首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The Egnér‐Riehm method for estimating plant‐available soil phosphorus (P) has been used as the standard soil testing method in Portugal for making fertilizer recommendations. However, this method does not accurately reflect the available P status for wheat in some representative soils from the South Region of the country. Therefore, a pot experiment was established with four Luvisols (LVx, LVv, and two different LVh soils) from the South Region of Portugal in order to evaluate the Egnér‐Riehm, Bray I, Bray II, Olsen, and Anion Exchange Resin (AER) methods for their ability to estimate available P in those soils. Wheat (Triticum aestivum L., cv. Panda) was used as test the crop. The experiment was arranged into a randomized complete block design with three replications and five rates (0, 50, 100,150, and 200 mg kg‐1) of P added to each soil. Critical soil P levels for LVx were established in case for Bray I (27.9 mg kg‐1), Bray II (33.5 mg kg‐1), Egnér‐Riehm (25.4 mg kg‐1), and AER (14.7 mg kg‐1) soil test procedures. Regarding the other soils, the critical soil P levels could not be estimated. The obtained results confirm that the development of an universal soil test P exti action is of great importance, and that further research should be conducted in order to evaluate routine soil fertility tests in different pedoclimatic environments.  相似文献   

2.
Abstract

Knowledge of the change in soil extractable phosphorus (P) as a consequence of soil P fertilization could be useful in discriminating soils with a potential for soil P release to runoff or movement of P along the soil profile. In this research, soils with low to medium P retention capacity were equilibrated for 90 days with soluble P (KH2PO4) at rate of 100 mg P kg‐1 soil. After this period, soil samples both with and without the P addition were analyzed using six conventional methods: 1) Olsen, 2) Bray 1,3) Mehlich3,4) Egner, 5) Houba, dilute CaCl2 solution, and 6) distilled water, and three “innovative”; P‐sink methodologies: 1) Fe oxide‐coated paper strip, 2) anion exchange resin membrane, and 3) cation‐anion exchange resin membrane. The soils without P addition had low levels of extracted P as determined by all nine procedures. Net increases in the amount of P extracted from the soils with added P ranged from 4.2 mg kg‐1 (CaCl2 extraction) to 57.6 mg kg‐1 (cation‐anion resin membrane extraction). Relationships between change in extracted P and i) physical and chemical characteristics, and ii) soil P sorption properties are also presented and discussed.  相似文献   

3.
The present review is focused on microbiological methods used in agricultural soils accustomed to human disturbance. Recent developments in soil biology are analyzed with the aim of highlighting gaps in knowledge, unsolved research questions, and controversial results. Activity rates (basal respiration, N mineralization) and biomass are used as overall indices for assessing microbial functions in soil and can be supplemented by biomass ratios (C : N, C : P, and C : S) and eco‐physiological ratios (soil organic C : microbial‐biomass C, qCO2, qNmin). The community structure can be characterized by functional groups of the soil microbial biomass such as fungi and bacteria, Gram‐negative and Gram‐positive bacteria, or by biotic diversity. Methodological aspects of soil microbial indices are assessed, such as sampling, pretreatment of samples, and conversion factors of data into biomass values. Microbial‐biomass C (µg (g soil)–1) can be estimated by multiplying total PLFA (nmol (g soil)–1) by the FPLFA‐factor of 5.8 and DNA (µg (g soil)–1) by the FDNA‐factor of 6.0. In addition, the turnover of the soil microbial biomass is appreciated as a key process for maintaining nutrient cycles in soil. Examples are briefly presented that show the direction of human impact on soil microorganisms by the methods evaluated. These examples are taken from research on organic farming, reduced tillage, de‐intensification of land‐use management, degradation of peatland, slurry application, salinization, heavy‐metal contamination, lignite deposition, pesticide application, antibiotics, TNT, and genetically modified plants.  相似文献   

