首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
应用透射电镜技术,对3头昆明犬精子的超微结构进行了观察。结果表明,昆明犬精子头部呈卵圆形,长约5.05μm,宽约0.91μm。颈部和尾部横切近圆形。颈部很短,长约0.92μm,直径为0.63μm。尾部中段长约15.02μm,直径约0.86μm;轴丝为9 2型。中段与主段套管式连接。终段轴丝为9×2 2形式。通过观察,没有发现昆明犬精子的独征。同时,冷冻对一些精子细胞膜和顶体造成损害,表现为细胞肿胀,头部和尾部主段、终段质膜变薄、皱褶、破损或丢失;顶体肿胀,顶体外膜囊泡化或不连续,个别出现顶体全脱;中段线粒体较完整,冷冻对昆明犬精子的损害并不十分严重。  相似文献   

2.
西藏獒犬精子的超微结构观察   总被引:1,自引:0,他引:1  
应用透射电镜技术。对冷冻复温后西藏獒犬精子的超微结构进行了观察。结果表明.西藏獒犬精子头部呈卵圆形.长约4.62μm、宽约3.13μm、厚约0.66μm。颈部和尾部横切近圆形。颈部很短、长约0.88μm.直径为0.63μm。尾部中段长约7.9μm.直径约0.83μm;轴丝为9+2型:线粒体螺旋42~49转。中段与主段套管式连接。终段轴丝为9×2+2形式。同时.冷冻对一些精子细胞膜和顶体造成损害.表现为细胞肿胀.头部和尾部主段、终段质膜变薄、皱褶、玻损或丢失;顶体肿胀,顶体外膜囊泡化或不连续。个别出现顶体全脱;中段线粒体较完整.冷冻对西藏獒犬精子的损害并不严重。  相似文献   

3.
文中对马鹿(Cervus elaphus)精子形态与超微结构进行了研究。马鹿精子经固定、脱水、置换、包埋和聚合,用超薄切片机切片,再用醋酸双氧铀、柠檬酸铅染片,最后于透射电镜下观察其超微结构的变化。观察结果表明:马鹿精子全长(58.75±2.35)μm,由头部(8.93±0.24)μm、颈部(1.00±0.16)μm和尾部(48.18±1.18)μm三部分组成;头部呈扁卵圆状,绝大部分被浓缩且电子密度较高的精核所占据,顶体似帽状扣在精核之上,约占头部的2/3,其前部较为膨大;颈部位于头部和尾部之间,这个区域较短;尾部可分为中段、主段和终段。马鹿尾部轴丝的结构类型为"9+2";微管结构类型为"9+9+2"。  相似文献   

4.
鸭精子超微结构初步探讨   总被引:1,自引:0,他引:1  
在相差显微镜下,鸭精子的头部和尾部结构与鸡精子相似,鸭精子头部略长,尾部略短。在电子扫描镜下,可见到顶体异常精子呈现质膜膨胀。顶体外膜膨胀,顶体粒脱落,顶体脱落等。在电子显微镜下,鸭精子直径约5μ,顶体呈锥形,顶体柄伸入到核质内约1.1-1.2μ,颈部近中心粒形成的九组三联微管结构,外径约为0.23μ,远中心粒形成的九个卵圆球,每个球的横径约为0.15μ。螺旋线粒体部分全长约3μ(鸡为4.2-5μ),正常者表面平滑,异常者表面凹凸不平。尾部无中心纤丝区约1.55μ,该区后端2个卵圆形结构,是中心纤丝的起始部位。尾部主段起始于终环,长约54.3μ。尾部尾段长约0.9μ。  相似文献   

