首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil microbial communities can develop trace metal tolerance upon soil contamination with corresponding metals. A few studies have reported co-tolerance in such cases, i.e. tolerance to other metals than those to which the microbial community had been exposed to. This study was set-up to test for co-tolerance of nitrifying communities to zinc (Zn) and copper (Cu) and to relate tolerances to shifts in community structure using amoA AOB (ammonia oxidizing bacteria) DGGE. Seven sets of soils, each representing a Cu or Zn contamination gradient were sampled from four locations. At two locations, both Cu and Zn had been added as single contaminants. Increased Zn and Cu tolerance of the nitrifying communities was consistently observed in response to corresponding soil contamination. Co-tolerance to Zn was obtained in two of the three Cu gradients and that to Cu in one of the four Zn gradients. DGGE analysis and sequencing showed that contamination with either Zn or Cu selected for identical AOB phylotypes in soils at one location but not at the other location. The nitrifying community structures in soils from different locations did not become more similar upon Zn exposure than those in corresponding uncontaminated soils. Hence, trace metal tolerance development was not due to the emergence of specific AOB phylotypes, but due to the emergence of different AOB phylotypes bearing tolerance mechanisms for Zn, Cu or both metals.  相似文献   

2.
Long-term impacts of metal contamination derived from sewage sludge on soil microbial communities have been widely evaluated, but confounding effects have made it difficult to draw firm conclusions and thus to advise on safe metal limits. Here we used Multiplex-terminal restriction length fragment polymorphism (M-TRFLP) to assess the long-term impact of sludge-borne Zn and Cu contamination on the structure of bacterial, fungal and archaeal communities across seven different soils at metal levels relevant to current guideline limits. Despite strong effects of site on microbial community structure, analysis of similarity (ANOSIM) demonstrated a small but significant effect of Zn on bacteria (P < 0.001), archaea (P < 0.001), and fungi (P < 0.001). Significant effects of Cu on bacteria (P < 0.001), archaea (P < 0.001) and fungi (P < 0.001) were also observed. Several bacterial and fungal T-RFs were identified as responding to Zn or Cu. For example the bacterial T-RF 72 was negatively correlated with Zn and Cu, and T-RF 259 was positively correlated with Zn. Attempts to identify these bacterial markers of Zn and Cu contamination suggest a negative impact of Cu on Acidobacteria in arable soils. These results demonstrate for the first time, that despite a strong influence of site on microbial community structure, effects of Zn and Cu derived from sewage sludge can be detected as shifts in bacterial, fungal and archaeal communities indicating a common response more than 11 years after sludge addition.  相似文献   

3.
Copper (Cu) is accumulating in agricultural soils worldwide creating concern for adverse impacts on soil microbial communities and associated ecosystem services. In order to evaluate the structural and functional resilience of soil microbial communities to increasing Cu levels, we compared a Cu-adapted and a corresponding non-adapted soil microbial community for their abilities to resist experimental Cu pollution. Laboratory soil microcosms were set-up with either High-Cu soil from Cu-amended field plots (63 g Cu m−2) or with Low-Cu control soil from the same five-year field experiment. Laboratory treatments consisted of Cu amendments in the presence or absence of pig manure. Microbial activities (soil respiration, substrate-induced respiration, [3H]leucine incorporation), bacterial community structure (terminal restriction fragment length polymorphism, T-RFLP), community-level physiological profiles, and pollution-induced bacterial community tolerance (PICT detected using the [3H]leucine incorporation technique) were monitored for 12 weeks. The High-Cu and Low-Cu soil microbial communities initially exhibited almost identical structure and function and could only be distinguished from each other by their differential Cu tolerance. Experimental Cu pollution inhibited microbial activities, affected bacterial community structure, and induced further bacterial community tolerance to Cu. However, Low-Cu and High-Cu soil microbial communities showed essentially identical responses. Manure amendment did not protect against Cu toxicity and slightly increased Cu bioavailability as measured by a Cu-specific whole-cell bacterial biosensor. Our results indicate convergence of bacterial community structure and function in the High-Cu and Low-Cu soils during the five-year field experiment. We conclude that soil bacterial communities can exhibit structural and functional resilience to a five-year Cu exposure by virtue of their ability to develop Cu tolerance without affecting overall community structure. The observed increased Cu tolerance may involve phenotypic adaptation or selection at the micro-diversity level, for example an increased proportion of Cu-resistant strains within each bacterial species, which go undetected by T-RFLP community fingerprinting. Finally, our results indicate that Cu-dissolved organic matter complexes contribute to microbial toxicity in manure-amended soils implying that free Cu may comprise a poor predictor of metal toxicity.  相似文献   

