首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The exclusion of insects from terrestrial ecosystems may change productivity, diversity and composition of plant communities and thereby nutrient dynamics. In an early-successional plant community we reduced densities of above- and below-ground insects in a factorial design using insecticides. Beside measuring vegetation dynamics we investigated the effects of insect exclusion on above- and below-ground plant biomass, below-ground C and N storage by plants, litter quality, decomposition rate, soil water content, soil C:N ratio, nutrient availability and soil microbial activity and biomass.The application of soil insecticide had only minor effects on above- and below-ground biomass of the plant community but increased carbon content in root biomass and total carbon and nitrogen storage in roots. In one of the three investigated plant species (Cirsium arvense), application of soil insecticide decreased nitrogen concentration of leaves (−12%). Since C. arvense responded positively to soil insecticide application, this effect may be due to drought stress caused by root herbivory. Decomposition rate was slightly increased by the application of above-ground insecticide, possibly due to an impact on epigeic predators. The application of soil insecticide caused a slightly increased availability of soil water and an increased availability of mineralised nitrogen (+30%) in the second season. We explain these effects by phenological differences between the plant communities, which developed on the experimental plots. Microbial biomass and activity were not influenced by insecticide application, but were correlated to above-ground plant biomass of the previous year. Overall, we conclude that the particular traits of the involved plant species, e.g. their phenology, are the key to understand the resource dynamics in the soil.  相似文献   

2.
In terrestrial systems there is a close relationship between litter quality and the activity and abundance of decomposers. Therefore, the potential exists for aboveground, herbivore-induced changes in foliar chemistry to affect soil decomposer fauna. These herbivore-induced changes in chemistry may persist across growing seasons. While the impacts of such slow-cycle, ‘legacy’ effects of foliar herbivory have some support aboveground, such impacts have not been evaluated for soil invertebrates. Here, we investigate legacy effects on Collembola population structure and nitrogen acquisition. We collected foliar material (greenfall) from trees that had, in the preceding season, been exposed to insect herbivory by leaf-chewing Lepidoptera. Collembola populations were grown with the greenfall in soil microcosms across 16 weeks. While there were only modest effects of herbivory on the greenfall mass loss, Collembola abundance and biomass after 8 weeks of greenfall exposure were approximately 2.5-fold greater in the controls. Given that Collembola biomass percentage nitrogen was relatively fixed, this translated to approximately 2.5-fold greater biomass nitrogen. The herbivore treatment decreased the absolute amount of Collembola biomass nitrogen derived from both greenfall and soil, and the relative contribution of litter nitrogen and soil nitrogen to Collembola biomass nitrogen was dependent on both the herbivory treatment and greenfall initial nitrogen. Our results show that slow-cycle, legacy effects of foliar herbivory may affect soil faunal population structure and nitrogen acquisition, demonstrating the potential for aboveground herbivory to influence belowground animal ecology and nitrogen cycling across multi-annual timescales.  相似文献   

3.
Agricultural intensification is a major driver of global environmental change. Disentangling the relative impact of losses in plant species richness and intensified management on higher trophic level organisms is important for conservation recommendations.We established different management regimes along an experimental gradient of plant species richness within “The Jena-Experiment” in Germany and quantified herbivory as well as grasshoppers and pollinators. Herbivory, grasshopper density and species richness and frequency of flower visiting pollinators were recorded two times in each of four subplots of altogether 80 plots differing in plant species richness. Each of the four subplots was subject to four different levels of fertilizer application and mowing to simulate very low, low, high and very high land use intensity.Fertilization and mowing significantly affected plant–herbivore interactions but plant species richness had no discernible effect. Grasshoppers were most abundant at high intensity subplots (3.1 individuals per m2) and least abundant on very low intensity subplots (1.3 individuals per m2). Leaf damage caused by herbivores was highest in even the very high intensity subplots (3.7%) with four mowing events per year and high amounts of fertilizer application and lowest on subplots with a low management intensity (2.4%) comprising two mowing events per year but no fertilizer application. In contrast, pollinators benefited most from lower management intensities, with only one or two mowing events and no fertilizer addition. In addition, higher numbers of flowering plant species and increased blossom cover was associated with enhanced pollinator species richness and flower visitation.Our results indicate that even in grasslands with high plant species richness, mowing and fertilization are more important drivers of herbivory and flower visitation by pollinators. Management with no more than two cuts per year and without fertilizer application in our grasslands balanced the ecosystem functions of increased pollination and decreased herbivory.  相似文献   