5.
对棕熊精子体外获能前后和异种穿卵的超微结构观察表明,棕熊精子全长77μm,由头、颈和尾3部分组成.头部长7.3μm,宽2.5μm,主要由核、顶体及顶体后区组成;颈部由中心粒和9条纵行分节的节往组成;尾部全长68.2μm,其中中段长13.2μm,线粒体为65~68旋,主段中央为“9 2”的微管结构,其外方被9条致密纤维和纤维鞘包裹.精子获能前群集成簇,运动缓慢;获能后精子呈超激活运动.获能的精子质膜膨胀,顶体外膜囊泡化,引起顶体反应,质膜并未参加囊泡化.顶体反应完成后,仅有顶体内膜包在精子核膜的外面.棕熊精子与仓鼠的卵相互作用,多以赤道段和顶体后区附着于卵膜.  相似文献   

6.
为了研究超低温冷冻前后德国牧羊犬精子超微结构的变化,采用扫描电镜和透射电镜对冷冻前后德国牧羊犬精子超微结构变化进行研究,结果显示在扫描电镜下,鲜精整体呈“蝌蚪状”,头部呈扁卵圆形.在透射电镜下精子纵切面头部呈“楔形”,头部细胞膜由外向内分别由质膜、顶体外膜、项体内膜和核膜组成.精子尾部中段横切面由外向内可见线粒体鞘膜、9束外周致密纤维,9对轴丝和2根中央微管.精子头长约为5.40 μm,头宽3.26 μm,颈长1.25 μm,颈宽0.55 μm,尾部中段长11.34 μm,中段直径0.87 μm,尾部长55.70 μm,线粒体螺旋数为44旋.鲜精和冷冻前精子头部、颈部和尾部形态变化差异均不显著(P>0.05).超低温冷冻后精子头部、颈部和尾部发生形态变化的精子数极显著高于鲜精和冻前精子数(P<0.01).冻后顶体发生明显形态变化的精子占54.21%,高于发生颈部形态变化(10.61%)和尾部形态变化(28.83%)的精子数.结果表明鲜精和冻前精子形态变化不显著,而超低温冷冻后精子头部、颈部和尾部发生形态变化的精子数显著高于鲜精和冻前精子数.  相似文献   

7.
为探明巴布亚企鹅精子的形态结构及超微结构特征,试验对5只处于繁殖季节的雄性巴布亚企鹅采用无创的背部按摩法获得新鲜精液,经扫描电镜和透射电镜对精子形态与超微结构分别进行分析。结果表明:利用扫描电镜观察到的巴布亚企鹅精子属于典型的鞭毛精子,头部呈椭球形,长11.40~11.60μm;精子中段较短,长1.83~2.69μm;精子尾部细长,长47.50~59.74μm;精子超微结构显示,精子的头部长而窄,呈椭球形,在中段发现了自噬体,长0.61~0.81μm,呈新月形,精子的尾部细长、呈鞭毛状。同时观察到了9+2微管结构0.30~0.42μm与尾部中心轴平行排列。此研究从试验层面阐明了巴布亚企鹅精子的超微结构,对巴布亚企鹅授精机制的研究、繁殖和种质资源库建设提供了基础,为有效遏制巴布亚企鹅遗传多样性的降低、也为珍稀动物巴布亚企鹅异位保存提供技术支持。  相似文献   

8.
用精子异种穿卵方法检测牛冷冻精液精子的质量   总被引:2,自引:0,他引:2  
牛冷冻精液要在液氮-79℃-196℃下保存,从理论上讲,冷冻可以使精子胞质不形成冰晶而处于玻璃化状态,停止了代谢活动,但是长期在-196℃下保存及在制作过程中,再加上输精前的解冻操作等,都能损伤精子的头部质膜和顶体外膜.经电镜研究解冻后发现精子头部,一部分解冻精子质膜膨胀破裂,甚至顶体外膜也发生部分泡状化,而将顶体内的酶类释放出去形成伪顶体反应.这种精子在显微镜下检查时非常活跃,但根本不可能与体内的成熟卵进行融合受精.  相似文献   

