首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
[目的]深入分析高寒草甸退化过程中土壤氮素转化特征,明确草甸退化对土壤氮素转化微生物基因丰度的影响,为认识高寒草甸的退化机理以及科学治理高寒退化草甸提供重要依据。[方法]以青藏高原不同退化程度高寒草甸(未退化、轻度退化、中度退化、重度退化)为研究对象,利用实时定量PCR法分析退化过程中土壤理化性质及与氮素转化相关基因(nifH,amoA-AOA,amoA-AOB,narG,nirK,nirS和nosZ)丰度的变化,明确影响高寒草甸氮素转化基因的关键因子。[结果]①随退化程度的加剧,高寒草甸土壤有机碳、全氮、硝态氮及铵态氮含量逐渐降低;②高寒草甸退化降低了与氮素转化相关的固氮nifH基因、氨氧化amoA-AOA和amoA-AOB基因丰度,但增加了反硝化narG,nirS和nirK基因丰度,且在重度退化草甸丰度最高;③nifH,amoA-AOA和amoA-AOB基因与土壤有机碳、硝态氮、铵态氮及水分呈显著正相关,narG,nirS和nirK基因与土壤有机碳、硝态氮及铵态氮含量呈显著负相关,与pH值呈显著正相关。[结论]高寒草甸退化对氮素转化微生物具有重要影响,土壤有机碳、pH值及水分是影响土壤氮素转化微生物基因的主要因素。  相似文献   

2.
冯蒙蒙  林永新  樊剑波  贺纪正 《土壤》2023,55(3):562-568
研究旱地红壤反硝化微生物功能基因nirS、nirK、nosZ I和nosZ Ⅱ的丰度对温度和氮添加的响应,可为农田红壤养分管理和生态环境保护提供指导建议。本研究以长期常规氮磷钾施肥的旱地红壤为研究对象,设置0 mg N/kg、25 mg N/kg、50 mg N/kg三个氮添加处理,15 ℃、25 ℃、35 ℃三个温度处理,进行微宇宙培养实验。在培养的第7和30天破坏性采集土样,进行DNA提取,测定反硝化微生物功能基因丰度。结果表明:培养7天后,nirS、nirK、nosZ I和nosZ Ⅱ基因丰度都在25 ℃时最高。培养30天后,nirS、nirK、nosZ I和nosZ Ⅱ基因丰度在15 ℃时最高,且随着温度升高而下降。氮添加对反硝化微生物功能基因丰度无显著影响。三因素方差分析表明,温度、氮添加和培养时间的交互作用显著影响反硝化微生物功能基因丰度。综上,旱地农田反硝化功能基因丰度受氮添加影响较小,但受温度显著影响,其丰度可能会呈现出日变化和季节变化,在土壤采样和氧化亚氮动态监测时应特别注意。  相似文献   

3.
设施菜田土壤氧化亚氮(N2O)脉冲式排放期间通常伴随着亚硝酸盐(NO2-)的大量积累,为揭示NO2-对设施菜田土壤N2O排放的影响机制,以两种典型蔬菜种植区土壤(碱性土壤/酸性土壤)为研究对象,通过室内培养试验,对比厌氧和好氧培养条件下添加NO2-后两种土壤无机氮转化与N2O、氮气(N2)和二氧化碳(CO2)等气体排放,以及氨氧化单加氧酶α亚基调控基因(amoA)、亚硝酸盐还原酶调控基因(nirK和 nirS,统称nir)和N2O还原酶调控基因(nosZ)的丰度和转录情况。结果显示:受pH等环境因素影响,土壤中NO2-含量并不一定与N2O排放之间存在相关性,但添加NO2-的处理显著增加了两种土壤的N2O排放量和N2O/(N2O+N2)指数(IN2O)(P<0.05)。碱性土壤中,60 mg?kg-1外源NO2-对土壤CO2排放无明显抑制作用,厌氧培养条件下nirK基因、好氧培养条件下amoA和nirS基因均出现了添加NO2-后转录拷贝数显著高于空白处理的现象,而nosZ基因无此现象。酸性土壤中,amoA转录活性整体较低,好氧空白处理时nirS基因转录拷贝数随培养时间的延长而增加(P<0.05);60 mg?kg-1外源NO2-明显降低了酸性土壤的CO2排放量、相关基因的丰度及转录拷贝数。上述结果显示,土壤中积累的NO2-会通过诱导nir基因转录与N2O还原酶竞争电子和抑制N2O还原酶活性等途径,增加土壤的IN2O,影响有氧条件下N2O的排放途径,研究结果将为探索设施菜田土壤氮素高效利用和N2O减排提供科学依据。  相似文献   