4.
Plant roots compete for nutrients mineralised by the decomposer community in soil. By affecting microbial biomass and activity Collembola influence the nutrient availability to plants. We investigated the effect of Collembola (Protaphorura fimata Gisin) on growth and competition between of two plant species, Cirsium arvense L (creeping thistle) and Epilobium adnatum Griseb. (square-stemmed willow herb), in a laboratory experiment. Two seedlings of each plant species were planted in rhizotrons either in combination or in monoculture (intra- and interspecific competition). Interspecific competition strongly reduced total biomass of C. arvense whereas E. adnatum suffered most from intraspecific competition. Collembola neither affected the competitive relationship of the two plant species nor shoot and root biomass. Although Collembola did not affect total root biomass they influenced root morphology of both plant species. Roots grew longer and thinner and had more root tips in presence of Collembola. Root elongation is generally ascribed to the exploitation of nutrient rich patches in soil. We hypothesise that changes in root morphology in presence of Collembola are due to Collembola-mediated changes in nutrient availability and distribution.  相似文献   

5.
The aim of this study was to determine the effects of heavy metal pollution on the structure and functioning of detritivore soil communities that consist of isopods, millipedes and earthworms, in 15 heavily polluted flood plain soils, located in the delta area of the rivers Rhine and Meuse, in the Netherlands. The 15 study sites represent a gradient in Zn, Cu and Cd concentrations. The structural attributes of the detritivore community, which were assessed, were the species richness and densities in the field sites. The functioning of the detritivore community was studied by determining organic matter decomposition using litter bags and feeding activity with the bait-lamina method. Concentrations of Cd, Cu and Zn were measured in soil, pore water and 0.01 M CaCl2 extracts of the soil, in adult earthworms and plant leaves. Results show that metal pollution is not a dominating factor determining the species richness and densities of the selected detritivore groups, although the biomass of the earthworm Lumbricus rubellus was positively and significantly correlated to Zn concentrations in pore water and 0.01 M CaCl2 extracts. Litter decomposition was significantly and positively correlated to detritivore biomass and 0.01 M CaCl2 extractable Cd concentrations in soil and negatively to pH-CaCl2, although the range of pH values was very small. It can be concluded that in spite of high metal levels in the soil, bioavailable concentrations are too low to result in clear negative effects on the structure and functioning of detritivores in the Biesbosch, the Netherlands.  相似文献   

6.
Theory predicts that the probability that an ecosystem will provide a consistent level of functioning over a given unit of time, i.e. the reliability of ecosystem processes, should increase with species richness. There is growing evidence that plant diversity increases the temporal stability of productivity, but only a few studies have investigated its impact on the reliability of ecosystem processes, and information on whether this propagates to the belowground system is virtually lacking. Using a microcosm experiment with plant communities varying in species and functional group diversity and two decomposer groups (earthworms and Collembola) we investigated the effects of plant diversity on the reliability of the belowground system and vice versa, the effect of decomposers on the reliability of plant productivity. Generally, plant diversity increased the reliability of above- and belowground processes by significantly increasing the reliability of eight out of eleven measured ecosystem parameters (six out of nine belowground responses). Plant functional group diversity had a stronger stabilising effect than species richness on above- and belowground processes including plant shoot and total biomass, microbial basal respiration and Collembola densities. By contrast, in the presence of both decomposer groups the reliability of decomposer populations was reduced. The results indicate that plant diversity effects propagate into the belowground system and increase the reliability of belowground processes via more consistent plant derived belowground inputs.  相似文献   

7.
The relationship between decomposer diversity and ecosystem functioning is little understood although soils accommodate a significant proportion of worldwide biodiversity. Collembola are among the most abundant and diverse decomposers and are known to modify plant growth. We examined the effects of Collembola species diversity (one, two and three species belonging to different life history groups) and composition on litter decomposition and the performance of plant communities (above- and belowground productivity) of different functional groups (grasses, forbs and legumes). Collembola densities did not increase with diversity indicating niche overlap. Generally, Collembola species composition was a better predictor for ecosystem functioning than Collembola species number with the impacts of Collembola diversity and composition on ecosystem functioning strongly depending on plant functional group identity. Non-linear effects of Collembola diversity on litter decomposition and plant productivity suggest pronounced and context dependent species interactions and feeding habits. Net surface litter decomposition was decreased by Collembola, whereas root litter decomposition was at maximum in the highest Collembola diversity treatment. Forbs benefitted most from the presence of three Collembola species. Similarly, Collembola diversity influenced root depth distribution in a plant functional group specific way: while grass root biomass decreased with increasing Collembola diversity in the upper and lower soil layer, legume root biomass increased particularly in the lower soil layer. Idiosyncratic and context dependent effects of Collembola diversity and composition even in rather simple assemblages of one to three species suggest that changes in Collembola diversity may have unpredictable consequences for ecosystem functioning. The finding that changes in Collembola performance did not directly translate to alterations in ecosystem functioning indicates that response traits do not necessarily conform to effect traits. Distinct plant functional group specific impacts of Collembola diversity on root depth distribution are likely to modify plant competition in complex plant communities and add a novel mechanism how decomposers may affect plant community assembly.  相似文献   

