首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrogen (N) and carbon (C) mineralisation are triggered by pulses of water availability in arid and semi-arid systems. Intermittent streams and their associated riparian communities are obvious ‘hot spots’ for biogeochemical processes in arid landscapes where water and often C are limiting. Stream landscapes are characterized by highly heterogeneous soils that may respond variably to rewetting. We used a laboratory incubation to quantify how N and C mineralisation in rewetted soils and sediments from an intermittent stream in the semi-arid Pilbara region of north-west Australia varied with saturation level and substrate addition (as ground Eucalyptus litter). Full (100%) saturation was defined as the maximum gravimetric moisture content (%) achieved in free-draining soils and sediments after rewetting, with 50% saturation defined as half this value. We estimated rates and amounts of N mineralised from changes in inorganic N and microbial respiration as CO2 efflux throughout the incubation. In soils and sediments subject to 50% saturation, >90% of N mineralised accumulated within the first 7 d of incubation, compared to only 48% when soils were fully saturated (100% saturation). Mineralisation rates and microbial respiration were similar in riparian and floodplain soils, and channel sediments. N mineralisation rates in litter-amended soils and sediments (0.73 mg N kg−1 d−1) were only one-third that of unamended samples (3.04 mg N kg−1 d−1), while cumulative microbial respiration was doubled in litter-amended soils, suggesting N was more rapidly immobilized. Landscape position was less important in controlling microbial activity than soil saturation when water-filled pore space (% WFPS) was greater than 40%. Our results suggest that large pulses of water availability resulting in full soil saturation cause a slower release of mineralisation products, compared to small pulse events that stimulate a rapid cycle of C and N mineralisation-immobilization.  相似文献   

2.
The conversion of secondary forests to larch plantations in Northeast China has resulted in a significant decline in soil available nitrogen (N) and phosphorus (P), and thus affects plant productivity and ecosystem functioning. Microbes play a key role in the recycling of soil nutrients; in turn, the availability of soil N and P can constrain microbial activity. However, there is little information on the relationships between available soil N and P and the microbial biomass and activity in larch plantation soil. We studied the responses of soil microbial respiration, microbial biomass and activity to N and P additions in a 120-day laboratory incubation experiment and assessed soil microbial properties in larch plantation soil by comparing them with the soil of an adjacent secondary forest. We found that the N-containing treatments (N and N + P) increased the concentrations of soil microbial biomass N and soluble organic N, whereas the same treatments did not affect microbial respiration and the activities of β-glucosidase, N-acetyl-β-glucosaminidase and acid phosphatase in the larch plantation. In addition, the concentration of microbial biomass P decreased with N addition in larch plantation soil. In contrast, N and N + P additions decreased microbial respiration, and N addition also decreased the activity of N-acetyl-β-glucosaminidase in the secondary forest soil. The P treatment did not affect microbial respiration in either larch plantation or secondary forest soils, while this treatment increased the activities of β-glucosidase and acid phosphatase in the secondary forest soil. These results suggested that microbial respiration was not limited by available P in either secondary forest or larch plantation soils, but microbial activity may have a greater P demand in secondary forest soil than in larch plantation soil. Overall, there was no evidence, at least in the present experiment, supporting the possibility that microbes suffered from N or P deficiency in larch plantation soil.  相似文献   

