首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The application of Pb inhibited the development of mycelia of the saprobe fungi Fusarium concolor and Trichoderma koningii and the hyphal length of the arbuscular mycorrhizal fungi (AM) Glomus mosseae and G. deserticola in vitro. The application to soil of 1500 mg kg?1 of Pb decreases the dry weight, total N, P, Mg and Fe concentration and chlorophyll content of the shoot of E. globulus no inoculated with AM fungi. However, G. deserticola increased the dry weight, total nutrient concentration and chlorophyll content of the shoot, and the percentage of AM root length colonization and the succinate dehydrogenase activity of AM mycelia of E. globulus in presence of 1500 mg kg?1 of Pb, and these increases were higher when G. deserticola was inoculated together with T. koningii. The application to soil of 3000 mg kg?1 of Pb decreased the shoot dry weight and AM colonization of E. globulus in all treatments tested. Pb was accumulated in the stem more than in the leaves of E. globulus. In presence of 1500 mg kg?1 of Pb the highest accumulation of this metal in the stem took place when E. globulus was colonized with G. deserticola. In conclusion, the possibility to increase Lead accumulation in stem is very attractive for phytoextraction function, the saprobe fungi, AM and their interaction may have a potential role in elevating phytoextraction efficiency and stimulate plant growth under adverse conditions such as lead contaminated soil.  相似文献   

2.
Aluminum in acidic conditions is toxic to plants. Aluminum tolerance in some plant species has been ascribed to arbuscular mycorrhizal fungal symbiosis. In this study, the application of aluminum was found to inhibit mycelia development of saprobe fungi Fusarium concolor and Trichoderma koningii and the hyphal length of the arbuscular mycorrhizal fungi Glomus mosseae and Glomus deserticola in vitro. Several levels of aluminum were applied to Eucalyptus globulus plants and inoculated with arbuscular mycorrhizal fungi alone or together with both saprobe fungi. The application of 1,500 mg kg?1 decreased the shoot and root dry weight, chlorophyll content and total P, Mg, and Ca concentrations in the shoot of E. globulus. However, both mycorrhizal fungi G. mosseae and G. deserticola inoculated alone increased the shoot dry weight of Eucalyptus, compared with a non- arbuscular mycorrhizal inoculated control treated with 1,500 mg kg?1 of aluminum. When 1,500 mg kg?1 of aluminum was applied, T. koningii increased the effect of G. deserticola on the shoot weight of eucalyptus, whereas with 3,000 mg kg?1, shoot weight and arbuscular mycorrhizal colonization decreased in all treatments. With 1,500 mg kg?1, the highest accumulation of aluminum in the shoot was obtained when G. deserticola was inoculated together with T. koningii. The possibility of manipulating an arbuscular mycorrhizal inoculation together with a saprobe fungus confers a high aluminum resistance in E. globulus. The effect of such combined inoculation is particularly important in some Chilean volcanic acid soils, mainly those which have been intensively cropped and are without lime addition, which facilitates the increase of phytotoxic aluminum species and limits their agricultural use. Therefore, such dual inoculation in field conditions deserves further investigation. Overall, the arbuscular mycorrhizal and saprobe fungi contribute to the increase in resistance of E. globulus to aluminium.  相似文献   