9.
为进一步降低冷冻解冻过程对山羊精子的理化损伤,本试验系统检验了肌醇类冰晶抑制剂(SIB)和海藻糖对山羊精子的冷冻保护效果。采用假阴道法采集6只云南黑山羊精液,离心洗涤去除精浆后和冷冻稀释液混合,经4℃平衡、液氮气相预冻后直接投入液氮保存。解冻后检测精子活力、顶体、质膜以及低渗耐受性。同时采用透射电镜(TEM)观察冷冻对精子超微结构的影响。结果表明:1,4-环己二醇(1,4-CHD)和海藻糖处理组精子活力(41.35%±8.14%和43.59%±6.23%)、顶体完整性(62.73%±7.62%和64.29%±7.81%)和低渗耐受性(40.29%±7.41%和39.79%±6.58%)均显著高于对照组(35.97%±6.21%、55.46%±8.91%和34.17%±5.68%,P0.05),且海藻糖可以有效抑制冷冻解冻过程导致的精子凋亡。流式分析结果表明,1,4-CHD不能降低冷冻对山羊精子质膜完整性和磷脂酰丝氨酸(PS)分布的损伤,但是海藻糖可以显著降低冷冻解冻过程中对山羊精子质膜的损伤。电镜结果表明,冷冻对精子质膜和顶体等结构损伤严重,解冻后部分精子质膜发生肿胀、脱落或断裂等现象。而且,顶体外膜存在脱落现象,顶体内容物发生部分甚至完全泄漏。电镜结果进一步证实海藻糖对冷冻精子质膜的保护效果要优于1,4-环己二醇。总之,肌醇类SIB和海藻糖可以降低山羊精子的冷冻损伤,但相对于海藻糖而言,肌醇类SIB并不能降低冷冻对山羊精子质膜的损伤。  相似文献   

10.
梅花鹿精子冷冻前后形态和超微结构的研究   总被引:9,自引:0,他引:9  
采用光学显微镜和电子显微镜对冷冻前后的梅花鹿精子的形态和超显微结构进行了观察。结果表明:梅花鹿精子全长61.6±2.70μm,其中头长7.19±0.47μm,中段长12.08±0.75μm。线粒体的螺旋数是63.68±4.66旋,中段线粒体每个螺旋约由3~5个线粒体组成。梅花鹿精子超微结构有3个特点:一是头部的厚度为牛、羊、猪精子的1/2;二是在中环处的质膜未见反折现象,并且主段与中段的联接是以套管式镶嵌;三是末段以9+2结构变成20根(12+7+1)单丝管形式排列。冷冻处理可使梅花鹿精子顶体膨胀,顶体内容物丢失,顶体内发生空泡,顶体外膜自身囊泡化,线粒体发生断裂和丢失,末段纤维束因质膜丢失而分散成扫帚状。冷冻后的梅花鹿精子畸形率极显著增高(P<0.01),冷冻解冻是致使梅花鹿精子顶体完整率和活力降低的主要原因。  相似文献   

11.
为了丰富鸵鸟精子的形态资料和为提高鸵鸟的人工授精技术提供参考,采用透射电镜和扫描电镜对鸵鸟精子的超微结构进行观察,并且与其它非雀形目鸟类以及哺乳动物的精子结构进行了比较。结果表明,鸵鸟精子呈细长的圆柱状,分为头部、颈段、中段、尾段、末段,其结构与美洲鸵和Tinamou精子相似。鸵鸟精子头部由顶体和精子核组成,精子核中有一条顶体刺。鸵鸟精子没有明显的颈部。中段的外周环绕着线粒体鞘。主段的中央为轴丝,轴丝外周有纤维鞘。鸵鸟精子的超微结构与美洲鸵和tinamou相似,但是与其它非雀形目的鸟类和哺乳动物的精子有很大的区别。  相似文献   