3.
Human activity has increased the amount of N entering terrestrial ecosystems from atmospheric NO3 deposition. High levels of inorganic N are known to suppress the expression of phenol oxidase, an important lignin-degrading enzyme produced by white-rot fungi. We hypothesized that chronic NO3 additions would decrease the flow of C through the heterotrophic soil food web by inhibiting phenol oxidase and the depolymerization of lignocellulose. This would likely reduce the availability of C from lignocellulose for metabolism by the microbial community. We tested this hypothesis in a mature northern hardwood forest in northern Michigan, which has received experimental atmospheric N deposition (30 kg NO3-N ha−1 y−1) for nine years. In a laboratory study, we amended soils with 13C-labeled vanillin, a monophenolic product of lignin depolymerization, and 13C-labeled cellobiose, a disaccharide product of cellulose degradation. We then traced the flow of 13C through the microbial community and into soil organic carbon (SOC), dissolved organic carbon (DOC), and microbial respiration. We simultaneously measured the activity of enzymes responsible for lignin (phenol oxidase and peroxidase) and cellobiose (β-glucosidase) degradation. Nitrogen deposition reduced phenol oxidase activity by 83% and peroxidase activity by 74% when compared to control soils. In addition, soil C increased by 76%, whereas microbial biomass decreased by 68% in NO3 amended soils. 13C cellobiose in bacterial or fungal PLFAs was unaffected by NO3 deposition; however, the incorporation of 13C vanillin in fungal PLFAs extracted from NO3 amended soil was 82% higher than in the control treatment. The recovery of 13C vanillin and 13C cellobiose in SOC, DOC, microbial biomass, and respiration was not different between control and NO3 amended treatments. Chronic NO3 deposition has stemmed the flow of C through the heterotrophic soil food web by inhibiting the activity of ligninolytic enzymes, but it increased the assimilation of vanillin into fungal PLFAs.  相似文献   

4.
水分含量对秸秆还田土壤碳矿化和微生物特性的影响   总被引:6,自引:0,他引:6  
An 80-d incubation experiment was conducted to investigate straw decomposition,the priming effect and microbial characteristics in a non-fertilized soil(soil 1) and a long-term organic manure-fertilized soil(soil 2) with and without13 C-labeled maize straw amendment under different moisture levels. The soil 2 showed a markedly higher priming effect,microbial biomass C(Cmic),and β-glucosidase activity,and more abundant populations of bacteria and fungi than the soil 1. Also,soil CO2 emission,Cmic,β-glucosidase activity,and bacterial and fungal population sizes were substantially enhanced by straw amendment. In the presence of straw,the amount of straw mineralization and assimilation by microbes in the soil at 55% of water holding capacity(WHC) were significantly higher by 31% and 17%,respectively,compared to those at 25% of WHC. In contrast,β-glucosidase activity and fungal population size were both enhanced as the moisture content decreased. Cmicdecreased as straw availability decreased,which was mainly attributed to the reduction of straw-derived Cmic. Amended soils,except the amended soil 2 at 25% of WHC,had a more abundant fungal population as straw availability decreased,indicating that fungal decomposability of added straw was independent of straw availability. Non-metric multidimensional scaling analysis based on fungal denatured gradient gel electrophoresis band patterns showed that shifts in the fungal community structure occurred as water and straw availability varied. The results indirectly suggest that soil fungi are able to adjust their degradation activity to water and straw availability by regulating their community structure.  相似文献   

5.
A laboratory experiment was conducted to study the impact of metalaxyl application at different concentration levels on microbial biomass and the biochemical activities in soil. A dissipation study of metalaxyl highlighted 52.5-56.8% loss of metalaxyl due to the presence of microbial activity. However, a small but significant decline in microbial biomass was observed on 60 d of incubation period. Metalaxyl showed a highly significant effect in decreasing total N and organic C content in soil from 0 to 30 d of incubation. Dehydrogenase, phosphatase, urease, arylsulphatase and β-glucosidase activities were monitored in metalaxyl treated soils. Except urease, all the enzymatic activities initially increased and then decreased. Urease activity showed a continuous gradual decrease throughout the experimental period. Thus, metalaxyl might influence the growth and development of crop-plants, since it has direct impact on nutrient recycling and energy flow in soil.  相似文献   

