periodic variation in sand deformation was observed, probably associated with root circumnutation, which may also facilitate soil penetration. Sand particles moved alongside KYS roots more easily than they did alongside agt1dec roots. A functional exuding cap was therefore essential for efficient rhizosphere deformation and penetration by roots. Manipulating root tip, and specifically root cap, properties is a possible target for improving root penetration in hard soil.  相似文献   

7.
Oxygen diffusion rate (ODR) and redox potential (EH) are quantitative indices representing oxygen availability and redox status in soils, which is valuable information for better understanding causes and effects of soil aeration. Because these indices are spatially and temporally highly variable, continuous measurements and adequate numbers of repetitions are essential for accurate in situ monitoring. Here, we present a new, fully automated recording system for in situ measurements where ODR and EH are measured at the same platinum electrode. The conflict between electrode polarization for ODR and the resulting biased EH readings is solved by reducing the polarization time and introducing a recovery interval between two consecutive measurement cycles. The shorter polarization time ensures accurate EH readings. It also results in moderately overestimated ODR readings, but this can be corrected before data analysis. The recovery interval restricts temporal resolution of the EH‐ODR data pairs to 8 h. We illustrate the use of the system with measurements in a field experiment in Zürich, Switzerland. ODR curves at different depths ran roughly parallel to the corresponding curves of O2 concentration in soil air but ODR was much more sensitive to precipitation. Low ODR was a necessary but not a sufficient condition for declining EH. EH ran parallel to O2 concentration in soil air rather than to ODR. The fully automated system allows for time series of replicate measurements in multifactorial field studies with reasonable labor requirements. It may be particularly suitable for studies examining the effects of soil tillage, compaction, and irrigation, where structure‐related soil properties such as porosity, gas permeability, and soil aeration play a dominant role.  相似文献   

8.
Influence of soil type, soil aeration, nitrogen supply and rhizosphere flora on the morphology of the seminal root system of maize The influence of the soil type (quartz sand – humous loamy sandy soil), soil aeration, nitrogen supply and rhizosphere flora on the morphology of the seminal root system of maize plants grown in pot culture was investigated. The morphological parameters of number, length, diameter and root hair formation (both length and density) of the main and the lateral roots were determined in addition to the total root length and number and the lateral root density. 1. The biomass production of the shoot and root system was nearly identical in both soils. The total root length growth, however, was enhanced in the sandy soil due to the stimulated formation of first order lateral roots. This increase was correlated with a decrease in the mean diameter and root hair length of the main and lateral roots. 2. A decreased O2-supply to the soil resulted in a drastic reduction of root biomass, which was correlated, however, with a (relative) increase in total root length (due to the stimulation of the length growth of the first order lateral roots). The root hair length, on the other hand, was reduced under O2-deficiency. 3. Reduced N-supply resulted in a decrease of the shoot/root-ratio with both substrates which could be ascribed to the enhanced formation and length of the first order lateral roots. 4. The presence of soil microorganisms in quartz sand culture resulted in a reduction of shoot biomass. In comparison with the sterile control culture the total length of the main roots was retarded, the main and lateral roots were more slender and root hair formation was reduced. 5. The experimental results show that the lateral root system demonstrates a significantly greater plasticity than does the main root system.  相似文献   

9.
This study was initiated to explore the effects of ozone (O3) exposure on potted wheat roots and soil microbial community function. Three treatments were performed: (1) Air with daily averaged O3 concentration of 4–10 ppb (control situation, CK), (2) Air plus 8 h averaged O3 concentration of 76.1 ppb (O3-1), and (3) Air plus 8 h averaged O3 concentration of 118.8 ppb (O3-2). In treatments with elevated O3 concentration (O3-1 and O3-2), the root and shoot biomass were reduced by 25% and 18%, respectively, compared to the control treatment (CK). On the other hand, root activity was significantly reduced by 58% and 90.8% in the O3-1 and O3-2 treatments, respectively, compared to CK. The soil microbial biomass was significantly reduced only in the highest O3 concentration (O3-2 treatment) in the rhizosphere soil. Soil microbial community composition was assessed under O3 stress based on the changes in the sole carbon source utilization profiles of soil microbial communities using the Biolog? system. Principal component analysis showed that there was significant discrimination in the sole-carbon source utilization pattern of soil microbial communities among the O3 treatments in rhizosphere soil; however, there was none in the bulk soil. In rhizosphere soil, the functional richness of the soil microbial community was reduced by 27% and 38% in O3-1 and O3-2 treatments, respectively, compared to CK. O3-2 treatment remarkably decreased the Shannon diversity index of soil microbial community function in rhizosphere soil, but the O3-1 treatment did not. In the dominant microorganisms using carbon sources of carbohydrates and amino acids groups were significantly reduced by an elevated O3 concentration in the rhizosphere soil. Our study shows that the elevated ozone levels may alter microbial community function in rhizosphere soil but not in the bulk soil. Hence, this suggests that O3 effects on soil microbes are caused by O3 detriments on the plant, but not by the O3 direct effects on the soil microbes.  相似文献   

