首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 386 毫秒
1.
Adult Atlantic salmon (Salmo salar; approximately 800 g start weight) were fed diets with a high replacement of fish meal (FM) with plant proteins (70% replacement), and either fish oil (FO) or 80% of the FO replaced by olive oil (OO), rapeseed oil (RO) or soybean oil (SO) during 28 weeks in triplicate. Varying the lipid source only gave non‐significant effects on growth and final weight. However, a significantly reduced feed intake was observed in the SO fed fish, and both feed utilization and lipid digestibility were significantly reduced in the FO fed fish. Limited levels of dietary 18:3n‐3, precursor to EPA and DHA, resulted in no net production of EPA and DHA despite increased mRNA expression of delta‐5‐desaturase and delta‐6‐desaturase in all vegetable oil fed fish. Net production of marine protein, but not of marine omega‐3 fatty acids, is thus possible in Atlantic salmon fed 80% dietary vegetable oil and 70% plant proteins resulting in an estimated net production of 1.3 kg Atlantic salmon protein from 1 kg of FM protein. Production of one 1 kg of Atlantic salmon on this diet required only 800 g of wild fish resources (Fish in ‐ Fish out < 1).  相似文献   

2.
Changes in fatty acid metabolism in Atlantic salmon (Salmo salar) induced by vegetable oil (VO) replacement of fish oil (FO) and high dietary oil in aquaculture diets can have negative impacts on the nutritional quality of the product for the human consumer, including altered flesh fatty acid composition and lipid content. A dietary trial was designed to investigate the twin problems of FO replacement and high energy diets in salmon throughout the entire production cycle. Salmon were grown from first feeding to around 2 kg on diets in which FO was completely replaced by a 1:1 blend of linseed and rapeseed oils at low (14–17%) and high (25–35%) dietary oil levels. This paper reports specifically on the influence of diet on various aspects of fatty acid metabolism. Fatty acid compositions of liver, intestinal tissue and gill were altered by the diets with increased proportions of C18 polyunsaturated fatty acids and decreased proportions of n-3 highly unsaturated fatty acids (HUFA) in fish fed VO compared to fish fed FO. HUFA synthesis in hepatocytes and enterocytes was significantly higher in fish fed VO, whereas β-oxidation was unaltered by either dietary oil content or type. Over the entire production cycle, HUFA synthesis in hepatocytes showed a decreasing trend with age interrupted by a large peak in activity at seawater transfer. Gill cell prostaglandin (PG) production showed a possible seasonal trend, with peak activities in winter and low activities in summer and at seawater transfer. PG production in seawater was lower in fish fed the high oil diets with the lowest PG production generally observed in fish fed high VO. The changes in fatty acid metabolism induced by high dietary oil and VO replacement contribute to altered flesh lipid content and fatty acid compositions, and so merit continued investigation to minimize any negative impacts that sustainable, environmentally-friendly and cost-effective aquaculture diets could have in the future. Abbreviations: FO - fish oil; HUFA - highly unsaturated fatty acids acids (carbon chain length ≥C 20 with ≥3 double bonds); LO - linseed oil; RO - rapeseed oil; VO - vegetable oil. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
4.
Four dietary groups of juvenile Atlantic salmon, Salmo salar L., each with three replicates, were fed diets with increasing levels of docosahexaenoic acid (22:6n-3; DHA) and eicosapentaenoic acid (20:5n-3; EPA). Fatty acid composition of brain and eye was determined at the start and approximately every 3 weeks during the experimental period, and fatty acid composition of liver and fillet was determined in fish from the final sampling. Lipid class composition of brain and eye, and fatty acid composition of these lipid classes was determined at the end of the experiment. There was no effect of increasing dietary DHA content on fatty acid composition, lipid class composition or DHA levels in the lipid classes in the juvenile Atlantic salmon brain. The increasing dietary EPA content, however, was reflected in both the total fatty acid composition and in the EPA content in neutral lipids, phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylinositol (PI). A minor effect of the increasing dietary DHA content was found in the lipid composition of the juvenile salmon eye. Both EPA and 18:2n-6 levels in eye, however, clearly reflected the increasing and decreasing, respectively, dietary levels of these two fatty acids. The dietary EPA levels also affected the EPA levels in neutral lipids, PC, PE, PI and PS (phosphatidylserine) in the juvenile salmon eye. The results demonstrate that these dietary levels of DHA had no effect on brain lipid composition and only a minor effect on eye lipid composition. Furthermore, the dietary EPA levels significantly affected the lipid composition of both brain and eye. The fillet fatty acid composition reflected the dietary fatty acid composition, except for the DHA/EPA ratio, which was reversed in fillet compared with that in the diets. The liver fatty acid composition was also affected by the increasing dietary EPA and DHA levels.  相似文献   