6.
The rationale of the study was to investigate microbial activity in different soil horizons in European forests. Hence, activities of chitinase and cellulase, microbial biomass carbon (Cmic) and basal respiration were measured in litter, fragmentation, humus and mineral soil layers collected several times from various beech and spruce forests. Sites were selected to form a gradient in N availability. Analyses were also performed on beech litter from a litterbag transplant experiment. Furthermore, microbiological parameters were measured in horizons of beech and spruce chronosequence sites with different stand age in order to investigate the influence of forest rotation, and hence changes in soil organic matter (SOM) dynamics, on microbial activity. Finally in horizons of one beech forest, the seasonal variation of selected microbiological parameters was measured more intensively. β-Glucosaminidase and cellobiohydrolase activities were measured using fluorogenic 4-methylumbelliferyl substrates to estimate chitinase and cellulase activities, respectively. On a spatial scale, chitinase and cellulase activities, Cmic determined by substrate induced respiration, and basal respiration ranged from 144 to 1924 and 6-177 nmol 4-MU g−1 org-C h−1, 8-48 mg C g−1 org-C and 11-149 μg CO2-C g−1 org-C h−1, respectively; in general values were significantly lower in layers of humus and mineral soil than of litter. Chitinase activity, Cmic and basal respiration from humus and mineral soil layers, together, correlated positively, while none correlated with cellulase activity. Similarly in the litter layer, no correlations were found between the microbiological parameters. On a seasonal scale, a time lag between a burst in basal respiration rate and activities of both enzymes were observed. In general, activities of cellulase and chitinase, Cmic and basal respiration, did not change with stand age, except in the humus layer in the spruce chronosequence, where Cmic decreased with stand age. In the litter layer, cellulase activity was significantly and positively related to the C:N ratio, while only a tendency for chitinase activity was shown, indicating that enzyme activities decreased with increasing N availability. In accordance, the enzyme activities and Cmic decreased significantly with increasing chronic N deposition in the humus layer, while basal respiration only tended to decrease with increasing N deposition. In contrast, enzyme activities in beech litter from litterbags after 2 years of incubation were generally higher at sites with higher N deposition. The results show different layer-specific responses of enzyme activities to changes in N availability, indicating different impacts of N availability on decomposition of SOM and stage of litter decomposition.  相似文献   

7.
Biuret is a known contaminant of urea fertilisers that might be useful as a slow release N fertiliser for forestry. We studied carbon (C), net nitrogen (N) mineralisation and soil microbial biomass C and N dynamics in two forest soils (a sandy loam and a silt loam) during a 16-week long incubation following application of biuret (C 23.3%, N 40.8%, O 30.0% and H 4.9%) at concentrations of 0, 2, 10, 100 and 1000 mg kg−1 (oven-dried) soil to assess the potential of biuret as a slow-release N fertiliser. Lower concentrations of biuret specifically increased C mineralisation and soil microbial biomass C in the sandy loam soil, but not in the silt loam soil. A significant decrease of microbial biomass C was found in both soils at week 16 after biuret was applied at higher concentrations. C mineralisation declined with duration of incubation in both soils due to decreased C availability. Biuret at concentrations from 10 to 100 mg kg−1 soil had a significantly positive priming effect on soil organic N mineralisation in both soils. The causes for the priming effects were related to the stimulation of microbial growth and activity at an early stage of the incubation and/or the death of microbes at a later stage, which was biuret-concentration-dependent. The patterns in NH4+-N accumulation differed markedly between the two soils. Net N mineralisation and nitrification were much greater in the sandy loam soil than in the silt loam soil. However, the onset of net nitrification was earlier in the silt loam soil. Biuret might be a potential slow-release N source in the silt loam soil.  相似文献   

8.
Atmospheric emissions of fly ash and SO2 from lignite-fired power plants strongly affect large forest areas in Germany. The impact of different deposition loads on the microbial biomass and enzyme activities was studied at three forest sites (Picea abies (L.) Karst.) along an emission gradient of 3, 6, and 15 km downwind of a coal-fired power plant (sites Ia, II, and III, respectively), representing high, moderate and low emission rates. An additional site (site Ib) at a distance of 3 km from the power plant was chosen to study the influence of forest type on microbial parameters in coniferous forest soils under fly ash and SO2 emissions. Soil microbial biomass C and N, CO2 evolved and activities of l-asparaginase, l-glutaminase, β -glucosidase, acid phosphatase and arylsulfatase (expressed on dry soil and organic C basis) were determined in the forest floor (L, Of and Oh horizon) and mineral top soil (0-10 cm). The emission-induced increases in ferromagnetic susceptibility, soil pH, concentrations of mobile (NH4NO3 extractable) Cd, Cr, and Ni, effective cation exchange capacity and base saturation in the humus layer along the 15 km long transect significantly (P<0.05) reflected the effect of past depositions of alkaline fly ash. Soil microbial and biochemical parameters were significantly (P<0.05) affected by chronic fly ash depositions. The effect of forest type (i.e. comparison of sites Ia and Ib) on the studied parameters was generally dominated by the deposition effect. Alkaline depositions significantly (P<0.05) decreased the microbial biomass C and N, microbial biomass C-to-N ratios and microbial biomass C-to-organic C ratios. Microbial respiration, metabolic quotient (qCO2) and the activities of l-asparaginase, l-glutaminase, β-glucosidase, acid phosphatase and arylsulfatase were increased by long-term depositions from the power plants. Acid phosphatase had the highest specific (enzyme activities expressed per unit organic C) activity values among the enzymes studied and arylsulfatase the lowest. The responses of the microbial biomass and soil respiration data to different atmospheric deposition loads were mainly controlled by the content of organic C and cation exchange capacity, while those of enzyme activities were governed by the soil pH and concentrations of mobile heavy metals. We concluded that chronic fly ash depositions decrease litter decomposition by influencing specific microbial and enzymatic processes in forest soils.  相似文献   