3.
The effect of the dual inoculation with arbuscular mycorrhizal (AM) and saprophytic fungi and a combination of wheat straw and sewage sludge residues were studied by determining their effect on dry weight of tomato and on chemical and biochemical properties of soil. Incubation of organic residue (sewage sludge combined with wheat straw) with saprophytic fungi and plant inoculation with mycorrhizal fungi was essential to study plant growth promotion. Soil application of organic residues increased the dry weight of tomato inoculated with Rhizophagus irregularis. The greatest shoot dry mass was obtained when the organic residues were incubated with Trichoderma harzianum and applied to AM plants. However, the greatest percentage of root length colonized with AM in the presence of the organic residues was obtained with inoculation with Coriolopsis rigida. The relative chlorophyll was greatest in mycorrhizal plants regardless of the presence of either saprophytic fungus. The presence of the saprophytic fungi increased soil pH as the incubation time increased. Soil nitrogen and phosphorus contents and acid phosphatase were stimulated by the addition of organic residues, and contents of N and P. Total N and P content in soil increased when the organic residue was incubated with saprobe fungi, but this effect decreased as the incubation period of the residue with saprobe fungi increased. The same trend was observed for soil β‐glucosidase and fluorescein diacetate activities. The application of organic residues in the presence of AM and saprophytic fungi seems to be an interesting option as a biofertilizer to improve plant growth and biochemical parameters of soils.  相似文献   

4.
Arbuscular mycorrhizal (AM) fungi have been shown to induce the biocontrol of soilborne diseases, to change the composition of root exudates and to modify the bacterial community structure of the rhizosphere, leading to the formation of the mycorrhizosphere. Tomato plants were grown in a compartmentalized soil system and were either submitted to direct mycorrhizal colonization or to enrichment of the soil with exudates collected from mycorrhizal tomato plants, with the corresponding negative controls. Three weeks after planting, the plants were inoculated or not with the soilborne pathogen Phytophthora nicotianae growing through a membrane from an adjacent infected compartment. At harvest, a PCR-Denaturing gradient gel electrophoresis analysis of 16S rRNA gene fragments amplified from the total DNA extracted from each plant rhizosphere was performed. Root colonization with the AM fungi Glomus intraradices or Glomus mosseae induced significant changes in the bacterial community structure of tomato rhizosphere, compared to non-mycorrhizal plants, while enrichment with root exudates collected from mycorrhizal or non-mycorrhizal plants had no effect. Our results support that the effect of AM fungi on rhizosphere bacteria would not be mediated by compounds present in root exudates of mycorrhizal plants but rather by physical or chemical factors associated with the mycelium, volatiles and/or root surface bound substrates. Moreover, infection of mycorrhizal or non-mycorrhizal plants with P. nicotianae did not significantly affect the bacterial community structure suggesting that rhizosphere bacteria would be less sensitive to the pathogen invasion than to mycorrhizal colonization. Of 96 unique sequences detected in the tomato rhizosphere, eight were specific to mycorrhizal fungi, including two Pseudomonas, a Bacillus simplex, an Herbaspirilium and an Acidobacterium. One Verrucomicrobium was common to rhizospheres of mycorrhizal plants and of plants watered with mycorrhizal root exudates.  相似文献   

5.
Arbuscular mycorrhizal (AM) colonized plants often have greater tolerance to drought than nonmycorrhizal (nonAM) plants. Wheat (Triticum durum Desf.), whose roots were colonized with Glomus mosseae (Gms) and G. monosporum (Gmn), were grown in a greenhouse to determine effects of water stress (WS) on shoot and root dry matter (DM), root length (RL), and shoot phosphorus (P), zinc (Zn), copper (Cu), manganese (Mn), and iron (Fe) concentrations and contents. Mycorrhizal colonization was higher in well‐watered (nonWS) plants colonized with both AM isolates than WS plants, and Gms had greater colonization than Gmn under both soil moisture conditions. Shoot and root DM were higher in AM than in nonAM plants irrespective of soil moisture, and Gms plants had higher shoot but not root DM than Gmn plants grown under either soil moisture condition. Total RL of AM plants was greater than nonAM plants, but was consistently lower for plants grown with WS than with nonWS. The AM plants had similar shoot P and Mn concentrations as nonAM plants, but contents were higher in AM than in nonAM plants. The AM plants had higher shoot Zn, Cu, and Fe concentrations and contents than nonAM plants. The Gms plants grown under nonWS generally had higher nutrient contents than Gmn plants, but nutrient contents were similar for both Gms and Gmn plants grown under WS. The results demonstrated a positive relationship between enhanced growth and AM root colonization for plants grown under nonWS and WS.  相似文献   