4.
土壤复垦是矿区生态环境恢复和耕地总量平衡及质量提升的根本要求。本研究依托山西襄垣采煤塌陷区复垦定位试验基地,采用Biolog-ECO方法和荧光定量PCR技术,研究了不施肥(CK)、单施化肥(CF)、单施有机肥(M)和有机无机培肥(MCF)4种培肥措施下复垦4年和8年土壤微生物碳代谢功能多样性及氮代谢功能基因丰度的变化特征。结果表明,随复垦年限增加,单施有机肥较其他处理可显著提高复垦土壤微生物的总碳源利用能力;不同处理复垦土壤微生物碳源相对利用率总体表现为氨基酸类>糖类>聚合物类>羧酸类>双亲化合物类>胺类,其中单施有机肥更大程度上提高了羧酸类、氨基酸类和胺类碳源的利用率;复垦年限和培肥措施没有改变复垦土壤微生物优势度指数,但有机无机配施较其他处理可显著提高香浓指数(H′)和Pielou均匀度指数;不同处理复垦土壤氮转化功能基因丰度总体表现为amoA(AOA)> amoA(AOB)>nisS、nirK> nifH,5种功能基因丰度均为以有机无机培肥处理最高,且随复垦时间增加而增加;复垦土壤有机质含量与nirS、nirK、nifH基因丰度以及AWCD值存在显著相关性,相关系数在0.707~0.807,同时5种氮转化功能基因丰度均与玉米产量存在显著或极显著的相关性,相关系数在0.824~0.949。综上所述,单施有机肥可提高土壤有机质含量,进而增强了复垦土壤碳代谢强度,有机无机培肥则更有利于复垦土壤碳氮代谢功能多样性的提升,并促进作物产量形成。  相似文献   

5.
土壤微生物作为碳氮循环过程的主要驱动者与作物生产和生态环境安全关系密切。目前,仅有少数基于单一氮循环过程的研究报导了功能基因的空间分布特征,缺乏关于氮循环关键过程微生物分布特征的耦联分析。本研究采用实时荧光定量PCR技术,对东北黑土农田土壤氮循环关键过程的固氮、氨氧化和反硝化过程功能基因丰度特征及对土壤因子的响应进行关联分析。研究发现,在低pH(4.5?5.0)土壤中,不同氮循环基因丰度均显著低于其他pH土壤样本。种植大豆的土壤nifH基因丰度显著高于种植玉米的土壤样本(分别高于60%和83%)。AOA amoA基因丰度显著高于AOB amoA基因丰度,AOA amoA与AOB amoA基因丰度的比值为3.1到91.0。氮循环功能基因丰度与土壤pH和TC之间存在显著的正相关关系(P < 0.01)。非度量多维尺度分析(NMDS)结果显示主要表征黑土区氮循环基因组成的NMDS1与土壤pH和TC显著正相关。方差分解分析(VPA)和随机森林分析(RF)结果显示土壤pH和TC是氮循环微生物基因丰度空间分布的最主要驱动因子。本研究发现除了土壤因子外,地理距离对农田土壤氮循环关键过程微生物分布也产生重要影响,为认识土壤微生物参与的农田生态系统的生物地球化学循环过程提供理论基础。  相似文献   