9.
We examined effects of wetting and then progressive drying on nitrogen (N) mineralization rates and microbial community composition, biomass and activity of soils from spinifex (Triodia R. Br.) grasslands of the semi-arid Pilbara region of northern Australia. We compared soils under and between spinifex hummocks and also examined impacts of fire history on soils over a 28 d laboratory incubation. Soil water potentials were initially adjusted to −100 kPa and monitored as soils dried. We estimated N mineralization by measuring changes in amounts of nitrate (NO3-N) and ammonium (NH4+-N) over time and with change in soil water potential. Microbial activity was assessed by amounts of CO2 respired. Phospholipid fatty acid (PLFA) analyses were used to characterize shifts in microbial community composition during soil drying. Net N mineralized under hummocks was twice that of open spaces between hummocks and mineralization rates followed first-order kinetics. An initial N mineralization flush following re-wetting accounted for more than 90% of the total amount of N mineralized during the incubation. Initial microbial biomass under hummocks was twice that of open areas between hummocks, but after 28 d microbial biomass was<2 μ g−1 ninhydrin N regardless of position. Respiration of CO2 from soils under hummocks was more than double that of soils from between hummocks. N mineralization, microbial biomass and microbial activity were negligible once soils had dried to −1000 kPa. Microbial community composition was also significantly different between 0 and 28 d of the incubation but was not influenced by burning treatment or position. Regression analysis showed that soil water potential, microbial biomass N, NO3-N, % C and δ15N all explained significant proportions of the variance in microbial community composition when modelled individually. However, sequential multiple regression analysis determined only microbial biomass was significant in explaining variance of microbial community compositions. Nitrogen mineralization rates and microbial biomass did not differ between burned and unburned sites suggesting that any effects of fire are mostly short-lived. We conclude that the highly labile nature of much of soil organic N in these semi-arid grasslands provides a ready substrate for N mineralization. However, process rates are likely to be primarily limited by the amount of substrate available as well as water availability and less so by substrate quality or microbial community composition.  相似文献   

10.
无机氮和葡萄糖添加对土壤微生物生物量和活性的影响   总被引:1,自引:0,他引:1  
于跃跃  赵炳梓 《土壤学报》2012,49(1):139-146
以黄淮海平原潮土为研究对象,通过室内恒温恒湿培养方法,比较研究了土壤中纤维素是否存在时,外源无机氮和葡萄糖添加对土壤微生物生物量及其活性的影响变化。实验设8个处理,包括不加任何物质的对照(CK)、添加无机氮(N)、葡萄糖(G)、纤维素(C)处理及葡萄糖和无机氮同时添加(G+N)处理,以及在纤维素存在基础上添加无机氮(C+N)、葡萄糖(C+G)、葡萄糖和无机氮同时添加(C+G+N)处理。在33天培养时间内,分别在不同的时间间隔内测定了土壤CO2累积释放量、微生物生物量碳(Cmic)、及脱氢酶(DHD)、β-葡萄糖苷酶(GLU)、过氧化氢酶(CAT)、碱性磷酸酶(APH)活性。结果表明,所有测定的微生物性质在CK与C处理间均没有显著性差异。与CK和C处理相比,其他所有处理的土壤CO2累积释放量均显著增加,其中C+G+N处理达最大值;G、G+N、C+G、C+G+N处理的土壤Cmic含量及DHD和APH活性显著提升,尤其在培养的前14天,而N和C+N处理则与CK处理相似,表示添加葡萄糖可显著增加上述处理生物活性水平,而添加无机氮则不能。添加无机氮和葡萄糖对GLU和CAT的影响不明显,大部分情况下它们在处理间没有表现出显著性差异。相关性分析表明,CO2释放速率始终与APH活性成显著正相关,但与Cmic和其他酶活性之间的相关关系则随着培养时间的不同而发生变化,这可能与不同培养时间的微生物组成或微生物利用底物的模式发生改变有关。聚类分析结果进一步表明,8个处理的土壤微生物活性水平可明显分成3组,其中活性水平最高的组只包含C+G+N处理,该结果提示在难分解纤维素存在时,无机氮和易利用有机碳的同时添加对提升土壤微生物活性的重要性。  相似文献   