4.
Field study on colloid transport using fluorescent microspheres   总被引:1,自引:1,他引:0  
Understanding colloid movement through the vadose zone is important, because colloids may facilitate transport of some less mobile contaminants. Experimental evidence of colloid transport in the vadose zone, especially at the field scale, is rare. We developed and tested a method to detect and quantify local concentrations of fluorescent microspheres (MS) with a diameter of 1 μm in unsaturated soil based on fluorescent microscopy. The detection limit was 400 × 106 MS kg?1 field‐moist soil for an automated counting method, and 20 × 103 MS kg?1 for manual counting. To test the method in the field, we applied a 40‐mm pulse with an input concentration of 14.6 × 109 MS litre?1 on two plots during 6 hours, together with bromide (Br?) and the food dye Brilliant Blue (BB). The concentrations of MS were determined on horizontal cross‐sections by a randomly distributed sampling scheme, either directly after application or 90 days after application and a rainfall of 100 mm. Mass recoveries for the MS of 85 and 65% were acceptable in view of the field conditions. Even after infiltration of particle‐free water, the largest MS concentrations were measured at the soil’s surface, which pointed at physical retention mechanisms. An additional selective sampling of hydrologically active preferential flow pathways, guided by the dye infiltration patterns, revealed that the MS were transported to similar depths as BB, that is 0.80 m directly after irrigation and 1.7 m after 90 days. This implies that also a small fraction of the particulate tracers was rapidly transported to larger depths, regardless of their physico‐chemical properties.  相似文献   

5.
Abstract

Long filtration time, accumulation of salt residue on the atomic absorption or flame emission burner slot, and contamination of P and K in the sodium acetate are three problems encountered when using sodium acetate‐acetic acid or Morgan's solution (MS) for extracting P, K, Ca, and Mg from soil samples. Thus an ammonium acetate‐acetic acid (AA‐AA) solution was compared with MS for 144 soil samples which, although ranging in pH from 4.4 to 7.9, were all derived from calcareous glacial till. A highly significant linear correlation was obtained between the two methods for each of the four elements. Filtration time for the AA‐AA solution was 30–45 minutes shorter than that for MS. No salt residue accumulated on the atomic absorption burner slot when using AA‐AA. Because of these advantages, we have replaced MS with AA‐AA for samples analyzed in our laboratory.  相似文献   

6.
The spatial variation of soil test P (STP) in grassland soils is becoming important because of the use of STP as a basis for policies such as the recently EU‐introduced Nitrate Directive. This research investigates the spatial variation of soil P in grazed grassland plots with a long‐term (38 y) experiment. A total of 326 soil samples (including 14 samples from an adjacent grass‐wood buffer zone) were collected based on a 10 × 10 m2 grid system. The samples were measured for STP and other nutrients. The results were analyzed using conventional statistics, geostatistics, and a geographic information system (GIS). Soil test P concentrations followed a lognormal distribution, with a median of 5.30 mg L–1 and a geometric mean of 5.35 mg L–1. Statistically significant (p < 0.01) positive correlation between STP and pH was found. Spatial clusters and spatial outliers were detected using the local Moran's I index (a local indicator of spatial association) and were mapped using GIS. An obvious low‐value spatial‐cluster area was observed on the plots that received zero‐P fertilizer application from 1968 to 1998 and a large high‐value spatial‐cluster area was found on the relatively high‐P fertilizer application plots (15 kg ha–1 y–1). The local Moran's I index was also effective in detecting spatial outliers, especially at locations close to spatial‐cluster areas. To obtain a reliable and stable spatial structure, semivariogram of soil‐P data was produced after elimination of spatial outliers. A spherical model with a nugget effect was chosen to fit the experimental semivariogram. The spatial‐distribution map of soil P was produced using the kriging interpolation method. The interpolated distribution map was dominated by medium STP values, ranging from 3 mg to 8 mg L–1. An evidently low‐P‐value area was present in the upper side of the study area, as zero or short‐term P fertilizer was applied on the plots. Meanwhile, high‐P‐value area was located mainly on the plots receiving 15 kg P ha–1 y–1 (for 38 y) as these plots accumulated excess P after a long‐term P‐fertilizer spreading. The high‐ or low‐value patterns were in line with the spatial clusters. Geostatistics, combined with GIS and the local spatial autocorrelation index, provides a useful tool for analyzing the spatial variation in soil nutrients.  相似文献   