5.
A 12‐week feeding trial was conducted to investigate the interactive effects between water temperature and diets supplemented with different blends of fish oil, rapeseed oil and crude palm oil (CPO) on the apparent nutrient and fatty acid digestibility in Atlantic salmon. Two isolipidic extruded diets with added fish oil fixed at 50% and CPO supplemented at 10% or 25% of total added oil, at the expense of rapeseed oil, were formulated and fed to groups of Atlantic salmon (about 3.4 kg) maintained in floating cages. There were no significant effects (P>0.05) of diet on growth, feed utilization efficiency, muscle total lipid or pigment concentrations. Fatty acid compositions of muscle and liver lipids were mostly not significantly different in salmon fed the two experimental diets but showed elevated concentrations of 18:1n‐9 and 18:2n‐6 compared with initial values. Decreasing water temperatures (11–6°C) did not significantly affect protein, lipid or energy apparent digestibilities of the diets with different oil blends. However, dry matter digestibility decreased significantly in fish fed the diet with CPO at 25% of added oil. Increasing dietary CPO levels and decreasing water temperature significantly reduced the apparent digestibility (AD) of saturated fatty acids. The AD of the saturates decreased with increasing chain length within each temperature regimen irrespective of CPO level fed to the fish. The AD of monoenes and polyunsaturated fatty acids was not affected by dietary CPO levels or water temperature. No significant interaction between diet and water temperature effects was detected on the AD of all nutrients and fatty acids. The results of this study showed that the inclusion of CPO up to about 10% (wt/wt) in Atlantic salmon feeds resulted in negligible differences in nutrient and fatty acid digestibility that did not affect growth performance of fish at the range of water temperatures generally encountered in the grow‐out phase.  相似文献   

6.
To study how hepatic lipid turnover and lipid transport may be affected by complete replacement of dietary fish oil (FO) with a vegetable oil blend (VO) from start feeding until the adult stages, Atlantic salmon (Salmo salar L.) were fed either 100% FO‐ or 100% VO‐based diets (55% rapeseed oil, 30% palm oil and 15% linseed oil) from start feeding until 22 months. Liver and plasma lipoprotein lipid class levels and lipoprotein fatty acid composition were analysed through the seawater phase, whereas liver fatty acid composition, plasma cholesterol, triacylglycerol (TAG) and protein levels were analysed through both freshwater and seawater stages. Further, enzyme activity of liver fatty acid synthetase (FAS), NADH‐isocitrate dehydrogenase, malic enzyme, glucose‐6‐phosphate dehydrogenase and 6‐phosphogluconate dehydrogenase and expression of the gene Peroxisome proliferator‐activated receptor γ (PPARγ) was analysed during both fresh water and seawater stages through the experiment. Dietary VO significantly increased salmon liver TAG and hence total liver lipid stores after 14 and 22 months of feeding. Further, after 22 months of feeding, plasma lipid levels and plasma low‐density lipoprotein (LDL) levels were significantly decreased in VO‐fed salmon compared with FO‐fed fish. The same trend, although not statistically significant, was seen for plasma very low‐density lipoprotein (VLDL). The activity of FAS was generally low throughout the experiment with the VO group having significantly lower activity after 16 months of feeding. The expression of PPARγ in livers increased prior to seawater transfer followed by a decrease, and then another increase towards the final sampling (22 months). Dietary vegetable oil replacement had no impact on PPARγ expression in salmon liver. In summary, liver TAG stores, plasma lipid and LDL levels were affected by dietary vegetable oil replacement in Atlantic salmon during a long–term feeding experiment. Current results indicate that high dietary vegetable oil inclusion increase hepatic TAG stores and decrease plasma lipid levels possible through decreased VLDL synthesis.  相似文献   