6.
The effect of inoculation with the saprophytic fungi Alternaria alternata or Fusarium equiseti on maize (Zea mays) and lettuce (Lactuca sativa) with or without arbuscular mycorrhizal (AM) colonization by Glomus mosseae was studied in a greenhouse trial. Plant dry weights of non-AM-inoculated maize and lettuce were unaffected by the presence of A. alternata and F. equiseti. In contrast, A. alternata and F. equiseti decreased plant dry weights and mycorrhization when inoculated to the rhizosphere before G. mosseae. The saprophytic fungi inoculated 2 weeks after G. mosseae did not affect the percentage of root length colonized by the AM endophyte, but did affect its metabolic activity assessed as succinate dehydrogenase activity. Although F. equiseti inoculated at the same time as G. mosseae did not affect mycorrhization of maize roots, its effect on AM colonization of lettuce roots was similar to that with A. alternata. In the rhizosphere of both plants, the population of saprophytic fungi decreased significantly, but was not affected by the presence of G. mosseae. Our results suggest that there may have been a direct effect of the saprophytic fungi on the mycorrhizal fungi in the extramatrical phase of the latter, and when the AM fungus was established in the root the AM fungus was less affected by the saprophytic fungi. Received: 16 January 1996  相似文献   

7.
《Applied soil ecology》2003,22(1):15-28
The effects of two Bacillus strains (Bacillus pumillus and B. licheniformis) on Medicago sativa plants were determined in single or dual inoculation with three arbuscular-mycorrhizal (AM) fungi and compared to P-fertilization. Shoot and root plant biomass, values of thymidine and leucine incorporation as well as ergosterol and chitin in rhizosphere soil were evaluated to estimate metabolic activity and fungal biomass, respectively, according to inoculation treatments. For most of the plant parameters determined, the effectiveness of AM fungal species was influenced by the bacterial strain associated. Dual inoculation of Bacillus spp. and AM fungi did not always significantly increase shoot biomass compared to single AM-colonized plants. The most efficient treatment in terms of dry matter production was the dual Glomus deserticola plus B. pumillus inoculation, which produced similar shoot biomass and longer roots than P-fertilization and a 715% (shoot) and 190% (root length) increase over uninoculated control. The mycorrhizas were more important for N use-efficiency than for P use-efficiency, which suggests a direct mycorrhizal effect on N nutrition not mediated by P uptake. Both chemical and biological treatments affected thymidine and leucine incorporation in the rhizosphere soil differently. Thymidine was greater in inoculated than in control rhizospheres and B. licheniformis was more effective than B. pumillus in increasing thymidine. Non-inoculated rhizospheres showed the lowest thymidine and leucine values, which shows that indigenous rhizosphere bacteria increased with introduced inocula. The highest thymidine and leucine values found in P-fertilized soils indicate that AM plants are better adapted to compete with saprophytic soil bacteria for nutrients than P-amended plants. Chitin was only increased by coinoculation of B. licheniformis and G. intraradices. B. pumillus increased ergosterol (indicative of active saprophyte fungal populations) in the rhizosphere of AM plants and particularly when colonized by G. mosseae. The different AM fungi have different effects on bacterial and/or fungal saprophytic populations and for each AM fungus, this effect was specifically stimulated or reduced by the same bacterium. This is an indication of ecological compatibilities between microorganisms. Particular Glomus–bacterium interactions (in terms of effect on plant growth responses or rhizosphere population) do not seem to be related to the percentage of AM colonization. The effect on plant growth and stimulation of rhizosphere populations, as a consequence of selected microbial groups, may be decisive for the plant establishment under limiting soil conditions.  相似文献   