4.
Pollution induced community tolerance (PICT) has been suggested as an end-point measurement less affected by confounding environmental factors compared to standard methods of microbial growth, activity and community composition. We evaluated the use of PICT to determine Cu toxicity in vineyard soils polluted with Cu based fungicides (25-1120 mg Cu kg−1). These soils also varied in pH (4.3-7.3), organic C (0.31-6.91%) and texture (14-56% silt). PICT was estimated as bacterial community tolerance to Cu measured by the [3H]leucine incorporation method. Bacterial tolerance to Cu increased 9 times in the most polluted compared to the unpolluted soils. Cu tolerance was also affected to a minor degree by pH, organic C and soil texture. Lower bacterial tolerance was found in soils with high pH and organic C, probably due to Cu becoming less bioavailable in soils with high pH and organic C content. The silt content appeared to increase bacterial tolerance, probably due to fine soil particles decreasing Cu bioavailability during the PICT detection phase. Despite the effects of other environmental factors, the main determinant of increased bacterial community tolerance to Cu was the pollution level. PICT measured with the leucine incorporation technique thus appears to be a sensitive and stable concept to evaluate toxic impacts, unless soils with very different pH, organic C or texture are studied.  相似文献   

5.
An 8 year study to investigate the effects of Zn-spiked sewage sludge additions on the microbial community structure and microbial processes was carried out in a field soil under pasture. The microbial community structure was evaluated using a combination of multiplex-terminal restriction fragment length polymorphism (M-TRFLP) and T-RFLP fingerprinting approaches. Soil respiration, microbial biomass and enzymatic activities were measured as indicators of soil microbial processes. Changes in the microbial community structure, with Zn additions were evident in all the microbial groups investigated (bacteria, fungi, archaea, actinobacteria and rhizobia/agrobacteria). The fungal community showed the greatest response to Zn additions compared to the other microbial communities measured. The relative abundance of several fungal terminal restriction fragments (TRFs) significantly increased in high Zn treated treatments, at the expense of others, some of which were lost from T-RFLP profiles completely. These results indicate that metal-spiked sludge application can have long-lasting impacts on the composition of the microbial community in pasture soils. Despite notable changes in community structure there was no significant long-term impact of Zn-spiked sludge applications on microbial respiration, biomass or enzyme activities.  相似文献   

6.
Pollution-induced community tolerance (PICT) allows finding a cause–effect relationship between pollution and adverse changes in a community. In our previous study we found that functional diversity of bacterial communities decreased significantly with increasing metal concentration, in both forest humus and meadow topsoil. Thus, the aim of the present study was to test whether tolerance of soil bacterial communities had increased as an effect of long-term metal pollution. Bacterial tolerance was tested with the use of the Biolog® ECO plates in soils originating from the most polluted and the least polluted sites from three forest and five meadow transects located near smelters in Avonmouth (England), Clydach (Wales), and Głogów and Olkusz (Poland). We found that tolerance of bacterial communities was significantly increased in polluted meadow soils when compared to control meadow soils. On the contrary, no increase in tolerance was detected in polluted forest humus.  相似文献   