7.
Abstract

The release of soil phosphorus (P) to solution has been described by extraction of soil with iron (Fe)‐oxide coated paper strips. Little information is available, however, on where this P is coming from. The effect of removal of reversibly adsorbed soil P on the distribution of inorganic P forms was investigated for 12 Italian soils. Phosphate was removed from these soils by Fe‐oxide strips after incubation with P (0 and 100 mg P kg‐1) for 90 days. With no applied P, 3 to 17% of the total soil active P [saloid‐P, aluminum‐phosphate (Al‐P), iron‐phosphate (Fe‐P), and calcium‐phosphate (Ca‐P) was removed by the Fe‐oxide strips. The change in strip‐P following P addition (100 mg kg‐1 soil), ranged from 12.9 to 53.5 mg P kg‐1, with P coming almost entirely from the active P fractions. A close relationship between the changes in desorbed strip‐P after P equilibration and soil P sorption index (SI) was found for the studied soils (r2=0.96). Thus, the release of soil P for plant uptake or transport in runoff was a function of the amount of “actively”; sorbed P and an estimate of P sorption.  相似文献   

8.
Carbonatite originating from the Lillebukt Alkaline Complex at Stjernøy in Northern Norway possesses favorable lime and potassium (K) fertilizer characteristics. However, enrichments of barium (Ba) and strontium (Sr) in carbonatite may cause an undesired uptake by plants when applied to agroecosystems. A field survey was carried out to compare concentrations of Ba, Sr, and macronutrients in indigenous plants growing in mineral soil developed on a bedrock of apatite–biotite–carbonatite (high in Ba and Sr) and of apatite–hornblende–pyroxenite (low in Ba and Sr) at Stjernøy. Samples of soil and vegetation were collected from three sites, two on carbonatite bedrock and one on pyroxenite bedrock. Ammonium lactate (AL)‐extracted soil samples and nitric acid microwave‐digested samples of soil, grasses, dwarf shrubs, and herbs were analyzed for element concentration using ICP‐MS and ICP‐OES. Concentrations of magnesium (Mg) and calcium (Ca) in both soil (AL) and plants were equal to or higher compared to values commonly reported. A high transfer of phosphorus (P) from soil to plants indicates that the apatite‐P is available to plants, particularly in pyroxenite soil. The non‐exchangeable K reservoir in the soil made a significant contribution to the elevated K transfer from soil to plant. Total concentrations of Ba and Sr in surface soil exhibited a high spatial variation ranging from 490 to 5,300 mg Ba kg?1 and from 320 to 1,300 mg Sr kg?1. The transfer of AL‐extractable elements from soil to plants increased in the order Ba < Sr < Ca < Mg < K, hence reflecting the chemical binding strength of these elements. Concentrations of Ba and Sr were low in grasses (≈ 20 mg kg?1), intermediate in dwarf shrubs and highest in herbs. Plant species and their affinity for Ca seemed more important in explaining the uptake of Ba and Sr than the soil concentration of these elements. The leguminous plant species Vicia cracca acted as an accumulator of both Ba (1.800 mg kg?1) and Sr (2.300 mg kg?1).  相似文献   

9.
Abstract

Three techniques were evaluated as soil P tests for western Canadian soils: anion‐exchange membrane (AEM), water, and bicarbonate extraction. The AEM, water, and bicarbonate‐extractable total P represented novel approaches to compare to the widely used bicarbonate‐extractable inorganic P (traditional Olsen) soil test. In a range of Saskatchewan soils, similar trends in predicted relative P availability were observed for AEM, water extraction, bicarbonate‐extractable total P, and bicarbonate‐extractable organic P. Correlations between soil test values revealed AEM and water‐extractable P to be most closely correlated, consistent with the similar manner of P removal in the two tests.

Phosphorus availability, as predicted by the tests, was compared to actual P uptake by canola and wheat grown on 14 soils in a growth chamber experiment. P uptake by canola was highly correlated with AEM (r2 = 0.86–0.90), water (0.87 ‐0.94), and bicarbonate‐extractable total (0.91) and inorganic (0.92) P. Uptake of P by wheat was not quite as highly correlated with test‐predicted values: AEM (r2 = ‐0.73–0.78), water (0.72–0.77), bicarbonate total (0.82), bicarbonate‐inorganic P (0.75).