6.
不同施肥模式对土壤氮循环功能微生物的影响   总被引:3,自引:1,他引:2  
  【目的】   微生物在土壤氮循环过程中发挥着重要作用。通过研究农田土壤氮循环过程中不同功能微生物群落基因丰度对施肥模式的响应及其关键影响因素,探讨不同施肥模式调控下氮素转化的微生物学机制,为改善农业生产中氮素的管理策略提供理论依据。   【方法】   田间试验始于2011年,试验地点位于江苏省常州市溧阳市南渡镇,供试土壤为白土型水稻土,种植制度为稻麦轮作。试验包括单施化肥 (NPK)、化肥+畜禽有机肥 (NPKM)、化肥+秸秆还田 (NPKS) 以及相邻江苏省耕地质量监测点不施肥对照 (CK),共 4个处理。于2014年水稻成熟期采集土壤样品,采用实时荧光定量PCR法分析了土壤硝化 (amoA)、反硝化 (narG、nirS、nirK、norB、nosZ)、固氮 (nifH)、硝酸盐异化还原 (napA) 等氮循环过程的相关功能微生物基因丰度的变化。以氨氧化微生物为模式微生物,测定添加与不添加1-辛炔情况下的土壤硝化潜势,分析氨氧化古菌 (AOA) 与氨氧化细菌 (AOB) 功能基因丰度与土壤硝化功能的内在联系。   【结果】   与CK相比,NPK处理显著增加了土壤中AOB-amoA、narG、nosZ和nifH基因的丰度。与NPK处理相比,NPKS处理进一步提高了土壤中AOB-amoA、narG、nosZ、nifH以及nirK基因的丰度。与CK相比,除AOA-amoA、nirS、napA基因以外,NPKM处理显著提高了土壤中所有氮循环功能基因的丰度。AOB-amoA基因丰度的变化对土壤氮循环功能基因丰度的整体变异影响最大。AOB主导了施肥土壤的硝化过程 (81.90%~84.42%)。土壤总硝化潜势与AOB-amoA基因丰度显著相关,但与AOA-amoA基因丰度相关性不显著。氮循环功能微生物基因丰度主要受到土壤pH、土壤有机碳(SOC)和NO3–含量的影响。   【结论】   畜禽有机肥与秸秆的施用能够进一步刺激氮循环功能基因丰度的增长,促进土壤氮循环。土壤pH、SOC和NO3–含量是影响土壤氮循环功能微生物丰度的关键因素。施肥主要通过提高土壤AOB-amoA功能基因的丰度,进而提高土壤硝化潜势,因此在控制土壤硝化作用时应重点关注AOB微生物群落。  相似文献   

7.
【目的】为探讨滨海土壤盐渍化过程对氮转化的影响,本研究分析了滨海盐土自然盐度梯度下固氮菌和反硝化菌的分布特征。【方法】在莱州湾南岸及黄河口采集自然盐度梯度(0.64%~5.18%)土壤样品,人为划分为低盐度(0.64%~0.76%)、中盐度(1.25%~2.39%)、高盐度(3.49%~5.18%)三个梯度,利用荧光定量PCR和末端限制性片段长度多态性(T-RFLP)技术分析不同盐度梯度土壤中固氮菌(nifH基因)和反硝化菌(nosZ、nirS、nirK基因)的丰度、多样性及群落结构。【结果】固氮菌丰度在低盐区显著高于中、高盐区(P <0.05)。Spearman相关分析显示,nifH基因拷贝数与土壤NO3-含量显著正相关(P <0.05),Shannon指数与土壤平均粒径(d0.5)显著正相关(P <0.05)。典范对应分析表明,nifH基因群落结构与土壤盐度显著相关(P=0.04)。反硝化菌在该区域盐土中以nirK基因型占主导,nirK、nirS和nosZ三种基因的拷贝数受盐度影响不大,但(nirK+nirS)/nosZ...  相似文献   