10.
钦绳武  刘芷宇 《土壤学报》1989,26(2):117-123
本文研究了不同形态氮肥施用后,氮素在作物根际的分布规律,及其与作物种类、土壤水分条件的关系.在淹水条件下的水稻根际土壤中,(NH4)2SO4和(NH2)2CO荨NH4+-N肥,其亏缺率随离根面距离增加呈指数相关的减小.而旱作条件下的玉米、大麦、黑麦草等作物根际NH4+-N肥料在离根面1-3毫米内存在相对累积,然后再出现亏缺梯度.试验证明,NH4+-N在旱作根际的相对累积,部分来源于根系分泌物.然而,NO3--N肥即使在淋失量较大的情况下,无论在淹水水稻还是旱作根际土壤中均未测出亏缺,仅存在累积.  相似文献   

11.
Root-induced changes in the rhizosphere may affect mineral nutrition of plants in various ways. Examples for this are changes in rhizosphere pH in response to the source of nitrogen (NH4-N versus NO3-N), and iron and phosphorus deficiency. These pH changes can readily be demonstrated by infiltration of the soil with agar containing a pH indicator. The rhizosphere pH may be as much as 2 units higher or lower than the pH of the bulk soil. Also along the roots distinct differences in rhizosphere pH exist. In response to iron deficiency most plant species in their apical root zones increase the rate of H+ net excretion (acidification), the reducing capacity, the rate of FeIII reduction and iron uptake. Also manganese reduction and uptake is increased several-fold, leading to high manganese concentrations in iron deficient plants. Low-molecular-weight root exudates may enhance mobilization of mineral nutrients in the rhizosphere. In response to iron deficiency, roots of grass species release non-proteinogenic amino acids (?phytosiderophores”?) which dissolve inorganic iron compounds by chelation of FeIII and also mediate the plasma membrane transport of this chelated iron into the roots. A particular mechanism of mobilization of phosphorus in the rhizosphere exists in white lupin (Lupinus albus L.). In this species, phosphorus deficiency induces the formation of so-called proteoid roots. In these root zones sparingly soluble iron and aluminium phosphates are mobilized by the exudation of chelating substances (probably citrate), net excretion of H+ and increase in the reducing capacity. In mixed culture with white lupin, phosphorus uptake per unit root length of wheat (Triticum aestivum L.) plants from a soil low in available P is increased, indicating that wheat can take up phosphorus mobilized in the proteoid root zones of lupin. At the rhizoplane and in the root (root homogenates) of several plant species grown in different soils, of the total number of bacteria less than 1 % are N2-fixing (diazotrophe) bacteria, mainly Enterobacter and Klebsiella. The proportion of the diazotroph bacteria is higher in the rhizosphere soil. This discrimination of diazotroph bacteria in the rhizosphere is increased with foliar application of combined nitrogen. Inoculation with the diazotroph bacteria Azospirillum increases root length and enhances formation of lateral roots and root hairs similarly as does application of auxin (IAA). Thus rhizosphere bacteria such as Azospirillum may affect mineral nutrition and plant growth indirectly rather than by supply of nitrogen.  相似文献   