8.
Invasion of non-native species is among the top threats for the biodiversity and functioning of native and agricultural ecosystems worldwide. We investigated whether the herbivory of the slug Arion vulgaris (formerly Arion lusitanicus; Gastropoda), that is listed among the 100 worst alien species in Europe, is affected by soil organisms commonly present in terrestrial ecosystems (i.e. earthworms—Annelida: Lumbricidae and arbuscular mycorrhizal fungi—AMF, Glomerales). We hypothesized that slug herbivory would be affected by soil organisms via altered plant nutrient availability and plant quality. In a greenhouse experiment, we created a simple plant community consisting of a grass, a forb, and a legume species and inoculated these systems with either two earthworm species and/or four AMF taxa. Slugs were introduced after plants were established. Earthworms significantly reduced total slug herbivory in AMF-inoculated plant communities (P?=?0.013). Across plant species, earthworms increased leaf total N and secondary metabolites, AMF decreased leaf thickness. Mycorrhizae induced a shift in slug feeding preference from non-legumes to legumes; the grass was generally avoided by slugs. AMF effects on legume herbivory can partly be explained by the AMF-induced increase in total N and decrease in C/N ratio; earthworm effects are less clear as no worm-induced alterations of legume plant chemistry were observed. The presence of earthworms increased average AMF colonization of plant roots by 140 % (P?<?0.001). Total shoot mass was significantly increased by AMF (P?<?0.001). These data suggest that the feeding behavior of this invasive slug is altered by a belowground control of plant chemical quality and community structure.  相似文献   

9.
10.
In soil a high number of species co-exist without extensive niche differentiation, which was assigned as ‘the enigma of soil animal species diversity’. In particular, the detritivores are regarded as food generalists. We have investigated nitrogen stable isotope ratios (15N/14N) of a major decomposer group, the Collembola, to evaluate trophic relationship and determine feeding guilds. Additionally, the δ15N values of potential food sources such as mosses, lichens and other plant derived material (bark, nuts, leaves) were analysed. The natural variation in nitrogen isotopes was assessed in 20 Collembola taxa from three deciduous forest stands. The δ15N signature formed a continuum from phycophages/herbivores to primary and secondary decomposers, reflecting a gradual shift from more detrital to more microbial diets. The δ15N gradient spanned over 9 δ units, which implies a wide range in food sources used. Assuming a shift in 15N of about 3 ‰ per trophic level, the results indicate a range of three trophic levels. These variations in 15N/14N ratios suggest that trophic niches of Collembola species differ and this likely contributes to Collembola species diversity.  相似文献   

11.
Removal of crop residues has become common practice in arable systems, however, little is known about how soil arthropod communities change in response to reduced resource availability and habitat complexity associated with residue removal. We added maize residues to wheat and maize fields and investigated soil arthropod diversity and abundance over the period of one year. Residue addition did not affect the diversity and little affected the abundance of soil arthropods in wheat and maize fields with the latter being restricted to few taxonomic groups, suggesting that at least in the short-term soil arthropods benefit little from crop residue-mediated increase in food supply and habitat structure. Contrasting the minor effects of residue addition, densities of soil arthropods were much higher in wheat than in maize fields, presumably due to more dense and more continuous coverage by plants, and higher input of root residues. Furthermore, in wheat fields density of arthropods more strongly varied with season, presumably due to more pronounced pulses of root exudates and root residues entering the soil in wheat as compared to maize fields in summer and winter, respectively. Low density and little variation in densities of soil arthropods in maize fields reflect that environmental conditions and resource supply varied little with crop coverage and season. Overall, the results point to low importance of aboveground crop residues for soil arthropod communities and highlight that belowground plant resources, i.e. root exudates and root residues are the major driver of soil arthropod communities of arable systems. Thus, at least in short term removal of crop residues for e.g., biofuel production is likely to be of minor importance for soil arthropod communities. In contrast, changing crop species from wheat to maize markedly reduces the density of soil animals threatening the ecosystem functions they provide.  相似文献   