8.
【目的】 以南方典型冷浸田为对象,研究化肥配施不同有机肥对冷浸田水稻产量以及土壤氮相关功能微生物群落丰度的影响,旨在为冷浸田土壤氮素活化和转化过程的定向调控,氮素利用效率提高及水稻高产施肥提供科学依据。 【方法】 通过连续 3 年 6 季的定位试验,采用土壤理化分析、酶学分析和荧光实时定量 PCR 技术深入探讨化肥配施不同堆肥原料有机肥对冷浸田养分活化、水稻产量提升及土壤氮相关功能微生物群落丰度的效应。本试验设 4 个处理,分别为单施化肥 (CK)、化肥配施猪粪 (PIM)、化肥配施牛粪 (CAM)、化肥配施鸡粪 (CHM)。 【结果】 CHM、CAM 处理水稻产量显著高于化肥处理( P < 0.05),较 CK 平均增产 10.23%、7.62%。连续施用 CHM、CAM 显著提高了土壤 pH,增加了土壤有机碳、全氮和铵态氮含量。三种堆肥原料的有机无机配施均能够提高土壤氮素循环相关功能微生物基因丰度,其中细菌、古细菌总群落 16s rDNA 丰度和氨氧化古菌 (AOA) 和氨氧化细菌 (AOB) 的氨单加氧酶 ( amoA) 基因丰度提高趋势一致,以 CHM 处理最高,但细菌总群落 16s rDNA 丰度增幅较小。亚硝酸盐还原酶 ( nirK、 nirS) 基因和一氧化二氮还原酶 ( nosZ) 基因丰度对不同处理的响应并不一致。相关性分析表明,土壤有机碳和全氮含量是影响 AOA、AOB、 nirK、 nirS 型反硝化细菌的重要因子。 【结论】 化肥配施鸡粪有机肥能显著提高冷浸田土壤铵态氮、速效磷含量,增加细菌、古菌、AOA 和 AOB 氨单加氧酶 ( amoA) 的基因丰度,增强土壤脲酶、蛋白酶和磷酸酶的活性,提升冷浸田土壤生产力。   相似文献   

9.
【目的】 生物质炭显著影响土壤氧化亚氮 (N2O) 排放,但关于其相关微生物机理的研究相对匮乏,尤其是生物质炭对酸性菜地土壤N2O排放的微生物作用机理。本文通过研究氮肥配施生物质炭对酸性菜地土壤N2O排放以及硝化和反硝化过程相关功能基因丰度的影响,探讨酸性菜地土壤N2O排放与功能基因丰度的关系,阐释生物质炭对酸性菜地土壤试验N2O排放的微生物作用机理。 【方法】 在田间一次性施入生物质炭 40 t/hm2,试验连续进行了3年,共9茬蔬菜。设置4个处理:对照 (CK)、氮肥 (N)、生物质炭 (Bc) 和氮肥 + 生物质炭 (N + Bc)。在施用后第三年,采集土壤样品进行室内培养,应用荧光定量PCR技术检测硝化过程氨氧化古菌 (AOA)、氨氧化细菌 (AOB) 功能基因amoA和反硝化过程亚硝酸还原酶基因 (nirK、nirS) 以及N2O还原酶基因 (nosZ) 等相关功能基因丰度,同时监测土壤pH值、无机氮 (铵态氮、硝态氮) 含量及N2O排放。 【结果】 与CK相比,生物质炭 (Bc) 处理的土壤有机碳 (SOC) 提高了27.1%,总氮 (TN) 提高了8.2%,amoA-AOB基因丰度显著降低了11.0%,nosZ基因丰度增加了21.2% (P < 0.05),N 2O排放没有显著变化 (P > 0.05)。与CK相比,施用氮肥 (N) 显著降低土壤pH ( P < 0.05),显著增加土壤无机氮含量、 nirK、nirS和nosZ功能基因丰度以及土壤N2O累积排放量 (P < 0.05)。与N处理相比,生物质炭与氮肥联合施用 (N + Bc) 处理显著增加 amoA-AOA、amoA-AOB、nirK、nirS和nosZ基因丰度,增幅分别为68.1%、39.3%、21.1%、19.8%、48.4% (P < 0.05),但 ( nirK + nirS)/nosZ的比值降低,同时N2O累积排放量显著降低33.3% (P < 0.05)。室内培养期间N 2O排放峰出现在1~5 d,N和N+Bc处理排放速率分别为 N 1.70 × 103和1.76 × 103 ng/(kg·h)。相关分析结果显示,N2O排放速率与氧化亚氮还原酶的标记基因nosZ基因拷贝数 (P < 0.05)、NH 4+-N含量 (P < 0.01) 呈显著正相关,与pH呈显著负相关 ( P < 0.01)。 【结论】 在菜地生态系统中氮肥和生物质炭联合施用可以有效缓解菜地土壤酸化,减少菜地土壤N2O排放,主要归因于反硝化作用nosZ基因丰度增加,(nirK + nirS)/nosZ比值降低。   相似文献   