12.
With the aid of a transmission electron microscope we studied the ultrastructure of frozen and thawed ram sperm. The cryoprotective agents do not completely prevent the occurrence of structural changes in spermatozoa. The sperm membrane system is affected. The greatest and most frequent damage is to the acrosome, the cell membrane and mitochondria are less injured. We observed regional differences in the damage to the cell membrane. It is most damaged above the acrosome, least in the postacrosomal area and in the principal piece of the tail. We found considerable variability in the changes among individual spermatozoa from the same ejaculate. The changes are not in the nature of mechanical damage as a result of the occurrence of ice microcrystals. We therefore think that the occurrence of structural changes is dependent on damage at molecular level and consists of a change in the physical-chemical properties of membranes.  相似文献   

13.
The ultrastructure of the spermatozoa of the domestic duck (Anas platyrhynchos sp.) was analysed by transmission and scanning electron microscopies and compared with the results obtained in preliminary studies involving other non-passerine birds. The spermatozoa were characterised by the presence of a short head, short midpiece and long principal piece. The head consisted of a reduced acrosome that contained moderately electron-dense homogenous material. The implantation fossa was observed between the base of the nucleus and the proximal centriole. The midpiece contained electron-dense material associated with the proximal centriole and nuclear membrane, and a long distal centriole surrounded throughout its length by 11-12 elliptical mitochondria. A dense annulus separating the midpiece from the principal piece was visible. Posterior to the annulus, the axoneme was formed surrounded by a dense fibrous sheath, representing the principal piece or flagellum, which was a long segment with a smooth surface and a smaller diameter than the midpiece. The spermatozoon of the domestic duck resembles that of other non-passerine birds, corresponding to a basic type of spermatozoon similar to that of reptiles, called sauropsid type.  相似文献   

14.
Semen sample was collected from two captive adult Yangtze finless porpoises ( Neophocaena phocaenoides asiaeorientalis ) during physical examination. One individual was aged about 9 years with body length 143 cm (total length) and body weight 46.1 kg in 2003. The age of the other was unknown and its body length was 147 cm and body weight was 43 kg in 2004. Ultrastructure of their spermatozoa was examined using scanning and transmission electron microscope. The sperm concentration was 4.17 × 109 spermatozoa per ml by the cytometer. The approximate dimensions of the spermatozoa were as follows: head length, 3.366 ± 0.140 μm (mean ± SE, n  = 15); head width, 1.896 ± 0.099 μm ( n  = 15); and neck length, 1.004 ± 0.074 μm ( n  = 10). The tail included midpiece, principal piece and terminal piece. The length of the midpiece was 1.882 ± 0.077 μm ( n  = 9). There is no apparent boundary between the principal piece and the terminal piece, so the length of the principal piece and the terminal piece was 44.612 ± 3.485 μm ( n  = 5). Total length of the spermatozoa was 53.314 ± 4.580 μm ( n  = 10). The acrosome covered approximately 45.8% of the anterior portion of the head.  相似文献   

15.
Freezing of boar spermatozoa includes the cryoprotectant glycerol, but renders low cryosurvival, owing to major changes in osmolarity during freezing/thawing. We hypothesize that aquaporins (AQPs) 7 and 9 adapt their membrane domain location to these osmotic challenges, thus maintaining sperm homeostasis. Western blotting (WB) and immunocytochemistry (ICC) at light and electron microscope levels with several commercial primary antibodies and protocols explored AQP location on cauda epididymal and ejaculated spermatozoa (from different fractions of the ejaculate), unprocessed, extended, chilled and frozen‐thawed. Although differences in WB and ICC labelling were seen among antibodies, AQP‐7 was conspicuously located in the entire tail and cytoplasmic droplet in caudal spermatozoa, being restricted to the mid‐piece and principal piece domains in ejaculated spermatozoa. AQP‐9 was mainly localized in the sperm head in both caudal and ejaculated spermatozoa. While unaffected by chilling (+5°C), freezing and thawing of ejaculated spermatozoa clearly relocated the head labelling of AQP‐7, but not that of AQP‐9. In vitro mimicking of cell membrane expansion during quick thawing maintained the localization of AQP‐9 but relocated AQP‐7 towards the acrosome. AQP‐7, but not AQP‐9, appears as a relevant marker for non‐empirical studies of sperm handling.  相似文献   