7.
This study assessed the suitability and cost efficacy of an equal blend of canola oil (CO) and poultry fat (PF) as a supplemental dietary lipid source for juvenile Atlantic salmon. Quadruplicate groups of Atlantic salmon (~400 g) held in 4000 L outdoor fibreglass tanks supplied with running (35–40 L min?1), aerated (dissolved oxygen, 7.88–10.4 mg L?1), ambient temperature (8.6–10.9°C) sea water (salinity, 26–35 g L?1) were fed twice daily to satiation one of three extruded dry pelleted diets of equivalent protein (488–493 g kg?1 dry matter) and lipid (267–274 g kg?1 dry matter) content for 84 days. The diets were identical in composition except for the supplemental lipid (234.7 g kg?1) source viz., 100% anchovy oil (AO; diet COPF‐0), 70.2% AO and 29.8% CO and PF (diet COPF‐30), and 40.3% AO and 59.7% CO and PF (diet COPF‐60). Atlantic salmon growth rate, feed intake, feed efficiency, protein and gross energy utilization, percent survival and whole body and fillet proximate compositions were not affected by diet treatment. Cost per kilogram weight gain was about 10% less for fish fed diet COPF‐60 than for diet COPF‐0. Percentages of saturated fatty acids in dietary and fillet lipids varied narrowly. Moreover, percentages of 18:1n‐9, monounsaturated fatty acids, 18:2n‐6, n‐6 fatty acids, 18:3n‐3, and ratios of n‐6 to n‐3 fatty acids in the flesh lipids were directly related to the dietary level of CO and PF whereas 22:6n‐3, the total of 20:5n‐3 (eicosapentaenoic acid; EPA) and 22:6n‐3 (docosahexaenoic acid; DHA), and n‐3 fatty acids revealed the opposite trend. Percentages of 22:6n‐3, EPA and DHA, and n‐3 fatty acids were significantly depressed in fish fed diet COPF‐60 versus diet COPF‐0. We conclude that a 1:1 blend of CO and PF is an excellent cost‐effective dietary source of supplemental lipid for Atlantic salmon in sea water.  相似文献   

8.
The aim of this study was to investigate the effects of different oils on growth performance and lipid metabolism of the grouper, Epinephelus coioides. Five experimental fish meal‐based isonitrogenous and isolipidic diets were formulated containing either 5.5%‐added fish oil (FO), soybean oil (SBO), corn oil (CO), sunflower oil (SFO) or peanut oil (PO). Each diet was fed to triplicate groups of 20 fish (initial body weight 13.2±0.02 g) grown in seawater at 28.0–30.5 °C for 8 weeks. Fish were fed twice a day to visual satiety. No significant differences in the survival, weight gain, specific growth rate, feed conversion ratio, protein efficiency ratio or hepatosomatic index were found between fish fed the FO or vegetable oils (VO) diets. Dietary lipid sources did not affect whole‐body composition among grouper fed the various diets. Muscle of fish fed the FO diet had significantly higher levels of 14:0, 16:0, 16:1n‐7, 20:5n‐3[eicosapentaenoic acid (EPA)] and docosahexaenoic acid (DHA)+EPA (except for PO fed fish) compared with those of fish fed VO diets. However, the levels of 18:1n‐9, 18:2n‐6 and DHA/EPA ratios in the muscle of fish fed FO diet were significantly lower than those of fish fed the VO diets. The liver of fish fed the FO diet had significantly higher levels of 18:0, 20:5n‐3, 22:6n‐3, n‐3 highly unsaturated fatty acids and DHA+EPA than those of fish fed the VO diets, whereas increases in 18:1n‐9, 18:2n‐6 and mono‐unsaturated fatty acid levels were observed in the liver of fish fed the VO diets.  相似文献   

9.
Duplicate groups of three genetic strains of Atlantic salmon smolts were cultured on diets containing either fish oil (FO) or a blend of vegetable oils (VO). Fatty acid compositions of liver and peripheral blood leucocytes were compared. The effect of different strains and diets on innate immune parameters and plasma prostaglandin E2 were also measured. Two strains were selected as being either 'fat' or 'lean' in terms of muscle adiposity. The third strain was a commercial stock (MH). Total replacement of dietary FO with VO resulted in reduced docosahexaenoic (DHA; 22:6 n -3) and eicosapentaenoic acids (EPA; 20:5 n -3) in liver, while oleic (18:1 n -9), linoleic (18:2 n -6) and α-linolenic (18:3 n -3) acids were all increased in VO-fed fish. Fatty acid compositions of blood leucocytes showed similar changes. Evaluation of innate immune function showed that in the fat strain, circulating leucocytes were significantly lower in VO fish. The lean strain also had significantly higher serum lysozyme activity than MH fish. Reduced haematocrit was seen in VO lean fish compared with FO lean fish. This study provides evidence of strain-induced differences in liver and leucocyte fatty acid compositions and innate immunity in Atlantic salmon fed either FO- or VO-based diets.  相似文献   