The similarity in coefficients of determination among test methods indicated nearly identical abilities of the tests to predict soil P availability in the range of soils examined. The AEM and water extractions, unlike bicarbonate, are largely independent of soil type and may prove superior when a wider range of soils is being tested. Bicarbonate‐extractable total P and water‐extractable P suffer limitations in analytical simplicity and cost. In testing for P alone, AEM was considered superior to the other methods due to low cost, simplicity, independence of soil type, and high correlation with plant uptake.  相似文献   

10.
Plant growth experiments were conducted to reveal the mechanism by which organic matter (OM) and soil flooding enhance phosphorus (P) bioavailability for rice. It was postulated that reductive dissolution of iron‐(III) [Fe(III)] oxyhydroxides in soil releases occluded phosphate ions (PO4), i.e., PO4 that is not isotopically exchangeable in the original soil prior to flooding. Rice was grown in P‐deficient soil treated with factorial combinations of addition of mineral P (0, 50 mg P kg?1), OM (0, ≈ 20.5 g OM kg?1 as cattle manure +/– rice straw) and water treatments (flooded vs. non‐flooded). The OM was either freshly added just before flooding or incubated moist in soil for 6 months prior to flooding; nitrogen and potassium were added in all treatments. The soil exchangeable P was labeled with 33PO4 prior to flooding. The plant accessible P in soil, the so‐called L‐value, was determined from the 33P/31P ratio in the plants. The L‐values were inconsistently affected by flooding in contrast with the starting hypothesis. The OM and P addition to soil clearly increased the L‐value and, surprisingly, the increase due to OM application was larger than the total P addition to soil. An additional isotope exchange study in a soil extract (E‐value) at the end of the experiment showed that the E‐value increased less than the total P addition with OM. This suggests that plants preferentially take up unlabeled P from the OM in the rhizosphere compared to labeled labile inorganic P. The effects of soil flooding on P bioavailability is unlikely related to an increase of the quantity of bio‐accessible P in soil (L‐value) but is likely explained by differences in P mobility in soil.  相似文献   

11.
A large variety of extraction methods are used worldwide for the estimation of “plant‐available P” in soils. In Germany, the standard extractants are Calcium‐Acetate‐Lactate (CAL) and Double‐Lactate (DL). Until now there is no validated transformation procedure available and studies on the comparability of both methods have reported conflicting evidence. The uncertainty about the equivalence of CAL‐P and DL‐P hinders a direct comparison of the P fertility status and P fertilizer recommendations across Germany. Based on 136 datasets for soil samples from an interlaboratory comparison program and three P fertilization field trial sites, for which plant‐available P had been determined by both the CAL and DL method, we assessed the comparability of both extraction methods and derived simple and multiple regression equations to transform DL‐P into CAL‐P values. On average, DL extracted 30% more P than CAL. However, this strongly depended on soil pH and carbonate content. A simple linear regression model explained 70% of the variance. However, if simple linear regression models were fitted to pH‐specific samples (pH range 4.5 to 7.0) the R2 increased to 0.96. Based on an independent validation dataset (n = 48) we demonstrated that such pH‐specific models were more accurate than models that did not consider pH when transforming DL‐P to CAL‐P values. Multiple regression results showed that out of soil pH, Corg, Nt, and C : N ratio, only soil pH improved the model. The transformation equations in this study provide a step towards an improved comparability of P fertility status assessments of soils across Germany.  相似文献   

12.
Understanding soil test phosphorus (STP) and surface run‐off phosphorus (P) relationships for soils is necessary for P management. The objective of the study was to evaluate the efficacy of various soil test indices to predict P losses in surface run‐off. Selected sites were subjected to in situ rainfall simulations according to the protocol of the National Phosphorus Research Project ( NPRP, 2001 ). P from a composite of twenty‐four 2.0‐cm‐diameter core soil samples (0–5 cm) was extracted using the Olsen, Bray–Kurtz, Mehlich III, distilled water and 0.01 m calcium chloride procedures. All of these P extraction methods explained a significant amount of variability in surface run‐off total dissolved P [TP (<0.45)] (r2 0.67; P 0.01), where 0.45 is the filter pore diameter in microns. Multiple regression models showed extractable P to be the best soil predictor of surface run‐off TP (<0.45) among the studied soils. Despite extraction method or soil type, extractable P was the best soil predictor of surface run‐off TP (<0.45). Either agronomic (0.92 ≤ r2 0.96) or environmental (0.94 ≤ r2 0.96) soil tests were effective in estimating surface run‐off TP (<0.45) in select Mollisols.  相似文献   