12.
The effects of chlorpyrifos on aquatic systems are well documented. However, the consequences of the pesticide on soil food webs are poorly understood. In this field study, we hypothesised that the addition of a soil insecticide to an area of upland grassland would impact spider and Collembola communities by decreasing numbers of spiders, consequently, causing an increase in detritivore numbers and diversity.Chlorpyrifos was added to plots on an upland grassland in a randomised block design. Populations of Collembola and spiders were sampled by means of pitfall traps (activity density) and identified to species.Twelve species of Collembola were identified from the insecticide-treated and control plots. Species diversity, richness and evenness were all reduced in the chlorpyrifos plots, although the total number of Collembola increased ten-fold despite the abundance of some spider species being reduced. The dominant collembolan in the insecticide-treated plots was Ceratophysella denticulata, accounting for over 95% of the population.Forty-three species of spider were identified. There were a reduced number of spiders in insecticide-treated plots due mainly to a lower number of the linyphiid, Tiso vagans. However, there was no significant difference in spider diversity between the control and insecticide treatments.We discuss possible explanations for the increase in abundance of one collembolan species in response to chlorpyrifos and the consequences of this. The study emphasises the importance of understanding the effects of soil management practices on soil biodiversity, which is under increasing pressure from land development and food production. It also highlights the need for identification of soil invertebrates to an ‘appropriate’ taxonomic level for biodiversity estimates.  相似文献   

13.
We tested a hypothesis that the effects of defoliation on plants and soil organisms vary with the number of successive defoliations. We established a 23-week greenhouse experiment using replicated grassland microcosms that were composed of three plant species, Trifolium repens, Plantago lanceolata and Phleum pratense, growing together in grassland soil with a diverse soil community. The experiment consisted of two treatment factors-defoliation and harvest time-in a fully factorial design. The defoliation treatment had two levels, i.e. no trimming and trimming of plants every 2 weeks, and the harvest time five levels, i.e. harvests after 1-3, 5 and 7 trimmings. Shoot production (trimmed plus harvested shoot mass), harvested shoot and root mass and root N and C concentrations increased with time but were reduced by defoliation. Colonization rates of arbuscular mycorrhizal (AM) fungi decreased with time in T. repens roots but were enhanced by defoliation, whereas AM colonization rates in P. pratense roots were not affected by harvest time or defoliation. The abundance of bacterivorous and fungivorous nematodes decreased and that of herbivorous and predatory nematodes increased with time, while the abundance of omnivorous nematodes and detritivorous enchytraeids varied in time without a linear trend. Defoliation had no effect on fungivores and predators but increased the abundance of bacterivores. Defoliation also increased the abundance of herbivores, omnivores and detritivores after 2 trimmings and that of omnivores and detritivores after 5 trimmings, but had a negative effect on omnivores after 3 trimmings and on herbivores after 7 trimmings. Among nematode genera, some deviation from the trophic group responses existed: for instance, defoliation reduced the abundance of bacterivorous Acrobeloides spp. and did not affect the abundance of herbivorous Filenchus spp. and Paratylenchus spp. Our results show that the effects of defoliation on plants, AM fungi and some soil animal trophic groups may remain constant all the way through several defoliations, whereas other animal trophic groups may have different and even opposite responses to defoliation depending on the length of the defoliation period before monitoring. This shows how separate studies with defoliation periods of different length can produce contradictory results of the effects of defoliation on the abundance of soil animals.  相似文献   