10.
Replacement of fish oil with sustainable alternatives, such as vegetable oil, in aquaculture diets has to be achieved without compromising the nutritional quality, in terms of n-3 highly unsaturated fatty acid (HUFA) content, of the product. This may be possible if the level of replacement is not too high and oil blends are chosen carefully but, if high levels of fish oil are substituted, a fish oil finishing diet prior to harvest would be required to restore n-3HUFA. However, a decontaminated fish oil would be required to avoid increasing undesirable contaminants. Here we test the hypotheses that blending of rapeseed and soybean oils with southern hemisphere fish oil will have a low impact upon tissue n-3HUFA levels, and that decontamination of fish oil will have no major effect on the nutritional quality of fish oil as a feed ingredient for Atlantic salmon. Salmon (initial weight ~ 0.8 kg) were fed for 10 weeks with diets in which 60% of fish oil was replaced with blends of soybean, rapeseed and southern hemisphere fish oil (SVO) or 100% decontaminated northern fish oil (DFO) in comparison with a standard northern fish oil diet (FO). Decontamination of the oil was a two-step procedure that included treatment with activated carbon followed by thin film deodorisation. Growth performance and feed efficiency were unaffected by either the SVO or DFO diets despite these having lower gross nutrient and fatty acid digestibilities than the FO diet. There were also no effects on the gross composition of the fish. Liver and, to a lesser extent flesh, lipid levels were lower in fish fed the SVO blends, due to lower proportions of neutral lipids, specifically triacylglycerol. Tissue lipid levels were not affected in fish fed the DFO diet. Reflecting the diet, flesh eicosapentaenoic acid (EPA) and total n-3 fatty acids were higher, and 18:1n-9 lower, in fish fed DFO than FO, whereas there were no differences in liver fatty acid compositions. Flesh EPA levels were only slightly reduced from about 6% to 5% although docosahexaenoic acid (DHA) was reduced more severely from around 13% to about 7% in fish fed the SVO diets. In contrast, the liver fatty acid compositions showed higher levels of n-3 HUFA, with DHA only reduced from 21% to about 18% and EPA increased from under 8% to 9–10% in fish fed the SVO diets. The evidence suggested that increased liver EPA (and arachidonic acid) was not simply retention, but also conversion of dietary 18:3n-3 and 18:2n-6. Increased HUFA synthesis was supported by increased hepatic expression of fatty acyl desaturases in fish fed the SVO diets. Flesh n-3HUFA levels and desaturase expression was significantly higher in fish fed soybean oil than in fish fed rapeseed oil. In conclusion, partial replacement of fish oil with blends of vegetable oils and southern hemisphere fish oil had minimal impact on HUFA levels in liver, but a greater effect on flesh HUFA levels. Despite lower apparent digestibility, decontamination of fish oil did not significantly impact its nutritional quality for salmon.  相似文献   