13.
Abstract

Mungbean [Vigna radiata (L). Wilczek] grown in rainfed calcareous soils suffers with phosphorus (P) deficiency. In view of high cost and low use efficiency of P fertilizer, greenhouse, incubation, and field experiments were carried out for determining P deficiency diagnostic criteria and efficient method of P fertilizer application in mungbean. In a pot culture experiment using a P‐deficient Typic Ustocherpt, maximum increase in grain yield with P was 686% over the control; and fertilizer requirement for near‐maximum (95%) grain yield was 30 mg P kg‐1 soil where fertilizer was mixed with the whole soil volume (broadcast) and 14 mg P kg‐1 where mixed with 1/4th soil volume (band placement). In a field experiment on a P‐deficient Typic Camborthid, however, maximum increase in grain yield was 262% over the control. Band placement resulted in 73% fertilizer saving as P requirement was 66 kg ha‐1 by broadcast and only 18 kg ha‐1 by band placement. Critical P concentration range appears to be 0.27–0.33% in young whole shoots (≤30 cm tall) and 0.25–0.30% in recently matured leaves. In an incubation study using the same Typic Ustochrept, P extracted by the sodium bicarbonate (NaHCO3), the ammonium bicarbonate‐diethlylenetriaminepentaacetic acid (AB)‐DTPA), and the Mehlich 3 soil tests correlated closely with each other, P concentration of whole shoots, and total P uptake by mungbean plants. Critical soil test P levels for pot grown mungbean were NaHCO3,9 mg kg‐1; AB‐DTPA, 7 mg kg‐1; and Mehlich 3, 23 mg dm‐3 soil. The more efficient and economical ‘universal’ soil test, AB‐DTPA, is recommended for P fertility evaluation of calcareous soils.  相似文献   

14.
Abstract

Increasing soil bulk density has been shown to reduce root growth and decrease K uptake by soybeans (Glycine max L. Merrill). Changing soil bulk density also affects soil buffer power, b, and effective diffusion coefficient, De, which affect K influx. The relative decrease in K uptake due to reduced root growth as compared to reduced K influx is not known. Addition of P may affect root growth and P influx properties of plant roots. The objectives of this paper were (1) to use the Cushman mechanistic model to simulate the effect of changing soil bulk density and soil P on K uptake by soybeans, and (2) to determine the parameters that are changed by changes in bulk density and added P and their effect on K uptake. Plant and soil data of an experiment where Williams soybeans were grown for 21 days in pots of Raub (Aquic Argiudoll) silt loam with factorial treatments of two rates of K (0 and 100 mg K kg‐1 soil), two rates of P (0 and 100 mg P kg‐1 soil), and two bulk densities (1.25 and 1.45 g cm‐3 ) were used to verify the model. Plant and soil parameters for the model were measured independently of the verification experiment. Predicted K (y) uptake agreed with observed uptake (x) (y = 1.09x‐0.19; r = 0.97) for the P x K factorial and (y = 1.19X‐0.22; r = 0.90) for the K x soil bulk density factorial treatments. In a sensitivity analysis, the model predicted a maximal K influx at a soil bulk density of 1.38 g cm‐3. The greatest effect of soil bulk density on K uptake was due to reduction of root growth. Increased K uptake as a result of P addition was because of the effect on root growth.  相似文献   