12.
Roots can induce significant changes in the rhizosphere soil. The aim of the present study was to investigate the influence of beech (Fagus silvatica L.) roots on the chemistry of the rhizosphere soil solution. Special emphasis was given to the effect of the NH4+ supply since many forest soils presently receive high NH4+ inputs from atmospheric deposition. In a mature beech stand, a non‐mycorrhized long root was forced to grow into a rhizotrone filled with homogenized acidic forest soil from the Bw horizon of a Dystric Cambisol. Beside the control, a NH4+ enriched treatment was installed. Thirty micro suction cups of 1 mm diameter and 0.5 cm length were placed in a systematic grid of 5 × 10 mm in each rhizotrone to enable root growth through the grid. The water potential of the soil was kept constant by supplying a synthetic soil solution. Small amounts of soil solution were sampled periodically from May to October 1999 and analyzed by capillary electrophoresis for major cations and anions. Furthermore, pH and conductivity were measured by micro electrodes. In the laboratory experiments, beech seedlings were grown in rhizotrones in a control and in a NH4+ fertilized soil. The equipment for sampling soil solutions and the soil conditions in the laboratory was similar to the field experiment. In each rhizotrone a single long root grew through the lysimeter grid. The laboratory conditions induced higher rates of nitrification as compared to the field. Thus, the overall concentration range of the soil solution was not comparable between field and laboratory studies. In all treatments average soil solution concentrations of H+ and Al3+ were significantly higher in the rhizosphere than in the bulk soil. The NH4+ treatment resulted, in the field and laboratory, in a strong increase of the H+ and Al3+ concentrations in the rhizosphere, accompanied by an accumulation of Ca2+, Mg2+, and NO3. The observed rhizosphere gradients in soil solution chemistry were highly dynamic in time. The results demonstrate that the activity of growing beech roots results in an acidification of the soil solution in the rhizosphere. The acidification was enhanced after the addition of NH4+.  相似文献   

13.
The spatial distribution and speciation of iron (Fe), manganese (Mn) and arsenic (As) around rice roots grown in an As‐affected paddy field in Bangladesh were investigated on soil sampled after rice harvest. Synchrotron micro‐X‐ray fluorescence spectrometry on soil thin sections revealed that roots influence soil Fe, Mn and As distribution up to 1 mm away from the root–soil interface. Around thick roots (diameter around 500 µm), Mn was concentrated in discrete enrichments close to the root surface without associated As, whereas concentric Fe accumulations formed farther away and were closely correlated with As accumulations. Near thin roots (diameter < 100 µm), in contrast, a pronounced enrichment of Fe and As next to the root surface and a lack of Mn enrichments was observed. X‐ray absorption fine structure spectroscopy suggested that (i) accumulated Fe was mainly contained in a two‐line ferrihydrite‐like phase, (ii) associated As was mostly As(V) and (iii) Mn enrichments consisted of Mn(III/IV) oxyhydroxides. The distinct enrichment patterns can be related to the extent of O2 release from primary and lateral rice roots and the thermodynamics and kinetics of Fe, Mn and As redox transformations. Our results suggest that in addition to Fe(III) plaque at the root surface, element accumulation and speciation in the surrounding rhizosphere soil must be taken into account when addressing the transfer of nutrients or contaminants into rice roots.  相似文献   

14.
A novel type of planar optodes for simultaneous optical analysis of pH and oxygen dynamics in the rhizosphere is introduced. The combination of the optical, non-invasive measurement of these parameters with sterile sampling of rhizosphere solution across and along growing roots by use of a novel type of rhizobox provides a methodical step forward in the investigation of the physicochemical dynamics of the rhizosphere and its underlying matter fluxes between roots and soil. In this study, this rhizobox was used to investigate the effect of oxygen releasing roots of three Juncus species on the amount and distribution of organic acids in reductive, oxygen-deficient soils of different pH (pH 3.9-pH 5.9). Pronounced diurnal variations of oxygen concentration and pH along the roots, particularly along the elongation zone were observed. Long-term records over more than eight weeks revealed considerable spatial and temporal patterns of oxygen over a range of almost 200 μmol O2 L−1 and pH dynamics of ±1.4 pH units in the rhizosphere. A strong effect of oxidative acidification due to oxygen release by the plant roots was clearly visible for Juncus effusus, whereas the roots of Juncus articulatus alkalinized the rhizosphere. In contrast, roots of Juncus inflexus induced no effects on rhizospheric pH. Only four different organic acids (oxalate, acetate, formate and lactate) were detectable in all soil solutions. Maximal concentration of all organic acids occurred at pH 3.9, whereas the lowest concentration of each organic acid was found at pH 5.9. Hence, considering the pH-dependence of the redox potential, the acid soil provided increased reductive conditions leading to slower anaerobic degradation of organic acids to CO2 or methane (CH4). The concentration of organic acids decreased by up to 58% within a distance of only 4 mm from the bulk soil to the root surface, i.e. reciprocal to the pronounced O2-gradient. The decreasing presence of organic acids toward the oxygen releasing roots is possibly due to a change in the composition of the microbial community from anaerobic to aerobic conditions. The present study highlights the dynamic interplay between O2 concentration, pH and organic acids as key parameters of the physicochemical environment of the rhizosphere, particularly for wetland plants growing in oxygen-deficient waterlogged soils.  相似文献   