10.
微塑料和抗生素都是新兴的环境污染物,受到广泛关注。本研究采用模拟抗生素污染土壤,通过批平衡解吸试验,研究了聚乙烯、聚苯乙烯等5种不同类型微塑料分别添加条件下,土壤中磺胺甲恶唑的解吸规律及其影响因素。研究结果显示:添加聚乙烯和聚苯乙烯微塑料可使土壤中磺胺甲恶唑的解吸速率降低,使土壤磺胺甲恶唑在10-48小时之间出现明显的慢解吸过程;并且添加聚乙烯和聚氯乙烯微塑料还能显著(p<0.05)降低溶液中磺胺甲恶唑的平衡解吸浓度。溶液的离子类型及其强度对供试土壤磺胺甲恶唑解吸的影响未受微塑料添加的影响,但体系中添加微塑料后,总体上可减小富里酸对土壤磺胺甲恶唑解吸的影响,使磺胺甲恶唑解吸量不会随着富里酸浓度的增加而降低。  相似文献   

11.
为揭示不同生物硝化抑制剂(BNIs)对红壤性水稻土N2O排放的影响差异及作用机制,通过21 d的土柱淹水培养试验,比较了三种BNIs 1,9-癸二醇(1,9-D)、亚麻酸(LN)和3-(4-羟基苯基)丙酸甲酯(MHPP)与化学合成硝化抑制剂双氰胺(DCD)对土壤N2O排放及相关硝化、反硝化功能基因的影响。结果表明:不同BNIs(1,9-D、LN、MHPP)可以显著平均降低土壤N2O日排放峰值40.1%;1,9-D和MHPP可分别抑制N2O排放总量44.5%和43.9%,而DCD和LN对N2O排放总量没有显著影响。1,9-D和MHPP对AOA(氨氧化古菌)、AOB(氨氧化细菌)硝化菌和nirS、nirK型反硝化菌的调控均有所不同,1,9-D可以同时抑制AOA、AOB和nirS微生物的生长;MHPP仅可以抑制AOA的生长;其中,AOA-amoA和nirS基因丰度与土壤N2O的排放呈显著正相关关系。同时,1,9-D和MHPP均增加了nosZ基因丰度及其与AOA-...  相似文献   

12.
Zhao  Jianwei  Xu  Yangfan  Peng  Lei  Liu  Guanglong  Wan  Xiaoqiong  Hua  Yumei  Zhu  Duanwei  Hamilton  David P. 《Journal of Soils and Sediments》2019,19(10):3648-3656
Purpose

Submerged plants make an important contribution to nitrogen cycling in lakes including in the rhizosphere microenvironment through microbial activities. The main objective of this study was to investigate the abundance of functional genes for nitrogen cycling and the ecological relationship between these genes in the rhizosphere sediment of a freshwater lake in summer.

Materials and methods

Sediment from the rhizosphere of four submerged macrophytes (Ceratophyllum demersum, Hydrilla verticillata, Potamogeton maackianus, and Vallisneria spiralis) was sampled in Lake Liangzi, China, in summer. The anammox bacteria community structure and abundance of five functional genes for nitrogen cycling, ammonia monooxygenase (amoA) of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), anammox 16S rRNA, and nitrite reductase genes (nirK and nirS) in the sampled sediment, were determined.

Results and discussion

A total of 100 anammox gene sequences were grouped into eight operational taxonomic units (OTUs) and genus Ca. Kuenenia was the dominant species in Lake Liangzi in summer. Quantitative polymerase chain reaction (qPCR) revealed that gene copies of AOA amoA (2.42?×?106 copies g?1) were more than one order of magnitude higher than those of AOB amoA (1.98?×?105 copies g?1). The nirS gene (4.13?×?108 copies g?1) was more abundant than the nirK gene (7.28?×?107 copies g?1). There was no significant difference in the abundance of the AOB amoA gene among the rhizosphere of the four macrophytes. Redundancy analysis (RDA) showed a positive correlation between the abundance of the anammox 16S rRNA gene, AOA amoA and AOB amoA, which suggested two of these microbes may have provided a substrate for anammox bacteria in summer.