11.
The productivity of temperate forests is often limited by soil N availability, suggesting that elevated atmospheric N deposition could increase ecosystem C storage. However, the magnitude of this increase is dependent on rates of soil organic matter formation as well as rates of plant production. Nonetheless, we have a limited understanding of the potential for atmospheric N deposition to alter microbial activity in soil, and hence rates of soil organic matter formation. Because high levels of inorganic N suppress lignin oxidation by white rot basidiomycetes and generally enhance cellulose hydrolysis, we hypothesized that atmospheric N deposition would alter microbial decomposition in a manner that was consistent with changes in enzyme activity and shift decomposition from fungi to less efficient bacteria. To test our idea, we experimentally manipulated atmospheric N deposition (0, 30 and 80 kg NO3-N) in three northern temperate forests (black oak/white oak (BOWO), sugar maple/red oak (SMRO), and sugar maple/basswood (SMBW)). After one year, we measured the activity of ligninolytic and cellulolytic soil enzymes, and traced the fate of lignin and cellulose breakdown products (13C-vanillin, catechol and cellobiose).In the BOWO ecosystem, the highest level of N deposition tended to reduce phenol oxidase activity (131±13 versus 104±5 μmol h−1 g−1) and peroxidase activity (210±26 versus 190±21 μmol h−1 g−1) and it reduced 13C-vanillin and 13C-catechol degradation and the incorporation of 13C into fungal phospholipids (p<0.05). Conversely, in the SMRO and SMBW ecosystems, N deposition tended to increase phenol oxidase and peroxidase activities and increased vanillin and catechol degradation and the incorporation of isotope into fungal phospholipids (p<0.05). We observed no effect of experimental N deposition on the degradation of 13C-cellulose, although cellulase activity showed a small and marginally significant increase (p<0.10). The ecosystem-specific response of microbial activity and soil C cycling to experimental N addition indicates that accurate prediction of soil C storage requires a better understanding of the physiological response of microbial communities to atmospheric N deposition.  相似文献   

12.
Microbial activity is known to continue during the winter months in cold alpine and Arctic soils often resulting in high microbial biomass. Complex soil nutrient dynamics characterize the transition when soil temperatures approach and exceed 0 °C in spring. At the time of this transition in alphine soils microbial biomass declines dramatically together with soil pools of available nutrients. This pattern of change characterizes alpine soils at the winter-spring transition but whether a similar pattern occurs in Arctic soils, which are colder, is unclear. In this study amounts of microbial biomass and the availability of carbon (C), nitrogen (N) and phosphorus (P) for microbial and plant growth in wet peaty soils of an Arctic sedge meadow have been determined across the winter-spring boundary. The objective was to determine the likely causes of the decline in microbial biomass in relation to temperature change and nutrient availability. The pattern of soil temperature at depths of 5-15 cm can be divided into three phases: below −10 °C in late winter, from −7 to 0 °C for 7 weeks during a period of freeze-thaw cycles and above 0 °C in early spring. Peak microbial biomass and nutrient availability occurred early in the freeze-thaw phase. Subsequently, a steady decrease in inorganic N occurred, so that when soil temperatures rose above 0 °C, pools of inorganic nutrients in soils were very low. In contrast, amounts of microbial C and soluble organic C and N remained high until the end of the period of freeze-thaw cycles, when a sudden collapse occurred in soluble organic C and N and in phosphatase activity, followed by a crash in microbial biomass just prior to soil temperatures rising consistently above 0 °C. Following this, there was no large pulse of available nutrients, implying that competition for nutrients from roots results in the collapse of the microbial pool.  相似文献   