11.
Duplicate groups of Atlantic salmon parr were fed diets containing either fish oil (FO), rapeseed oil (RO), linseed oil (LO) or linseed oil supplemented with arachidonic acid (20:4n-6; AA) (LOA) from October (week 0) to seawater transfer in March (week 19). From March to July (weeks 20–34) all fish were fed a fish oil-containing diet. Fatty acyl desaturation and elongation activity in isolated hepatocytes incubated with [1-14C]18:3n-3 increased in all dietary groups, peaking in early March about one month prior to seawater transfer. Desaturation activities at their peak were significantly greater in fish fed the vegetable oils, particularly RO, compared to fish fed FO. Docosahexaenoic acid (22:6n-3:DHA) and AA in liver and gill polar lipids (PL) increased in all dietary groups during the freshwater phase whereas eicosapentaenoic acid (20:5n-3; EPA) increased greatly in all groups after seawater transfer. The AA/EPA ratio in tissue PL increased up to seawater transfer and then decreased after transfer. AA levels and the AA/EPA ratio in gill PL were generally higher in the LOA group. The levels of 18:3n-3 in muscle total lipid were increased significantly in the LO, LOA and, to a lesser extent, RO groups prior to transfer but were reduced to initial levels by the termination of the experiment (week 34). In contrast, 18:2n-6 in muscle total lipid was significantly increased after 18 weeks in fish fed the diets supplemented with RO and LO, and was significantly greater in the FO and RO groups at the termination of the experiment. Gill PGF production showed a large peak about two months after transfer to seawater. The production of total PGF post-transfer was significantly lower in fish previously fed the LOA diet. However, plasma chloride concentrations in fish subjected to a seawater challenge at 18 weeks were all lower in fish fed the diets with vegetable oils. This effect was significant in the case of fish receiving the diet with LOA, compared to those fed the diet containing FO. The present study showed that during parr-smolt transformation in Atlantic salmon there is a pre-adaptive increase in hepatocyte fatty acyl desaturation/elongation activities that is controlled primarily by environmental factors such as photoperiod and temperature but that can also be significantly modulated by diet. Feeding salmon parr diets supplemented with rapeseed or linseed oils prevented inhibition of the desaturase activities that is induced by feeding parr diets with fish oils and thus influenced the smoltification process by altering tissue PL fatty acid compositions and eicosanoid production. These effects, in turn, had a beneficial effect on the ability of the fish to osmoregulate and thus adapt to salinity changes.  相似文献   

12.
It is assumed that Florida pompano have dietary EPA (20:5n‐3) and DHA (22:6n‐3) requirements. However, it is unclear whether both are equally important in meeting demand for n‐3 long‐chain polyunsaturated fatty acids (LC‐PUFAs) or whether the requirement(s) can be influenced by other fatty acids. Accordingly, we assessed production performance and tissue composition of juvenile Florida pompano (41.0 ± 0.5 g) fed diets containing fish oil; beef tallow; or beef tallow partially or fully supplemented with EPA, DHA or both. After 8 weeks, no signs of fatty acid deficiency were observed. Although fish performance did not vary significantly among the dietary treatments, fish fed the DHA‐supplemented feeds exhibited numerically superior growth than those fed the other diets. Fillets of fish fed the beef tallow‐based diets contained reduced levels of n‐3 fatty acids and LC‐PUFAs and elevated levels of MUFAs and n‐6 fatty acids, although dietary supplementation with EPA and/or DHA attenuated these effects somewhat. Our results suggest that beef tallow is suitable as a primary lipid source in Florida pompano feeds and n‐3 LC‐PUFA requirements may be met by as little as 4 g/kg EPA and 4 g/kg DHA. However, there may be value in supplementing tallow‐based diets with DHA to enhance tissue levels and possibly growth.  相似文献   

13.
The shortage of the n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on the international markets has led to increasing substitution of fish oil by plant oils in Atlantic salmon (Salmo salar) feed and thereby reducing the EPA and DHA content in salmon. However, the minimum required levels of these fatty acids in fish diets for securing fish health are unknown. Fish were fed with 0, 1 or 2% EPA or DHA alone or in combination of both over a period, growing from 50 to 400 g. Primary head kidney leucocytes were isolated and stimulated with Toll-like receptor (TLR) ligands to determine if EPA and DHA deficiency can affect expression of important immune genes and eicosanoid production. Several genes related to viral immune response did not vary between groups. However, there was a tendency that the high-level EPA and DHA groups expressed lower levels of IL-1β in non-stimulated leucocytes. These leucocytes were also more responsive to the TLR ligands, inducing higher expression levels of IL-1β and Mx1 after stimulation. The levels of prostaglandin E2 and leukotriene B4 in serum and media from stimulated leucocytes were lower in both low and high EPA and DHA groups. In conclusion, leucocytes from low EPA and DHA groups seemed to be less responsive towards immunostimulants, like TLR ligands, indicating that low levels or absence of dietary EPA and DHA may have immunosuppressive effects.  相似文献   