15.
Diffusive gradients in thin‐films (DGT) technology provides an alternative assessment of available phosphorus (P) for a range of crops, suggesting a preliminary examination of the performance of the new DGT‐P test, compared to existing bicarbonate extractable Olsen and Colwell P tests, for pastures is justified. This study utilized historic data from the Australian National Reactive Phosphate Rock (NRPR) study (1992–1994) that included 25 experimental sites representing a wide range of soil types and climates used for pasture production. Stored (~19 yr) soil samples were analysed for DGT‐P, Olsen P and a single point P buffering index (PBI) and re‐analysed for Colwell P. Results showed the traditional bicarbonate extractable Colwell (r2 = 0.45, P < 0.001) and Olsen P (r2 = 0.27, P < 0.001) methods predicted relative pasture P response more accurately, compared to the novel DGT‐P test (r2 = 0.09, P = 0.03) when all 3 yr of data were examined. We hypothesize that the harsher bicarbonate extraction used for the Olsen and Colwell methods more accurately reflects the ability of perennial pasture roots to access less labile forms of P, in contrast to the DGT‐P test, which does not change the soil pH or dilute the soil and appears unable to fully account for a plants ability to solubilize P. Further studies are needed to compare the capacity of DGT‐P to measure P availability in perennial pasture systems and to better understand the soil chemical differences between pasture and cropping systems.  相似文献   

16.
Isotopically exchangeable phosphate (P) is a major source of P for plants. In practice, however, plant‐available P is assessed by chemical extractions solubilizing a mixture of P forms the availability of which is ill defined. We undertook an isotopic approach to assess the exchangeability of P extracted by (1) CO2‐saturated water (P‐CO2), (2) ammonium acetate EDTA (P‐AAEDTA), and (3) sodium bicarbonate (P‐NaHCO3) compared to the exchangeability of P extracted by water. Five topsoils with similar P‐fertilization histories but different soil properties were studied. Phosphorus was extracted from soils labeled with carrier‐free 33P after 1 week of incubation, and the specific activity (SA = 33P / 31P) of the extracts was compared with the SA of P extracted by water to calculate the amount of P isotopically exchangeable that had been solubilized during the extraction. P‐CO2 extracted between 20 and 100 times less P than P‐AAEDTA and P‐NaHCO3. The SA of P‐CO2 was not different from the SA of water‐extractable P, showing that P‐CO2 solubilized similar forms of P as water and that these forms can be considered as available. The SA of P extracted by the two other methods ranged between 25% and 63% for P‐AAEDTA and 66% and 92% for P‐NaHCO3 of the SA of water‐extractable P. The fraction of exchangeable P extracted by AAEDTA decreased linearly with increasing soil pH, suggesting that this method dissolves slowly or non‐exchangeable P from calcium phosphates.  相似文献   

17.
Although Ni is officially recognized as an essential micronutrient for all higher plants, the majority of the published research on soil availability of Ni focuses on its hazardous role as a heavy metal. The objective of the study was to evaluate certain Ni soil tests in uncontaminated soils for an initial estimation of its sufficiency critical levels. Nickel was extracted from 30 cultivated soils employing the following extraction methods: DTPA, AB‐DTPA, AAAc‐EDTA, Mehlich‐3, 0.1 M HCl, and 0.1 M HNO3. Ryegrass (Lolium perenne L.) was grown in pots containing the soils, harvested five times, certain plant parameters were determined, and the Cate–Nelson procedures were used for Ni critical levels determination. Among the six methods, HCl was the least reliable extractant for the evaluation of soil available Ni, whereas the most significant (p ≤ 5%) relationships between Ni concentration or Ni uptake by ryegrass and Ni soil tests were consistently obtained for AAAc‐EDTA or Mehlich‐3 extractable Ni. In many cases, > 80% of the variability of Ni concentration or uptake by ryegrass was explained by these two soil tests without the inclusion of other soil properties that affect Ni bioavailability. Sufficiency critical levels of Ni in soil were ≈ 2 mg kg–1 for both methods. Consequently, as an initial approach, concentrations of AAAc‐EDTA or Mehlich‐3 extractable Ni < 2 mg kg–1 are probably a good guide to indicate soils that will respond to Ni fertilization.  相似文献   