7.
A study was made of oribatid mite communities and their responses to metal contamination derived from the Kosogorsky metallurgical plant located in the Tula District, Russia. Mite communities were sampled in three different seasons in four sites at different distances from the smelter. Concentrations of zinc, copper, cadmium, lead and iron were measured in ten mite species. The data show that the mite community as a whole is quite tolerant to the metal contamination caused by the Kosogorsky plant. At the polluted sites some species typical for nutrient-rich soils appeared, but community structure and species diversity were not seriously affected by metal contamination. In general, oribatid mites accumulated metals to very high internal concentrations. Average Cu, Cd, Pb and Fe concentrations did not differ significantly between species, but Zn did, and its level was associated with the mode of feeding of the species. Microphytophagous species, feeding exclusively on fungi, accumulated zinc in higher concentrations than other mites. This study illustrates the potential for bioindication by the little studied but species-rich group of soil oribatids.  相似文献   

8.
There is an increasing concern about rice (Oryza sativa L.) soil microbiomes under the influence of mixed heavy metal contamination.We used the high-throughput Illumina MiSeq sequencing approach to explore the bacterial diversity and community composition of soils in four paddy fields,exhibiting four degrees of mixed heavy metal (Cd,Pb and Zn) pollution,and examined the effects of these metals on the bacterial communities.Our results showed that up to 2 104 to 4 359 bacterial operational taxonomic units (OTUs) were found in the bulk and rhizosphere soils of the paddy fields,with the dominant bacterial phyla (greater than 1% of the overall community) including Proteobacteria,Actinobacteria,Firmicutes,Acidobacteria,Gemmatimonadetes,Chloroflexi,Bacteroidetes and Nitrospirae.A number of rare and candidate bacterial groups were also detected,and Saprospirales,HOC36,SC-I-84 and Anaerospora were rarely detected in rice paddy soils.Venn diagram analysis showed that 174 bacterial OTUs were shared among the bulk soils with four pollution degrees.Rice rhizosphere soils displayed higher bacterial diversity indices (ACE and Chao 1) and more unique OTUs than bulk soils.Total Cd and Zn in the soils were significantly negatively correlated with ACE and Chao 1,respectively,and the Mantel test suggested that total Pb,total Zn,pH,total nitrogen and total phosphorus significantly affected the community structure.Overall,these results provided baseline data for the bacterial communities in bulk and rhizosphere soils of paddy fields contaminated with mixed heavy metals.  相似文献   

9.
The effects of temperature on the growth rate and metal toxicity in soil bacterial communities extracted from unpolluted and polluted soils were investigated using the thymidine and leucine incorporation techniques. An agricultural soil, which was contaminated in the laboratory with Cu, Cd, Zn, Ni or Pb, and an uncontaminated forest soil were used. Measurements were made at 0°C and 20°C. Leucine incorporation was found to be as sensitive to heavy metals as thymidine incorporation in the short-term trial used to indicate heavy metal tolerance. Similar IC50 values (the log of the metal concentration that reduced incorporation to 50%) were also obtained at 0 and 20°C, independently of the technique used. Metal tolerance could thus be measured using both techniques at any temperature in the range 0–20°C. In the long-term experiment different temperature-growth relationships were obtained on the basis of the rate of thymidine or leucine incorporation into bacterial assemblages from unpolluted and polluted soils, as judged from the minimum temperature values. This could not be attributed to the metal addition alone since different patterns were observed when different metals were added to the soil. Thus, the minimum temperature for thymidine incorporation was similar in Cu-polluted and unpolluted soil, while in soils polluted with Cd and Zn the minimum temperature increased by 2°C, and Ni and Pb additions increased the minimum temperature by 4°C compared to the unpolluted soil. This suggested that heavy metal pollution led to bacterial communities showing different temperature characteristics to those in the corresponding unpolluted soil. Similar observations were deduced from the minimum temperatures required for leucine incorporation. Three groups of bacterial communities were distinguished according to the growth response to temperature in polluted soils, one group in Cu-polluted soil, a second group in soil polluted with Zn and Cd, and a third group in soils polluted with Ni and Pb.  相似文献   