13.
An arable soil with organic matter formed from C3-vegetation was amended initially with maize cellulose (C4-cellulose) and sugarcane sucrose (C4-sucrose) in a 67-day laboratory incubation experiment with microcosms at 25 °C. The amount and isotopic composition (13C/12C) of soil organic C, CO2 evolved, microbial biomass C, and microbial residue C were determined to prove whether the formation of microbial residues depends on the quality of the added C source adjusted with NH4NO3 to the same C/N ratio of 15. In a subsequent step, C3-cellulose (3 mg C g−1 soil) was added without N to soil to determine whether the microbial residues formed initially from C4-substrate are preferentially decomposed to maintain the N-demand of the soil microbial community. At the end of the experiment, 23% of the two C4-substrates added was left in the soil, while 3% and 4% of the added C4-cellulose and C4-sucrose, respectively, were found in the microbial biomass. The addition of the two C4-substrates caused a significant 100% increase in C3-derived CO2 evolution during the 5-33 day incubation period. The addition of C3-cellulose caused a significant 50% increase in C4-derived CO2 evolution during the 38-67 day incubation period. The decrease in microbial biomass C4-C accounted for roughly 60% of this increase. Cellulose addition promoted microorganisms strongly able to recycle N immediately from their own tissue by “cryptic growth” instead of incorporating NO3 from the soil solution. The differences in quality of the microbial residues produced by C4-cellulose and C4-sucrose decomposing microorganisms are also reflected by the difference in the rates of CO2 evolution, but not in the rates of net N mineralization.  相似文献   

14.
Global warming in the Arctic may alter decomposition rates in Arctic soils and therefore nutrient availability. In addition, changes in the length of the growing season may increase plant productivity and the rate of labile C input below ground. We carried out an experiment in which inorganic nutrients (NH4NO3 and NaPO4) and organic substrates (glucose and glycine) were added to soils sampled from across the mountain birch forest-tundra heath ecotone in northern Sweden (organic and mineral soils from the forest, and organic soil only from the heath). Carbon dioxide production was then monitored continuously over the following 19 days. Neither inorganic N nor P additions substantially affected soil respiration rates when added separately. However, combined N and P additions stimulated microbial activity, with the response being greatest in the birch forest mineral soil (57% increase in CO2 production compared with 26% in the heath soil and 8% in the birch forest organic soil). Therefore, mineralisation rates in these soils may be stimulated if the overall nutrient availability to microbes increases in response to global change, but N deposition alone is unlikely to enhance decomposition. Adding either, or both, glucose and glycine increased microbial respiration. Isotopic separation indicated that the mineralisation of native soil organic matter (SOM) was stimulated by glucose addition in the heath soil and the forest mineral soil, but not in the forest organic soil. These positive ‘priming’ effects were lost following N addition in forest mineral soil, and following both N and P additions in the heath soil. In order to meet enhanced microbial nutrient demand, increased inputs of labile C from plants could stimulate the mineralisation of SOM, with the soil C stocks in the tundra-heath potentially most vulnerable.  相似文献   