15.
The inability of physical and chemical techniques to separate soil organic matter into fractions that have distinct turnover rates has hampered our understanding of carbon (C) and nutrient dynamics in soil. A series of soil organic matter fractionation techniques (chemical and physical) were evaluated for their ability to distinguish a potentially labile C pool, that is ‘recent’ root and root‐derived soil C. ‘Recent’ root and root‐derived C was operationally defined as root and soil C labelled by 14CO2 pulse labelling of rye grass–clover pasture growing on undisturbed cores of soil. Most (50–94%) of total soil + root 14C activity was recovered in roots. Sequential extraction of the soil + roots with resin, 0.1 m NaOH and 1 m NaOH allocated ‘recent’ soil + root 14C to all fractions including the alkali‐insoluble residual fraction. Approximately 50% was measured in the alkali‐insoluble residue but specific activity was greater in the resin and 1 m NaOH fractions. Hot 0.5 m H2SO4 hydrolysed 80% of the 14C in the alkali‐insoluble residue of soil + roots but this diminished specific activity by recovering much non‐14C organic matter. Pre‐alkali extraction treatment with 30% H2O2 and post‐alkali treatment extractions with hot 1 m HNO3 removed organic matter with a large 14C specific activity from the alkali‐insoluble residue. Density separation failed to isolate a significant pool of ‘recent’ root‐derived 14C. The density separation of 14C‐labelled roots, and roots remixed with non‐radioactive soil, showed that the adhesion of soil particles to young 14C‐labelled roots was the likely cause of the greater proportion of 14C in the heavy fraction. Simple chemical or density fractionations of C appear unsuitable for characterizing ‘recent’ root‐derived C into fractions that can be designated labile C (short turnover time).  相似文献   

16.
Iron and phosphorus availability is low in many soils; hence, microorganisms and plants have evolved mechanisms to acquire these nutrients by altering the chemical conditions that affect their solubility. In plants, this includes exudation of organic acid anions and acidification of the rhizosphere by release of protons in response to iron and phosphorus deficiency. Grasses (family Poaceae) and microorganisms further respond to Fe deficiency by production and release of specific chelators (phytosiderophores and siderophores, respectively) that complex Fe to enhance its diffusion to the cell surface. In the rhizosphere, the mutual demand for Fe and P results in competition between plants and microorganisms with the latter being more competitive due to their ability to decompose plant-derived chelators and their proximity to the root surface; however microbial competitiveness is strongly affected by carbon availability. On the other hand, plants are able to avoid direct competition with microorganisms due to the spatial and temporal variability in the amount and composition of exudates they release into the rhizosphere. In this review, we present a model of the interactions that occur between microorganisms and roots along the root axis, and discuss advantages and limitations of methods that can be used to study these interactions at nanometre to centimetre scales. Our analysis suggests mechanisms such as increasing turnover of microbial biomass or enhanced nutrient uptake capacity of mature root zones that may enhance plant competitiveness could be used to develop plant genotypes with enhanced efficiency in nutrient acquisition. Our model of interactions between plants and microorganisms in the rhizosphere will be useful for understanding the biogeochemistry of P and Fe and for enhancing the effectiveness of fertilization.  相似文献   