10.
Stability and resilience of a variety of soil properties and processes are emerging as key components of soil quality. We applied recently developed measures of biological and physical resilience to soils from an experimental site treated with metal‐contaminated sewage sludge. Soils treated with cadmium‐, copper‐ or zinc‐contaminated, digested or undigested sewage sludge were studied. Biological stability and resilience indices were: (i) the time‐dependent effects of either a transient stress (heating to 40°C for 18 hours) or a persistent stress (amendment with CuSO4) on decomposition, and (ii) the mineralization of dissolved organic carbon (DOC) released by drying–rewetting cycles. Physical stability and resilience measures were: (i) compression and expansion indices of the soils, and (ii) resistance to prolonged wetting and structural regeneration through drying–rewetting cycles. Soil total carbon and DOC levels were greater in the sludge‐amended soils, but there were no differential effects due to metal contamination of the sewage sludge. Effects of metals on physical resilience were greater than effects on soil C, there being marked reductions in the expansion indices with Cd‐ and Cu‐contaminated sludge, and pointed to changes in soil aggregation. The rate of mineralization of DOC released by drying and wetting was reduced by Zn contamination, while biological resilience was increased in the Zn‐contaminated soil and reduced by Cd contamination. We argue that physical and biological resilience are potentially coupled through the microbial community. This needs to be tested in a wider range of soils, but demonstrates the benefits from a combined approach to the biological and physical resilience of soils.  相似文献   

11.
Anthropogenic metal contamination is a pervasive problem in many urban or industrial areas. The interaction of metals with native soil communities is an important area of research as scientists strive to understand effects of long-term metal contamination on soil properties. Measurements of free soil enzyme activities can serve as useful indicators of microbial metabolic potential. The goals of this study are to determine extracellular soil enzymatic activities with respect to corresponding metal concentrations within a site of long-term contamination. These data are examined to understand relationships between extracellular soil enzyme activities and persistent metal loads in situ. Here we present such results from a rare research opportunity at an un-remediated, urban brownfield in Jersey City, NJ, USA. The soils of the site developed over the last 150 years through the dumping of urban fill from New York City as well as industrial rail use. The site was abandoned and fenced in the late 1960s, and within it, there is a mapped gradient of metal concentration in the soils, including As, Pb, Cr, Cu, Zn, and V. We measured soil enzymatic potential (alkaline phosphatase, cellobiohydrolase, and l-leucine-amino-peptidase) across four plots within the site and at an uncontaminated reference site that is of the same successional age and geographic influence. We found the highest enzymatic activities for all three activities measured at the site with the greatest soil metal loads and a particularly strong relationship among enzyme activity and the metals V and Cr. Our results differ from many experimental studies that show decreased soil enzyme activity in soils experimentally treated with metals. The results may indicate the effects of long-term adaptation of soil communities within these metal contaminated soils.  相似文献   