15.
An incubation experiment was carried out with maize (Zea mays L.) leaf straw to analyze the effects of mixing the residues with soil and N amendment on the decomposition process. In order to distinguish between soil effects and nitrogen effects for both the phyllospheric microorganisms already present on the surface of maize straw and soil microorganisms the N amendment was applied in two different placements: directly to the straw or to the soil. The experiment was performed in dynamic, automated microcosms for 22 days at 15 °C with 7 treatments: (1) untreated soil, (2) non-amended maize leaf straw without soil, (3) N amended maize leaf straw without soil, (4) soil mixed with maize leaf straw, (5) N amended soil, (6) N amended soil mixed with maize leaf straw, and (7) soil mixed with N amended maize leaf straw. 15NH415NO3 (5 at%) was added. Gas emissions (CO2, 13CO2 and N2O) were continuously recorded throughout the experiment. Microbial biomass C, biomass N, ergosterol, δ13C of soil organic C and of microbial biomass C as well as 15N in soil total N, mineral N and microbial biomass N were determined in soil samples at the end of the incubation. The CO2 evolution rate showed a lag-phase of two days in the non-amended maize leaf straw treatment without soil, which was completely eliminated when mineral N was added. The addition of N generally increased the CO2 evolution rate during the initial stages of maize leaf straw decomposition, but not the cumulative CO2 production. The presence of soil caused roughly a 50% increase in cumulative CO2 production within 22 days in the maize straw treatments due to a slower decrease of CO2 evolution after the initial activity peak. Since there are no limitations of water or N, we suggest that soil provides a microbial community ensuring an effective succession of straw decomposing microorganisms. In the treatments where maize and soil was mixed, 75% of microbial biomass C was derived from maize. We concluded that this high contribution of maize using microbiota indicates a strong influence of organisms of phyllospheric origin to the microbial community in the soil after plant residues enter the soil.  相似文献   

16.
Bulk and rhizosphere soil of rape and barley grown in a calcareous soil were pre-incubated for 7 days at 20 °C with Na235SO4 to partially label soil organic S. The soils were then incubated for 7 days more with increasing levels of two C sources as organic acids (succinic and malic acids) and as glucose (from 0 to 640 mg C kg−1 soil) with or without increasing levels of N (from 0 to 15 mg N kg−1 soil) in the form of ammonium nitrate, in order to mimic rhizodeposition inputs into soil. A second incubation experiment with a single highest dose of the used substrates was undertaken and two destructive soil samplings on days 17 and 35 were carried out. Both incubation experiments showed the intensities of S immobilization in the order: barley rhizosphere>rape rhizosphere>bulk soil. Glucose addition generated positive S priming effects in all studied soils after one week of incubation. Significant correlation coefficients were observed between immobilized-S and microbial biomass-S (r=0.95,p<0.001), arylsulfatase activity (ARS) and microbial biomass-S (r=0.65,p<0.05) on day 17 but not on day 35, whereas significant correlation coefficients were found between arylsulfatase activity and immobilized-S at both days 17 (r=0.79,p<0.01) and 35 (r=0.75,p<0.01). A marked decline of biomass-S noted in substrate-amended treatments at day 35 suggests a quick turnover of this compartment followed by its incorporation into the organic S. Finally, with organic acids high values of ARS per unit of biomass-S were recorded over the two studied dates in the rhizosphere soil of rape. It is concluded that the rhizosphere microbial biomass under rape exhibited more efficient arylsulfatase activity and hence greater turnover of organic S than that under the barley rhizosphere soil.  相似文献   

17.
Urea, labelled with15N, was applied, at rates equivalent to 0–400 kg N ha?1, to mixed L + F horizon soil materials from a jack pine (Pinus banksiana Lamb.) forest. The L + F materials were held at 13°C and 33 kPa moisture in three experiments lasting from 6 to 128 days. In the first experiment the immobilization of fertilizer N was determined, in the second the stimulation of microbial activity was measured, and in the third urea reactions in a forest floor without microorganisms were examined. Urea stimulated microbial activity and microbial mineralization of soil N. Total amounts of N immobilized and recovered as organic N, after 128 days, increased with rate of application from 50 to 400 kg urea-N ha?1. The pH and C contents of water extracts of soil increased with increasing rates of urea application. Organic matter in a forest floor treated with urea was shown to solubilize after microbial activity was inhibited by gamma radiation, and this suggests that chemical C release was brought on by the urea. Results from this study were consistent with the hypothesis that microbial activity in urea-treated soil is stimulated by increased availability of C in soil.  相似文献   