14.
The effects of stearidonic acid (SDA; 18:4n‐3) derived from SDA‐enhanced, genetically modified soybeans (Monsanto Company, St Louis, MO, USA) on growth performance and fatty acid (FA) composition of large Atlantic salmon (Salmo salar; 2.1 kg initial weight) were evaluated. There was a stepwise decrease in feed intake and subsequent weight gain of immature Atlantic salmon with increased replacement of fish oil by SDA soy oil from 0%, 50% to 100% added oil. SDA increased and n‐3 highly unsaturated FA (n‐3 HUFA; eicosapentaenoic acid + docosahexaenoic acid) decreased in the diet and corresponding fillet with increased SDA oil inclusion. Salmon with the same weight gain fed SDA oil compared with rapeseed oil at 50% fish oil replacement had similar n‐3 HUFA fillet levels indicating little or no increased synthesis of n‐3 HUFA from SDA for deposition in the fillet. However, elongation of dietary SDA to 20:4n‐3 for deposition in the fillet of SDA oil fed fish was indicated. The increased SDA and 20:4n‐3 in the fillet of Atlantic salmon fed SDA oil compared with rapeseed oil at 50% fish oil replacement may be more effective as precursors for EPA in humans than 18:3n‐3 which was in the fillet at similar levels.  相似文献   

15.
16.
Due to its traditionally good availability, digestibility and high content of n ? 3 HUFA, fish oil is the main lipid source in fish feeds. However, world demand for this product has grown significantly in recent years, whereas its production, based on fisheries landings, is static. The purpose of the present study was to assess the effect of partial replacement of fish oil in compound diets for gilthead seabream and seabass, by several vegetable oil sources, on growth, dietary fatty acid utilization and flesh quality. Five iso‐energetic and isoproteic experimental diets were formulated (25% lipid content). Fish oil was the only added lipid source in the control (FO) diet, and it was included in the other experimental diets at a level high enough (40% of FO diet) to keep the n ? 3 HUFA levels well over 3% in order to cover the essential fatty acid requirements of these species. Fish oil was replaced by soyabean oil (SO), rapeseed oil (RO) and linseed oil (LO) or a mixture (Mix) of them. Feed intake in all dietary groups was in the range of results obtained for commercial diets in both species, and growth and feed utilization were very good. The results show that, providing a minimum content of essential fatty acids in the diet, it is possible to replace up to 60% of the fish oil by SO, LO and RO or a mixture of them in diets for seabream and seabass, without compromising fish growth. Fatty acid composition of liver and muscle reflected that of the diet, but utilization of dietary lipids differed between these two tissues and was also different for the different fatty acids. Despite reduction in dietary saturated fatty acids by the inclusion of vegetable oils, their levels in fish liver were as high as in fish fed the fish oil diet, whereas, in muscle, levels were reduced according to that in the diet. Linoleic and linolenic acids were accumulated in the liver proportionally to their levels in the diet, suggesting a lower oxidation of these fatty acids in comparison to other 18C fatty acids. Regarding eicosapentaenoic acid (20 : 5n ? 3; EPA), docosahexaenoic acid (22 : 6n ? 3; DHA) and arachidonic acid (20 : 4n ? 6; ARA), these essential fatty acids were reduced in the liver at a similar rate, whereas DHA was preferentially retained in the muscle in comparison with the other fatty acids, denoting a higher oxidation particularly of EPA, in the muscle. Some other PUFA increased despite their low dietary levels in seabream fed LO diets and in seabass fed SO diet, suggesting the stimulation of delta‐6 and delta‐5 desaturase activity in marine fish. Despite differences in fatty acid composition, fillet of fish fed vegetable oils was very well accepted by trained judges when assessed cooked.  相似文献   

17.
This study investigated the effects of varying dietary levels of decosahexaenoic acid (DHA) on growth performance, proximate composition and whole body fatty acid profiles of juvenile silver pomfret, Pampus argenteus. Triplicate groups of fish (30.55 ± 0.08 g) were fed diets containing 5.2%, 9.31% and 13.38% DHA (% of total fatty acids) or 0.85%, 1.52% and 2.18% DHA on dry diet weight for diets 1, 2 and 3 respectively. Survival was not affected by dietary DHA levels. The growth performance and feed utilization parameters of fish fed diets 2 and 3 were significantly (< 0.05) higher than those fed diet 1, although these parameters in diets 2 and 3 did not differ significantly (P > 0.05). Whole body lipid and fatty acid profiles were influenced by dietary DHA levels. Significantly higher n‐3 fatty acids particularly DHA, DHA:EPA(eicosapentaenoic acid) ratios and n‐3:n‐6 ratios were observed in fish fed diets 2 and 3 compared to those fed diet 1. Better growth performance and higher whole body DHA:EPA (2.31, 2.29) ratios and n‐3:n‐6 ratios (2.17, 2.12) observed in fish fed diets 2 and 3, respectively, suggests that silver pomfret juveniles have a higher requirement for n‐3 fatty acids, notably DHA for optimum growth and survival.  相似文献   