Conclusions

The diversity of anammox in the rhizosphere of submerged macrophytes of the freshwater lake in summer was very low, but the plant species could affect the abundance of most nitrogen circulating bacteria, especially for anammox bacteria. Anammox 16S rRNA gene was positively correlated with four other functional genes, indicating that all four genes had significant effects on anammox bacteria.

  相似文献   

13.
This study evaluated the effect of silicate fertilizer on denitrification and associated gene abundance in a paddy soil. A consecutive trial from 2013 to 2015 was conducted including the following treatments: control (CK), mineral fertilizer (NPK), NPK plus sodium metasilicate (NPK + MSF), and NPK plus slag-based silicate fertilizer (NPK + SSF). Real-time quantitative PCR (qPCR) was used to analyze the abundances of nirS, nirK, and nosZ genes. Potential N2O emissions and ammonium and nitrate concentrations were related to the nirS and nirK gene abundance. Compared with the NPK treatments, the addition of a Si fertilizer decreased N2O emission rates and denitrification potential by 32.4–66.6 and 22.0–59.2%, respectively, which were probably related to increased rice productivity, soil Fe availability, and soil N depletion. The abundances of nirS and nirK genes were decreased by 17.7–35.8% and 21.1–43.5% with addition of silicate fertilizers, respectively. Rates of total N2O and N2O from denitrification (DeN2O) emission were positively correlated with the nirS and nirK gene abundance. Nitrate, exchangeable NH4 +, and Fe concentrations were the main factors regulating the nirS and nirK gene abundance. Silicate fertilization during rice growth may serve as an effective approach to decreasing N2O emissions.  相似文献   

14.
Nitrogen is a critical nutrient in plant-based primary production systems, therefore measurements of N cycling by microorganisms may add value to agricultural soil monitoring programs. Bacterial-mediated nitrogen cycling was investigated in soils from two broad land-uses (managed and remnant vegetation) across different Soil Orders from three geomorphic zones in Victoria, Australia, by examining the abundance of the genes amoA and nifH using quantitative polymerase chain reaction (qPCR). The aim of the study was to identify parameters influencing bacterial populations possessing the genes nifH and amoA, and examine their distribution at a regional scale across different management treatments. The gene amoA was most abundant in the neutral to slightly alkaline surface soils from Calcarosols in North-West Victoria. There was a highly significant (P < 0.001) interaction between land-use and geomorphic zones in terms of the abundance of amoA. Detection of the gene nifH was site specific with low copy number (less than 100 copies per nanogram of DNA) observed for some strongly acidic surface soil sites in North-East Victoria (Dermosols) and South-West Victoria (Sodosols/Chromosols), while nifH was more abundant in selected Calcarosols of North-West Victoria. The gene amoA was detected across more sites than nifH and was strongly influenced by land-use, with almost consistently greater abundance in managed compared to remnant sites, particularly for North-West and South-West Victoria. The abundance of nifH was not related to land-use, with similar copy numbers observed for both managed and remnant sites at some locations. For the gene nifH, there was no significant interaction between land-use and geomorphic zones, between managed and remnant sites or between the three geomorphic zones. Regression tree analysis revealed a number of likely soil chemical and microbial variables which may act as drivers of gene abundance of amoA and nifH. Variables identified as drivers for amoA included pH, Olsen P, microbial biomass carbon, nitrate and total nitrogen while for nifH the variables were microbial biomass carbon, electrical conductivity, microbial biomass nitrogen, total nitrogen and total potassium. Measures of N cycling genes could be used as an additional indicator of soil health to assess potential ecosystem functions. The spatial scale of the current study demonstrates that a landscape approach may assist soil health monitoring programs by evaluating N cycle gene abundance in the context of the different microbial and chemical conditions related to Soil Order and land-use management.  相似文献   