18.
There is now clear evidence for a prolonged increase in atmospheric CO2 concentrations and enrichment of the biosphere with N. Understanding the fate of C in the plant-soil system under different CO2 and N regimes is therefore of considerable importance in predicting the environmental effects of climate change and in predicting the sustainability of ecosystems. Swards of Lolium perenne were grown from seed in a Eutric Cambisol at either ambient (ca. 350 μmol mol−1) or elevated (700 μmol mol−1) atmospheric pCO2 and subjected to two inorganic N fertilizer regimes (no added N and 70 kg N ha−1 month−1). After germination, soil solution concentrations of dissolved organic C (DOC), dissolved inorganic N (DIN), dissolved organic N (DON), phenolics and H+ were measured at five depths down the soil profile over 3 months. The exploration of soil layers down the soil profile by roots caused transient increases in soil solution DOC, DON and phenolic concentrations, which then subsequently returned to lower quasi-stable concentrations. In general, the addition of N tended to increase DOC and DON concentrations while exposure to elevated pCO2 had the opposite effect. These treatment effects, however, gradually diminished over the duration of the experiment from the top of the soil profile downwards. The ambient pCO2 plus added N regime was the only treatment to maintain a notable difference in soil solution solute concentration, relative to other treatments. This effect on soil solution chemistry appeared to be largely indirect resulting from increased plant growth and a decrease in soil moisture content. Our results show that although plant growth responses to elevated pCO2 are critically dependent upon N availability, the organic chemistry of the soil solution is relatively insensitive to changes in plant growth once the plants have become established.  相似文献   

19.
Soil microbes are frequently limited by carbon (C), but also have a high phosphorus (P) requirement. Little is known about the effect of P availability relative to the availability of C on soil microbial activity. In two separate experiments, we assessed the effect of P addition (20 mg P kg?1 soil) with and without glucose addition (500 mg C kg?1 soil) on gross nitrogen (N) mineralization (15N pool dilution method), microbial respiration, and nitrous oxide (N2O) emission in a grassland soil. In the first experiment, soils were incubated for 13 days at 90% water holding capacity (WHC) with addition of NO3? (99 mg N kg?1 soil) to support denitrification. Addition of C and P had no effect on gross N mineralization. Initially, N2O emission significantly increased with glucose, but it decreased at later stages of the incubation, suggesting a shift from C to NO3? limitation of denitrifiers. P addition increased the N2O/CO2 ratio without glucose but decreased it with glucose addition. Furthermore, the 15N recovery was lowest with glucose and without P addition, suggesting a glucose by P interaction on the denitrifying community. In the second experiment, soils were incubated for 2 days at 75% WHC without N addition. Glucose addition increased soil 15N recovery, but had no effect on gross N mineralization. Possibly, glucose addition increased short-term microbial N immobilization, thereby reducing N-substrates for nitrification and denitrification under more aerobic conditions. Our results indicate that both C and P affect N transformations in this grassland soil.  相似文献   

20.
 The effects of acetate additions to northern hardwood forest soils on microbial biomass carbon (C) and nitrogen (N) content, soil inorganic N levels, respirable C and potential net N mineralization and nitrification were evaluated. The experiment was relevant to a potential watershed-scale calcium (Ca) addition that aims to replace Ca depleted by long-term exposure to acid rain. One option for this addition is to use calcium-magnesium (Mg) acetate, a compound that is inexpensive and much more readily soluble than the Ca carbonate that is generally used for large-scale liming. Field plots were treated with sodium (NA) acetate, Na bicarbonate or water (control) and were sampled (forest floor – Oe and Oa combined) 2, 10 and 58 days following application. It was expected that the addition of C would lead to an increase in biomass C and N and a decrease in inorganic N. Instead, we observed no effect on biomass C, a decline in biomass N and an increase in N availability. One possible explanation for our surprising results is that the C addition stimulated microbial activity but not growth. A second, and more likely, explanation for our results is that the C addition did stimulate microbial growth and activity, but there was no increase in microbial biomass due to predation of the new biomass by soil fauna. The results confirm the emerging realization that the effects of increases in the flow of C to soils, either by deliberate addition or from changes in atmospheric CO2, are more complex than would be expected from a simple C : N ratio analysis. Evaluations of large-scale manipulations of forest soils to ameliorate effects of atmospheric deposition or to dispose of wastes should consider microbial and faunal dynamics in considerable detail. Received: 13 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号