18.
We evaluated the effect of a diet containing insect meal and insect oil on nutrient utilization, tissue fatty acid profile and lipid metabolism of freshwater Atlantic salmon (Salmo salar). Insect meal and insect oil from black soldier fly larvae (Hermetia illucens, L.; BSF), naturally high in lauric acid (12:0), were used to produce five experimental diets for an eight‐week feeding trial. 85% of the dietary protein was replaced by insect meal and/or all the vegetable oil was replaced by one of two types of insect oil. A typical industrial diet, with protein from fishmeal and soy protein concentrate (50:50) and lipids from fish oil and vegetable oil (33:66), was fed to a control group. The dietary BSF larvae did not modify feed intake or whole body lipid content. Despite the high content of saturated fatty acids in the insect‐based diets, the apparent digestibility coefficients of all fatty acids were high. There was a decrease in liver triacylglycerols of salmon fed the insect‐based diets compared to the fish fed the control diet. This is likely due to the rapid oxidation and low deposition of the medium‐chain fatty acid lauric acid.  相似文献   

19.
Atlantic salmon (Salmo salar) were fed five graded levels of eicosapentaenoic acid (EPA, 20:5n‐3) and docosahexaenoic acid (DHA, 22:6n‐3), from 1.4 to 5.2% of total fatty acids (FA, 5–17 mg kg?1 feed), and grew from ~160 g to ~3000 g, with the period from 1450 g onwards conducted both at 6 °C and at 12 °C. All fish appeared healthy, and there were no diet‐related differences in haematological or plasma parameters, as well as intestinal histological or gut microbiota analysis. Fish reared at 6 °C had higher accumulation of storage lipids in the liver compared to fish reared at 12 °C. Liver lipids also increased with decreasing dietary EPA + DHA at 6 °C, while there was no such relationship at 12 °C. Gene expression of SREBP1 and 2, LXR, FAS and CPT1 could not explain the differences in liver lipid accumulation. In liver polar lipids, DHA was found to be reduced when dietary EPA + DHA was <2.7% of FAs, while the level of EPA in the membranes was not affected. In conclusion, reducing dietary EPA + DHA from 5.2 to 1.4% of total FAs had a minor impact on fish health. Temperature was the factor that most affected the liver lipid accumulation, but there was also an interaction with dietary components.  相似文献   

20.
The desaturation and elongation of [1-14C]18:3n-3 was investigated in hepatocytes of the tropical warm freshwater species, zebrafish (Danio rerio) and Nile tilapia (Oreochromis niloticus). The hepatocyte fatty acid desaturation/elongation pathway was assayed before and after the fish were fed two experimental diets, a control diet containing fish oil (FO) and a diet containing vegetable oil (VO; a blend of olive, linseed and high oleic acid sunflower oils) for 10 weeks. The VO diet was formulated to provide 1% each of 18:2n-6 and 18:3n-3, and so satisfy the possible EFA requirements of zebrafish and tilapia. At the end of the dietary trial, the lipid and fatty acid composition was determined in whole zebrafish, and liver, white muscle and brain of tilapia. Both zebrafish and tilapia expressed a hepatocyte fatty acid desaturation/elongation pattern consistent with them being freshwater and planktonivorous fish. The data also showed that hepatic fatty acid desaturation/elongation was nutritionally regulated with the activities being higher in fish fed the VO diet compared to fish fed the FO diet. In zebrafish, the main effect of the VO diet was increased fatty acid Δ6 desaturase activity resulting in the production of significantly more 18:4n-3 compared to fish fed the FO diet. In tilapia, all activities in the pathway were greater in fish fed the VO diet resulting in increased amounts of all fatty acids in the pathway, but primarily eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3). However, the fatty acid compositional data indicated that despite increased activity, desaturation of 18:3n-3 was insufficient to maintain tissue proportions of EPA and DHA in fish fed the VO diet at the same level as in fish fed the FO diet. Practically, these results indicate that manipulation of tilapia diets in commercial culture in response to the declining global fish oil market would have important consequences for fish fatty acid composition and the health of consumers. Scientifically, zebrafish and tilapia, both the subject of active genome mapping projects, could be useful models for studies of lipid and fatty acid metabolism at a molecular biological and genetic level. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号