14.
Population-level impacts of insect herbivory on rare and endangered plants are poorly understood, being frequently suggested but seldom quantified. We compiled 37 studies from the primary literature encompassing 35 rare plant species and at least 63 insect herbivore species, and assessed patterns in the effects of insect herbivores on rare plant populations and vital rates. Only three studies directly quantified effects of insect herbivory on population size or growth rate, with the vast majority instead extrapolating from vital rates to population size. Few studies (eight) studied herbivory experimentally, and feeding guilds other than seed predators have been relatively neglected. Estimates of population-level impacts vary extremely widely, but for many rare plants insect herbivores cause major reductions in survivorship or fecundity or can even drive local extinctions. Four studies documented positive (plant-) density dependence in insect attack, suggesting that herbivores may have a stabilizing influence on plant populations and thus may play a role in regulating rare plant population size. Most reported herbivores of rare plants are oligophagous or polyphagous, but monophagous herbivores of rare plants do exist, and there was no detectable difference in impact among specialization classes. Attack on rare plants by escaped biocontrol agents can sometimes have significant population-level effects, but such cases appear uncommon. Because insect herbivory can strongly suppress rare plant populations or vital rates, we need to know much more about what ecological and evolutionary factors determine the population-level impacts of insect herbivores. We suggest several ways in which the results of such research could inform conservation practices for rare plant species – for example, the possibility of different management regimes for plants under attack by monophagous, oligophagous, and polyphagous herbivores.  相似文献   

15.
Plant-mediated effects of aboveground herbivory on the belowground ecosystem are well documented, but less attention has been paid to agro-ecosystems and in particular how crop cultivars with different traits (i.e. resistance to pests) shape such interactions. A fully factorial experiment was conducted using four rice cultivars with different insect-resistance, with and without the aboveground herbivore Nilaparvata lugens (brown planthopper), and to test two hypotheses (1) aboveground herbivory affects the soil microbial biomass and nematode community by altering plant performance and soil resource availability and (2) herbivory effects will depend on cultivar resistance traits. Our results suggested that cultivar resistance mediated both herbivory intensity and herbivore effects on plant performance. N. lugens decreased the availability of soil resources (soluble sugars, amino acids, organic acids, dissolved organic carbon and nitrogen), microbial biomass and percentages of bacterivores when feeding on a susceptible cultivar but increased them in a resistant cultivar. However, total nematode abundance and the percentage of plant-parasitic nematodes responded in the opposite way, increasing under a susceptible cultivar and decreasing under a resistant cultivar. The development of plant-parasites under resistant cultivars before aboveground herbivory might contribute to their resistance traits. Our findings provide evidence that N. lugens significantly reversed the pattern of soil resource availability, microbial biomass and nematode community structure (abundance and trophic composition) across cultivars with distinct resistance. In the presence of aboveground pests, the agronomic use of resistant rice cultivars could also control populations of plant-parasites and promote soil resource availability, further extended to higher trophic level of soil food web.  相似文献   

16.
《Applied soil ecology》2006,31(1-2):136-146
Effects of foliar and soil insecticide applications on collembolan density and community structure were investigated in an early set-aside arable field. Insecticides were applied separately and in combination to the soil surface (chlorpyrifos) and vegetation (dimethoate). The treatments were established to investigate effects of above- and below-ground insects on plant succession. Starting in 1997, the insecticides were applied from April to November at 2-week (dimethoate) or monthly intervals (chlorpyrifos). Samples were taken in 2000 prior to and after insecticide application in March and June, respectively. Both insecticides are lethal to Collembola and insecticide applications resulted in a strong decline in the density of total Collembola. Application of chlorpyrifos reduced collembolan density to a greater extent than dimethoate; the effect of the combined application on total collembolan numbers was similar to that of chlorpyrifos only. Collembolan numbers recovered after the insecticide applications in 1999, but in the treated plots populations were still reduced in March 2000 before the re-application of insecticide treatments in that year. The insecticide applications changed the dominance structure of the collembolan community, but had no effects on species composition. The results may be of relevance for the interpretation of studies on plant–insect herbivore interactions using insecticides.  相似文献   

17.
Temporal variability is a key factor to understand the structure of belowground communities. Seasonal and annual variations are especially relevant in unpredictable desert ecosystems, where macroinvertebrates are poorly known, despite constituting an important group of soil organisms. In the present study, we analyse the composition and temporal (seasonal and annual) variations of soil macroinvertebrates in an arid area of southern Spain. During two years, macroinvertebrates were sampled in litter and belowground levels by means of soil cores. Results show that the assemblage was dominated by arthropods, especially Formicidae and Coleoptera. The assemblage differed between litter and belowground levels. In litter, detritivores dominated the community, while belowground fauna showed a similar proportion of detritivores and herbivores and a low percentage of predators. Litter and belowground assemblages showed seasonal variations in richness, abundance, biomass and composition, although variations were more marked in litter than belowground. Patterns of seasonal variation also differed between the two study years for both litter and belowground invertebrates. The seasonal and annual variability of the assemblage has potentially important implications for community dynamics in the study system, since the changes in species composition and trophic structure of soil invertebrate assemblages may affect species interactions and food web dynamics over time. Therefore, integrating temporal variability is likely to be crucial to understand soil community dynamics and food webs, especially in heterogeneous, variable systems as deserts.  相似文献   