17.
In a pot experiment, the P‐efficient wheat (Triticum aestivum L.) cultivar Goldmark was grown in ten soils from South Australia covering a wide range of pH (four acidic, two neutral, and four alkaline soils) with low to moderate P availability. Phosphorus (100 mg P kg–1) was supplied as FePO4 to acidic soils, CaHPO4 to alkaline, and 1:1 mixture of FePO4 and CaHPO4 to neutral soils. Phosphorus uptake was correlated with P availability measured by anion‐exchange resin and microbial biomass P in the rhizosphere. Growth and P uptake were best in the neutral soils, lower in the acidic, and poorest in the alkaline soils. The good growth in the neutral soils could be explained by a combination of extensive soil exploitation by the roots and high phosphatase activity in the rhizosphere, indicating microbial facilitation of organic‐P mineralization. The plant effect (soil exploitation by roots) appeared to dominate in the acidic soils. Alkaline phosphatase and diesterase activities in acidic soils were lower than in neutral soils, but strongly increased in the rhizosphere compared with the bulk soil, suggesting that microorganisms contribute to P uptake in these acidic soils. Shoot and root growth and P uptake per unit root length were lowest in the alkaline soils. Despite high alkaline phosphatase and diesterase activities in the alkaline soils, microbial biomass P was low, suggesting that the enzymes could not mineralize sufficient organic P to meet the demands of plants and microorganisms. Microbial‐community composition, assessed by fatty acid methylester (FAME) analysis, was strongly dependent on soil pH, whereas other soil properties (organic‐C or CaCO3 content) were less important or not important at all (soil texture).  相似文献   

18.
Although lipids are involved in diverse soil processes and affect various soil properties, the contribution of rhizodeposits and the root zone to lipid concentrations and distributions in soils is unknown. For the first time, we determined the concentrations of alkanoic acids, n-alkanes and n-alkenes in root zone leachates and roots of maize and potato using gas chromatography/mass spectrometry (GC/MS). In total, the lipid concentrations of leachates were 100 μg g?1 (maize) and 17 μg g?1 (potato). The saturated n-alkanoic acids, ranging from n-C14 to n-C28 and having the maximum at n-C22 (maize) and at n-C16 (potato), were more abundant than the other compounds. Maize leachates had more alkanes (20 μg g?1) than potato leachates (3.1 μg g?1), but the members of the homologues were nearly the same. Comparison of these distributions with data for roots, microorganisms and soil indicated that the lipids in the leachates from the root zone mainly originated from abrasion of fine roots, rhizodeposits and rhizosphere microorganisms.  相似文献   

19.
Nitrogenase (C2H2) activity was measured in microbial media inoculated with barley root segments or corresponding rhizosphere soil. Three different media were used, Döbereiner's malate medium, a modified Ashby medium, and an acid nitrogen-free medium. Only Döbereiner's medium gave consistently positive results, and cultures inoculated with roots showed higher activity than cultures inoculated with corresponding rhizosphere soil. Similar experiments with roots and rhizosphere soil from wheat gave only negligible nitrogenase activity, whereas the tropical grass, Cynodon dactylon, gave higher activity than barley. Measurements on intact soil cores containing barley root systems showed an initial lag phase followed by a rather stable activity level over a period from 12 h to 48 h, and then the activity again decreased. The activity during the stable period corresponded to fixation of about 100 to 200 g N2 ha?1 24 h?1. Measurements on isolated, washed barley roots showed only negligible nitrogenase activity.  相似文献   

20.
The secretion of O2 by rice roots results in aerobic conditions in the rhizoshere compared to the bulk flooded soil. The effect of this phenomenon on the adsorption/desorption behavior and on the availability of phosphorus (P) in a flooded soil was investigated in a model experiment. An experimental set‐up was developed that imitates both O2 release and P uptake by the rice root. The results showed that O2 secretion significantly reduced P adsorption/retention and increased P desorption/release in the “rhizosphere” soil, compared to the anaerobic bulk soil. The P uptake by an anion exchange resin from both unfertilized and P‐amended soil was significantly increased. The results confirm that the O2 secretion is an important mechanism to enhance P availability and P uptake of rice under flooded conditions, where the “physico‐chemical” availability of P in the anaerobic bulk soil is strongly reduced. The decrease of P availability in the P‐amended flooded bulk soil was mainly associated with the almost complete transformation of the precedingly enriched Al‐P fraction into Fe‐bound P with extremely low desorption/release characteristics during the subsequent flooding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号