12.
There is only sparse information on the metal contamination of agricultural soils in the former Soviet Union and the development of impacts during the process of transformation to a private structure of production. In this study a first overview on the metal load (Pb, Zn, Cu, Cr, Mn) of agricultural soils in central and eastern regions of Georgia is given using 251 subsamples from 106 profiles on 37 plots. While the data sets for lead (Pb) and chromium (Cr) are rather homogeneous and range only within narrow limits, the contents of zinc (Zn) and copper (Cu) vary much more. Additionally, manganese (Mn) was tested. Here the data vary largely, which is probably due to the natural soil loads. Very low loads for all investigated metals are typical for communally used pastures (Allmende) and especially for a biologically managed farm. On the contrary, Cu loads frequently exceed the median by more than five to ten times (the maximum value is 1023 mg kg−1) in vineyards. The comparison of complete soil profiles proves that this is due to the application of copper sulphate for pest control. In the Bolnisi region south of Tbilisi extremely high loads in the upper soil horizons are found not only for Cu, but for Zn as well, ranging up to 794 mg kg−1. Compared to all other data, the loads for Pb and Cr are also high in several samples. Cu, Zn and Pb are significantly correlated to one another in the Bolnisi region. This striking situation most probably results from the frequent irrigation of the plots by industrially contaminated water from the Mashawera River. Due to economic deficiencies the application of chemicals in Georgian agriculture has dropped heavily since 1990. Consequently, the metal contamination of agricultural soils in general is rather low, being far below western European tolerance limits. Intensive pasturing might even cause values close to the natural loads due to erosion and/or the export by the way of plants and livestock. On the other hand, some specific types of land use cause serious environmental problems. This is especially true for vineyards and plots that are irrigated with contaminated water. Overgrazed plots tend to soil erosion. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

13.
Abstract

Two digestion procedures, employing aqua regia‐HF (ARHF) and HNO3‐HCIO4‐HF (HHH), were used to analyze residual metals (following a chemical fractionation scheme) and total metal content of two soils, one moderately polluted by municipal sludge applications and the other a grossly‐contaminated sample (20.8% Pb) from a battery recycling site. Although commonly used in sequential extraction analyses, the ARHF method solubilized only 53% (significant at p = 0.05) of the HHH‐determined residual Pb in the battery soil. For the sludge‐amended soil, residual Cd, Pb, and Zn were not statistically different by the two methods. For the battery soil, a single ARHF extraction also underestimated total Pb and Cu relative to HHH, but both methods gave statistically‐similar total Cd, Cu, Pb, and Zn for the sludge‐amended soil. As the sample metal concentration increased, the ability of ARHF to solubilize HHH‐equivalent metal quantities generally decreased. Since the degree of contamination is often unknown for environmental samples, the HHH method is more reliable for assessing residual and total metals in polluted soils  相似文献   

14.
The effects of past applications of farmyard manure (FYM, applied from 1942 to 1967), metal‐contaminated sewage sludge (applied from 1942 to 1961) and mineral fertilizer (NPK, applied from 1942 until now) on the microbial biomass and community structure in a sandy loam, arable soil from the Woburn Market Garden Experiment, UK, were investigated in 1998. Concentrations of Cu, Ni and Zn in soils which previously received sewage sludge were less than current European Union (EU) limits, but the soil Cd concentration was more than twice the permitted limit. Organic‐C concentration in the FYM‐treated soil and contaminated soils was about twice that of NPK‐treated soil. The initial microbial biomass‐C and estimates of total bacterial numbers by acridine orange direct count were significantly (P < 0.05) greater in the FYM‐treated soil compared with the NPK‐treated and the most contaminated soils. Total phospholipid fatty acid (PLFA) concentration (another measure of biomass) was significantly greater in the FYM‐treated soil compared with either the low or high metal‐contaminated soils, both of which contained similar PLFA concentrations. In the metal‐contaminated soils, in contrast, fluorescent Pseudomonas counts, as a percentage of total plate counts, were at least 1.5 times greater than in the uncontaminated soils. The concentrations of these microbial parameters were significantly (P < 0.05) less in the NPK soil than in all the other treatments. Biomass‐C as a percentage of organic‐C was also significantly (P < 0.05) greater in the uncontaminated soils compared with the metal‐contaminated soils. Biomass specific respiration rates in the metal‐contaminated soils were c. 1.5 times those in the FYM‐treated soil. In the metal‐contaminated soils, the concentration of mono‐unsaturated and hydroxy‐fatty acids (derived from phospholipids), and lipopolysaccharide hydroxy‐fatty acids (all indicative of Gram‐negative bacteria) were significantly (P < 0.05) greater than branched fatty acids (indicative of Gram‐positive bacteria). Furthermore, Gram‐negative counts were 62–68% greater than Gram‐positive counts in the metal‐contaminated soils. Branched fatty acid concentration was significantly (P < 0.05) greater in the FYM‐treated soil than in the metal‐contaminated soils. Gram‐positive counts were also 63% greater than Gram‐negative counts in the FYM‐treated soil. We found that effects of the relatively small heavy metal concentration caused measurable decreases in soil microbial biomass‐C concentrations, acridine orange direct counts and Gram‐positive counts. There were also increases in biomass specific respiration rates, and the microbial community had changed substantially, nearly 40 years after the metal inputs ceased. We conclude that, at the very least, the current EU permitted limits for heavy metals in agricultural soils should not be relaxed.  相似文献   