18.
Condensed tannins (CT) can strongly affect litter decomposition, but their fate during the decomposition process, in particular as influenced by detritivore consumption, is not well understood. We tested the hypothesis that litter CT are reduced by the gut passage of two functionally distinct detritivores of Mediterranean forests, the millipede Glomeris marginata, and the land snail Pomatias elegans, as a fixed proportion of initial litter CT, but more so in Pomatias since snails are known to have a more efficient enzymatic capacity. Contrary to our hypothesis, both detritivore species reduced litter CT to near zero in their faecal pellets irrespective of the wide range in initial leaf litter CT concentrations of 9-188 mg g−1 d m among three Mediterranean tree species (Pistacia terebinthus, Quercus ilex, Alnus glutinosa) and different decomposition stages of their litter. The almost complete disappearance of CT even from some litter types highly concentrated in CT, due to either degradation by gut microorganism or complexation of CT into insoluble high molecular weight structures, suggests a high “de-tanning” efficiency across functionally distinct detritivore species. The transformation of CT-rich litter into virtually CT-free faecal pellets by detritivores might be highly relevant for the subsequent decomposition process in ecosystems with a high macrofauna abundance and CT-rich plant species such as Mediterranean forests.  相似文献   

19.
地上和地下植食者互作对水稻氮分配及土壤活性氮的影响   总被引:1,自引:0,他引:1  
植物茎叶和根系植食者虽然在空间上隔离,但二者的相互作用被认为是联系地上和地下部生态系统的基础。土壤氮素有效性通过植物影响植食者已得到大量研究的证实,但有关地上和地下部植食者互作对土壤氮素影响的研究却鲜有报道。以水稻褐飞虱和潜根线虫分别作为地上和地下的植食者,采用两因素交互试验设计,两个褐飞虱水平(未接种褐飞虱、接种褐飞虱),两个潜根线虫水平(未接种潜根线虫、接种潜根线虫),探讨二者的交互作用对水稻氮吸收和土壤活性氮(微生物生物量氮、可溶性有机氮以及铵态氮和硝态氮)的影响。结果表明,褐飞虱和潜根线虫相互抑制,二者的共存加剧了对水稻茎叶和根系生长的危害。褐飞虱未影响水稻茎叶和根系含氮量,而潜根线虫显著降低了水稻根系含氮量(p0.05)。褐飞虱和潜根线虫对土壤活性氮的影响表现出强烈的交互作用,在未接潜根线虫的处理中,褐飞虱显著提高了微生物生物量氮含量(p0.05),显著降低了硝态氮含量(p0.05);潜根线虫显著影响了微生物生物量氮含量和土壤活性氮总量。总之,褐飞虱和潜根线虫的相互抑制关系对土壤活性氮的影响格局较为复杂,相比褐飞虱,潜根线虫趋向于提高土壤活性氮水平,这可能影响与氮转化有关的土壤生态功能。  相似文献   

20.
Collembola are abundant and ubiquitous soil decomposers, being particularly active in the rhizosphere of plants where they are assumed to be attracted by high microbial activity and biomass. While feeding on root associated microorganisms or organic matter they may also ingest plant roots, e.g. particularly root hairs and fine roots. Employing stable isotope analysis we investigated Collembola (Protaphorura fimata Gisin) feeding preferences and types of ingested resources. We offered Collembola two resources with distinct isotope signatures: a C4 plant (Zea mays L.) planted in soil mixed with 15N labelled litter of Lolium perenne L. (C3 plant). We hypothesised that Collembola obtain their nutrients (C and N) from different resources, with their carbon being mainly derived from resources that are closely associated to the plant root, e.g. root exudates, causing enrichment in 13C in Collembola tissue, while the incorporated nitrogen originating from litter resources. In contrast to our hypothesis, stable isotope analysis suggests that in absence of plant roots Collembola derived both the incorporated C and N predominantly from litter whereas in presence of plant roots they switched diet and obtained both C and N almost exclusively from plant roots.The results indicate that Collembola in the rhizosphere of plants, being assumed to be mainly decomposers, in fact predominately live on plant resources, presumably fine roots or root hairs, i.e. are herbivorous rather than detritivorous or fungivorous. These findings have major implications on the view how plants respond to decomposers in the rhizosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号