15.
氮肥对稻田土壤反硝化细菌群落结构和丰度的影响   总被引:6,自引:1,他引:5  
以氮肥田间定位试验为研究对象,利用PCR-DGGE(聚合酶链反应变性梯度凝胶电泳)和荧光定量PCR(real-time PCR)技术,通过对反硝化细菌nirS基因的检测,分析了定位试验第2年稻田反硝化细菌群落结构和丰度的变化。DGGE图谱及依据其条带位置和亮度数字化数值进行的主成分分析(PCA)结果均显示:在氮肥定位试验第2年,与不施肥对照(CK)比较,在水稻各个生育期(分蘖期、齐穗期和成熟期)内,施用氮肥[150kg(N)·hm-2]的稻田根层土或表土中的反硝化细菌群落结构均无明显变化;且稻田根层土或表土中的反硝化细菌群落结构在水稻各个生育期间也均无明显差异。荧光定量PCR结果显示,在水稻生长发育过程中,施用氮肥的稻田根层土或表土中的反硝化细菌nirS基因拷贝数始终显著(P<0.05)高于其对应的不施肥对照。此外,无论施用氮肥与否,根层土中的反硝化细菌nirS基因拷贝数在水稻成熟期时都会显著(P<0.05)降低;但表土中的nirS基因拷贝数在水稻各生育期间无明显变化;且水稻成熟期时施用氮肥和不施肥的稻田表土中nirS基因拷贝数都显著(P<0.05)高于根层土。同时,与对照比较施用氮肥可促进水稻增产44%。研究表明,短期定位试验中施用氮肥能够显著提高稻田土壤反硝化细菌的丰度,但对其群落结构没有明显影响。  相似文献   

16.
Previous studies have shown that phosphorus addition to P-limited soils increases gaseous N loss. A possible explanation for this phenomenon is element stoichiometry (specifically of C:N:P) modifying linked nutrient cycling, leading to enhanced nitrification and denitrification. In this study, we investigated how P stoichiometry influenced the dynamics of soil N-cycle functional genes. Rice seedlings were planted in P-poor soils and incubated with or without P application. Quantitative PCR was then applied to analyze the abundance of ammonia-oxidizing (amoA) and denitrifying (narG nirK, nirS, nosZ) genes in soil. P addition reduced bacterial amoA abundance but increased denitrifying gene abundance. We suggest this outcome is due to P-induced shifts in soil C:P and N:P ratios that limited ammonia oxidization while enhancing P availability for denitrification. Under P application, the rhizosphere effect raised ammonia-oxidizing bacterial abundance (amoA gene) and reduced nirK, nirS, and nosZ in rhizosphere soils. The change likely occurred through greater C input and O2 release from roots, thus altering C availability and redox conditions for microbes. Our results show that P application enhances gaseous N loss potential in paddy fields mainly through stimulating denitrifier growth. We conclude that nutrient availability and elemental stoichiometry are important in regulating microbial gene responses, thereby influencing key ecosystem processes such as denitrification.
Graphical abstract ?
  相似文献   

17.
The nitrous oxide and molecular N emissions from 5-cm length subsamples taken from 20-cm length sample corers containing eutric Cambisol soil fertilised either with urea, ammonium or nitrate for 1 year have been examined using gas chromatography. At the beginning of the incubation, the same N rate (260 kg N/ha) was added to the soil and kept constant during the experiment. The total abundance of the soil Bacteria and Archaea and that of nitrifiers and denitrifiers was estimated by quantitative PCR of the corresponding biotic variables 16S rRNA, amoA and napA, narG, nirK, nirS, norB, nosZI and nosZII genes. The abiotic variables dissolved oxygen, pH, exchangeable NH4+-N and NO3?-N contents and total C and total N were also analysed. None of the three fertilisers affected the total abundance of Bacteria and Archaea and nitrification was the main driver of nitrous oxide production in the 0- to 5-cm and 5- to 10-cm soil layers while denitrification was in the 10- to 15-cm and 15- to 20-cm soil horizons. Parallel to the reduction in the content of dissolved oxygen along the soil profile, there was a decrease in the total and relative abundance of the bacterial and archaeal amoA gene and an increase in the abundances of the denitrification genes, mainly in the 10- to 15-cm and 15- to 20-cm soil layers. A non-metric multidimensional scaling plot comparing the biotic and abiotic variables examined in each of the four 5-cm soil subsamples and the whole 20-cm sample showed a disparate effect of N fertilisation on N gas emissions and abundance of nitrifiers and denitrifiers bacterial and archaeal communities.  相似文献   