18.
The effects of 25 years of annual applications of P fertilizer on the accumulation and migration of soil Olsen‐P, and the effects of soil residual P on crop yields by withholding P application for the following 5 years, were evaluated in a subtropical region. Annual application of P fertilizer for 25 years to crops in summer (groundnut), winter (wheat, mustard or rapeseed) or in both seasons raised the Olsen‐P status of the plough layer (0–15 cm) from initially very low (12 kg P ha?1) to medium (18 kg P ha?1) and very high levels (40–59 kg P ha?1), depending on the amount of P surplus (amount of fertilizer applied in excess of removal by crops) (r = 0.86, P 0.01). However, only 4–9% of the applied P fertilizer accumulated as Olsen‐P to a depth of 15 cm (an increase of 2 mg kg?1per 100 kg ha?1 surplus P) in the sandy loam soil. In the following 5 years, the raising of 10 crops without P fertilizer applications decreased the accumulated Olsen‐P by only 20–30% depending upon the amount of accumulated P and crop requirements. After 29 years, 45–256 kg of residual P fertilizer had accumulated as Olsen‐P ha?1 in the uppermost 150 cm with 43–58% below 60 cm depth; this indicates enormous movement of applied P to deeper layers in this coarse textured soil with low P retention capacity for nutrients. Groundnut was more efficient in utilizing residual P than rapeseed; however, for both crops the yield advantage of residual P could be compensated for by fresh P applications. These results demonstrated little agronomic advantage above approximately 20 mg kg?1 Olsen‐P build‐up and suggested that further elevation of soil P status would only increase the risk of environmental problems associated with the loss of P from agricultural soils in this region.  相似文献   

19.
Abstract

Overwintering soil temperature may influence crop response to phosphorus (P) and indices of P availability in the humid, temperate, transitional climate of Tennessee. The effects of P fertilization and soil incubation temperature on sorghumsudangrass (Sorghum bicolor x S. Sudanese) grown on a Typic Hapludalf was investigated in a greenhouse study. In order to determine the effect of temperature on P availability, soils were incubated prior to cropping, at a constant temperature of 6°C or an average diurnal temperature of 24 and 36°C. Reagent grade Ca(H2PO4)2.H2O was used as the fertilizer source and applied at rates of 0, 10, 20, and 30 mg P kg‐1 for the first test and 0, 20, 40, 60, and 80 mg P kg 1 for the second test. Critical P concentration in the shoots for optimum yield was found to be 1.3 mg g‐1, corresponding to soil solution and labile P concentrations of 5.5 μmol L‐1 and 167 μg g‐1, respectively. Optimum yield occurred for applications of >65 mg P kg‐1 and was unaffected by soil incubation temperature. Applied P rates affected extractable P by five chemical extractants (Bray I, Bray II, Mehlich I, Mehlich III, and Mississippi), but soil incubation temperature had no affect. The extractants, however, were poorly correlated to plant P uptake and no one extractant appeared preferable to the others as an indicator of P availability.  相似文献   

20.
31P‐NMR spectroscopy on bulk soils is a powerful tool for the identification of the different phosphorus forms in soils and for the evaluation of the dynamics of soil P. Up to now the majority of the papers dealt with liquid state 31P‐NMR spectroscopy on soluble soil organic substances. Only few papers were addressed to the study of the different phosphorus forms directly in bulk soils. In the present paper, some organic and inorganic phosphates of known structures, which are likely to be present in soil systems, were studied by direct polarization (DP) magic angle spinning (MAS) 31P‐NMR spectroscopy in order to understand the electronic factors responsible for chemical shifts of the phosphorus (P) nucleus and to serve as guidelines to assign P resonances in soil spectra. Number of hydrating water molecules, type of counter‐cation, degree of covalence, and spatial conformation of P in phosphate structures were found to affect signal positions in 31P‐NMR spectra. Both hydrating water and increase in degree of covalence of the X‐O‐P bonds (X=H, Na) enhanced the electronic density (ED) around P, thereby producing up‐field shifts in 31P‐NMR spectra. The exchange of the Na+ counter‐cation with NH4+ resulted in an increase of the cation potential (PC) that is a measure of the cation polarizing power, and induced a down‐field shift of P signals, due to a corresponding reduction in ED around the P nucleus. Both NMR down‐ and up‐field shifts were observed in organic phosphates, and were dependent on the spatial orientation of the phosphate groups that may have been fixed anisotropically in the solid state. Based on the factors that influence P chemical shifts for standard phosphates, attempts to assign 31P‐NMR signals in the spectra of five different unperturbed bulk soils were made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号