15.
Heavy metal availability, microbial biomass and respiration, bacterial diversity and enzyme activity were studied in soils from long-term field experiments contaminated with Mn-Zn- or Cd-Ni-rich sludge, incorporated into soils at two different rates. Soils that never received sludge were used as controls. Microbial biomass C content (BC) and soil respiration (CO2-C) were slightly reduced in soils amended with Mn-Zn at the higher incorporation rate whereas in soils receiving Cd-Ni-rich sludge BC and respiration were unaffected. Metabolic quotient values (qCO2) calculated by the BC-to-CO2-C ratio were not significantly different, regardless of the sludge type whereas the microbial biomass C-to-total organic C (BC-to-TOC) ratios were significantly reduced in the soils receiving the higher rates of both sludge types. Phosphomonoesterase, β-glucosidase and arylsulfatase activities and hydrolase-to-BC ratios, were significantly reduced in soils amended with Ni-Cd-sludge at both rates, whereas the Mn-Zn-sludge only reduced the arylsulfatase activity at the higher rate. Protease activity was generally higher in all the sludge-amended soils as compared to control soils whereas urease activity was unaffected by sludge amendments. The structure of the bacterial community, as determined by denaturing gradient gel electrophoresis (DGGE), was different in the sludge-amended soils as compared to the respective controls. The most important changes were observed in the soils amended with high-level Ni-Cd sludge. Because some of the adverse effects were observed at moderate contamination levels, our results indicate that the presence of certain heavy metal combinations can be a serious limitation for sludge disposal.  相似文献   

16.
The legacy of industrialization has left many soils contaminated. However, soil organisms and plant communities can thrive in spite of metal contamination and, in some cases, metabolize and help in remediation. The responses of plants and soil organisms to contamination are mutually dependent and dynamic. Plant–soil feedbacks are central to the development of any terrestrial community; they are ongoing in both contaminated and healthy soils. However, the theory that governs plant–soil feedbacks in healthy soils needs to be studied in contaminated soils. In healthy soils, negative feedbacks (i.e. pathogens) play a central role in shaping plant community structure. However to our knowledge, the nature of feedback relationships has never been addressed in contaminated soils. Here we review literature that supports a plant–soil feedback approach to understanding the ecology of metal-contaminated soil. Further, we discuss the idea that within these soils, the role of positive as opposed to negative plant–soil feedbacks may be more important. Testing this idea in a rigorous way in any ecosystem is challenging, and metal contamination imposes an additional abiotic constraint. We discuss research goals and experimental approaches to study plant–soil interactions applicable to metal-contaminated soils; these insights can be extended to other contaminated environments and restoration efforts.  相似文献   

17.
Little is known about the characteristics of arbuscular mycorrhizal fungi (AMF) community in the roots of host plants growing on heavy metal contaminated sites. The objectives of this study were to examine the community structure of AMF associated with the roots of a copper (Cu) tolerant plant—Elsholtzia splendens in a Cu mining area in southeastern Anhui Province, China. Molecular techniques were used to analyze AMF community composition and phylogenetic relationship in E. splendens roots sampled from three Cu mine spoils and two adjacent reference areas. Results obtained showed that root colonization and AMF diversity were very low and negatively correlated with total and extractable Cu concentrations. All the DNA sequences recovered belonged to the genus of Glomus. The principal component analysis (PCA) revealed that the AMF community composition varied remarkably among different sites and was related closely to soil properties, especially Cu concentrations. The distribution pattern of AMF species in various sites suggested the degree of AMF tolerance to Cu contamination. The unique AMF species that presented exclusively in heavily contaminated sites need to be further examined for potential application in phytoremediation of metal contaminated soils.  相似文献   