16.
绵羊精子尾部颈段主要由关节头、节柱、近端中心粒、内棒、远端中心粒、轴丝的中央微管、外周致密纤维、线粒体等组成,外包有质膜。经分析发现,绵羊精子尾部颈段结构不稳固,其中,关节头与细胞核连接处,关节头与节柱连接处和节柱与外周致密纤维吻合处较易发生断裂  相似文献   

17.
The fine structure of the spindle shape body (SSB) of boar spermatid was studied using testes samples fixed by perfusion. This structure appeared on the middle piece which served as the upper border of the fibrous sheath of principal piece during the transition period between the late acrosome phase to the maturation phase of spermiogenesis. The formation of this thread-like spindle form coincided with the development of the postnuclear sheath with perinuclear ring just prior to the growth of the equatorial segment of the acrosome. Likewise, the ribs of the fibrous sheath on the principal piece were observed to have already formed but have not yet completed the mitochondrial sheath. The total size of the SSB and its consisting microtubule were measured. The functional meaning of this transitory construction may involve a threshold condition on the sperm middle piece.  相似文献   

18.
本试验探讨了氟对小鼠附睾中成熟精子超微结构的影响,为氟的生殖毒性研究与检测提供依据。选取8周龄性成熟雄性昆明小鼠20只,随机分为4组,对照组小鼠饮用蒸馏水,低、中和高氟组小鼠分别饮用含25、50和100 mg/L氟化钠的蒸馏水,于45 d后断颈处死小鼠,取小鼠附睾尾,经2.5%戊二醛固定后,采用透射电镜观察小鼠附睾中成熟精子的超微结构变化。与对照组相比,低氟组小鼠精子头部质膜断裂,部分脱落,个别线粒体肿胀、形态模糊;中氟组精子头部质膜脱落,顶体部分缺失,线粒体形状不规则,嵴间腔扩大;高氟组精子头部质膜脱落,线粒体排列不规则,出现空泡化,嵴结构模糊。结果表明,氟暴露小鼠附睾中成熟精子头、尾部中段均有不同程度的结构改变,尤以线粒体出现较明显的异常,且氟浓度越高,精子超微结构损伤越严重。  相似文献   

19.
Although computer‐assisted systems for sperm morphometry and morphological analysis are important tools in the study of male fertility, their use in extensive systems in alpacas is limited by factors such as the expense of equipment and the high altitudes of the Andean region. The objectives of this study were to evaluate alpaca sperm head morphometry using a nonautomated digital method and determine the frequency of sperm abnormalities based on strict criteria for sperm morphology in fertile male alpacas. Ejaculates (n = 15) from seven alpacas were collected, and sperm smears stained with modified Papanicolaou were processed. For morphometric analysis, 3,000 sperm (200 cells/sample) images were captured at 400× magnification and Quick Photo MICRO 3.0 software was used for manual measurement of basic (sperm head length, width, perimeter and area) and derived variables (ellipticity, shape factor, elongation and regularity). For morphology assessment, smears were observed at 1000× magnification according to WHO and strict criteria. Average morphometric parameters were length 5.48 μm, width 2.99 μm, perimeter 13.62 μm, area 12.43 μm2, ellipticity 1.86, shape factor 1.20, elongation 0.29 and regularity 1.05. Significant between‐individual and within‐individual differences were found in morphometric parameters. Based on morphometric study, sperm heads were classified as elliptical or normal (49%), long (18%), short (2%), pyriform (12%), round (9%), large (6%) and small (4%). Morphological analysis found no additional sperm head defects in 49% of normal sperm obtained by morphometry, although a 4% incidence of neck/mid‐piece defects and a 16% incidence of principal‐piece defects were found. We conclude that sperm head morphometry assessment in fertile alpacas using a nonautomated digital method is feasible, and that defects in sperm heads constitute the main morphological alteration (>50% of the sperm population), based on WHO and strict criteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号