18.
Agricultural management significantly affects methane (CH4) and nitrous oxide (N2O) emissions from paddy fields. However, little is known about the underlying microbiological mechanism. Field experiment was conducted to investigate the effect of the water regime and straw incorporation on CH4 and N2O emissions and soil properties. Quantitative PCR was applied to measure the abundance of soil methanogens, methane-oxidising bacteria, nitrifiers, and denitrifiers according to DNA and mRNA expression levels of microbial genes, including mcrA, pmoA, amoA, and nirK/nirS/nosZ. Field trials showed that the CH4 and N2O flux rates were negatively correlated with each other, and N2O emissions were far lower than CH4 emissions. Drainage and straw incorporation affected functional gene abundance through altered soil environment. The present (DNA-level) gene abundances of amoA, nosZ, and mcrA were higher with straw incorporation than those without straw incorporation, and they were positively correlated with high concentrations of soil exchangeable NH4+ and dissolved organic carbon. The active (mRNA-level) gene abundance of mcrA was lower in the drainage treatment than in continuous flooding, which was negatively correlated with soil redox potential (Eh). The CH4 flux rate was significantly and positively correlated with active mcrA abundance but negatively correlated with Eh. The N2O flux rate was significantly and positively correlated with present and active nirS abundance and positively correlated with soil Eh. Thus, we demonstrated that active gene abundance, such as of mcrA for CH4 and nirS for N2O, reflects the contradictory relationship between CH4 and N2O emissions regulated by soil Eh in acidic paddy soils.  相似文献   

19.
Bacterial-feeding nematodes represent an important driver of the soil microbial activity and diversity. This study aimed at characterizing the impact of nematode grazing on a model functional bacterial guild involved in N-cycling, the denitrifiers. Bacterial-feeding nematodes (Cephalobus pseudoparvus) were inoculated into soil microcosms whose indigenous nematofauna had previously been removed. The size, genetic structure and activity of the soil denitrifier community were characterized 15 and 45 days after nematodes inoculation using quantitative PCR of the nirK, nirS and nosZ denitrification genes, fingerprinting of the nirK and nirS genes and denitrification enzyme activity measurements, respectively. A significant impact of C. pseudoparvus was observed on genetic structure of the nirK community, mainly due to shifts in the relative abundance of the dominant populations, but not on the nirS community. The grazing pressure also tended to decrease the density of all denitrification genes as well as that of 16S rRNA genes. Despite being non-significant, the extent of this decline in gene copy numbers ranged between 60 and 80% of the control microcosm genes densities. Finally, compared to non-inoculated microcosms, denitrification activity significantly decreased by 8% in response to the nematodes inoculation. The herewith data showed that predation by a single species of bacterial-feeding nematode can affect the soil denitrifier community.  相似文献   

20.
Winter forage grazing systems in New Zealand cause compaction of soil by grazing animals, especially when the soil is wet. However, there is little information on the effects of animal trampling on denitrifiers in soil, despite their importance for N2O production. Here, we report a field study of the abundance of the denitrifying genes nirS, nirK, and nosZ and N2O emissions following the application of dairy cow urine in a free‐draining stony soil. Importantly, we found that simulated animal trampling altered some of the denitrifying microbial communities, thus leading to increased N2O emissions. Over the 111 day measurement period, the abundance of nitrite (NO2?)‐reducing nirS gene copy numbers increased significantly by 87% in the trampled soil with urine (P < 0.01) and increased by 40% in the trampled soil without urine (P < 0.05), but the nirS gene abundance did not change significantly in the nontrampled soil. The abundance of NO2? reducing nirK gene copy numbers was not affected by trampling, but increased significantly following urine application. The abundance of N2O‐reducing nosZ clade I and nosZ clade II gene copy numbers increased significantly in the trampled soil, but did not change significantly in the nontrampled soil. N2O emissions from the trampled soil were about twice that from the nontrampled soil without urine (1.20 and 0.62 kg N2O‐N per ha, respectively) and about eight times greater (6.24 kg N2O‐N per ha) than from nontrampled soil (0.80 kg N2O‐N per ha) when urine was applied. These results strongly suggest that animal trampling during winter forage grazing can have a major impact on denitrifying communities in soil, which in turn stimulate greater denitrification with increased N2O emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号