18.
A study was undertaken to investigate the bacterial community found in metallophytic grassland soil contaminated with Zn and Pb. We hypothesised that such communities would be tolerant of additional heavy metal stress due to phylogenetic and functional adaptation. In microcosm experiments, lasting 51 days, denaturing gradient gel electrophoresis (DGGE) analyses was used to compare the total bacterial and actinobacterial communities in non-amended soils and those to which additional Pb and Zn concentrations were added. There was a decrease in total bacterial diversity with each addition of Pb and Zn; in contrast, the actinobacterial community diversity remained unaffected. The community structures were analysed using multivariate analyses of the DGGE profiles. Total bacterial community profiles showed two distinct groups sharing less than 80% similarity, irrespective of Pb and Zn addition. The first contained profiles sampled during the first 7 days of the experiment; the second contained those sampled from day 10 onwards. Actinobacterial profiles from those that were non-amended showed a similar distribution to those of the total bacterial community. However, in soil amended with fivefold additional Pb and Zn, all the profiles shared more than 80% similarity. Raup and Crick analyses suggested that total bacterial soil communities were subject deterministic selection becoming significantly similar as the experiment progressed, but this was inhibited by the highest concentration of additional Pb and Zn. Actinobacterial communities showed a similar response but were less affected by elevated Pb and Zn concentrations. These data indicate that the diversity of the actinobacterial community was not negatively affected by additional heavy metal stress in contrast to total bacterial community diversity.  相似文献   

19.
Zinc (Zn) tolerant nitrifying communities were previously identified in soil samples of a long-term Zn contaminated transect towards a galvanised pylon. We questioned whether Zn tolerance increased the vulnerability of the nitrifying communities to stressors. The influence of pesticide addition, freeze-thaw or dry-wet cycles on the soil nitrification (‘functional stability’) was assessed in a series of these soils representing a Zn contamination and Zn tolerance gradient. The immediate effect of the stressors to the nitrification (‘resistance’) and the residual effect after 3 weeks incubation (‘resilience’) were determined. Our results show that neither resistance nor resilience to these stressors was affected by adaptation of the nitrifying communities to elevated Zn concentrations in the long-term contaminated soils.  相似文献   

20.
Heavy metal pollution was assessed in soils collected from 0–15, 15–30 and 30–45-cm depths of three industrial (FMC, PMC and CMC), and two municipal (BSD and MLF) waste disposal sites around Chittagong city in 2008. Soils were analysed for pH, organic carbon, total nitrogen, available P, exchangeable Ca, Mg, K and Na, and total Cd, Pb, Cu, Mn and Zn. The pH, organic C, total N, available P, total Cd, Pb, Cu and Mn, and contamination indices for Cd and Pb varied significantly among sites. Mean Cd, Pb, Cu, Mn and Zn were in the range 0.5–1.9, 54–86, 25–50, 261–624 and 204–330 mg kg?1, respectively. Contamination indinces for Cd, Pb, Zn and Cu were estimated by comparison with respective threshold values. Contamination indices showed that the sites MLF and FMC had low Cu contamination. Other sites were not contaminated with thisheavy metal. All sites except PMC were highly contaminated with Cd, FMC was moderately contaminated and the others had low Pb contamination. FMC was highly contaminated, but the others were moderately contaminated with Zn. The integrated contamination index revealed that PMC had low contamination and the other sites were highly contaminated with heavy metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号