8.
The effects of collembolan grazing on arbuscular mycorrhizal (AM) fungi and plant growth were studied in a controlled experiment utilizing a mix of AM fungi and the dominant collembolan species (Isotoma sp.) indigenous to the experimental soil. Collembolan (+/– Col) effects were examined in the presence and absence of crop residue (+/– Litter) incorporated into the experimental soil. Significant interactions between collembolans and crop residue occurred for mycorrhizal colonization of roots and plant growth. In the absence of crop residue, collembolans reduced root length colonized by AM fungi, total plant dry mass and seed pod yield. However, in the presence of crop residue, collembolans had no effect on root colonization by AM fungi, and increased total plant mass and pod yield. Crop residue increased root colonization by AM fungi, numbers of bacteria and saprophytic fungi (colony forming units), small- (<5 m) and large- (>5 m) diameter hyphal lengths in soil, and the final population of collembolans in soil. Collembolans reduced both small- and large-diameter hyphae in soil and the number of saprophytic fungi (colony forming units, p =0.052). Feeding preference experiments conducted in vitro showed that Isotoma sp. preferred to graze on mycorrhizal roots over nonmycorrhizal roots when given no other food choice. However, when crop residue was added as a food choice, Isotoma sp. showed a clear feeding preference for crop residue. We conclude that collembolan grazing on mycorrhizae can be detrimental to plant growth when other fungal food sources are limited, but grazing on mycorrhizal fungi does not occur when ample organic matter and associated saprophytic fungi are present in soils.  相似文献   

9.
Two strains of Gluconacetobacter diazotrophicus (Pal 5, UAP5541) and the arbuscular mycorrhizal fungus Glomus intraradices increased both the shoot and root dry weight of sorghum 45 days after inoculation, whereas they had no effect on the shoot and root dry weight of maize. Co-inoculation (Gluconacetobacter diazotrophicus plus Glomus mosseae) did not increase the shoot and root dry weight of either plant. There was a synergistic effect of Gluconacetobacter diazotrophicus on root colonization of maize by Glomus intraradices, whereas an antagonistic interaction was observed in the sorghum root where the number of Gluconacetobacter diazotrophicus and the colonization by Glomus intraradices were reduced. Plant roots inoculated with Gluconacetobacter diazotrophicus and Glomus intraradices, either separately or together, significantly increased root endoglucanase, endopolymethylgalacturonase and endoxyloglucanase activities. The increase varied according to the plant. For example, in comparison with non-inoculated plants, there were higher endoglucanase (+328%), endopolymethylgalacturonase (+180%) and endoxyloglucanase (+125%) activities in 45-day old co-inoculated maize, but not in 45-day old sorghum. The possibility is discussed that hydrolytic enzyme activities were increased as a result of inoculation with Gluconacetobacter diazotrophicus, considering this to be one of the mechanisms by which these bacteria may increase root colonization by AM fungi.  相似文献   

10.
A field experiment was carried out to compare the effectiveness of inoculation with three arbuscular mycorrhizal (AM) fungi, namely Glomus intraradices Schenck & Smith, Glomus deserticola (Trappe, Bloss. & Menge) and Glomus mosseae (Nicol & Gerd.) Gerd. & Trappe, and the addition of Aspergillus niger‐treated dry olive cake (DOC) in the presence of rock phosphate, in increasing root nitrate reductase (NR) and acid phosphatase activities, mycorrhizal colonization, plant growth and nutrient uptake in Dorycnium pentaphyllum L. seedlings afforested in a semiarid degraded soil. Three months after planting, both the addition of fermented DOC and the mycorrhizal inoculation treatments had increased root NR activity significantly, particularly the inoculation with G. deserticola (by 75 per cent with respect to non‐inoculated plants), but they had no effect on root acid phosphatase. Mycorrhizal inoculation treatments with G. deserticola or G. mosseae on their own were even more effective than the addition of fermented DOC alone in improving the growth and (NPK) foliar nutrients of D. pentaphyllum plants. The combined treatment involving the application of microbially‐treated agrowastes and mycorrhizal inoculation with AM fungi, particularly with G. mosseae, can be proposed as a successful revegetation strategy for D. pentaphyllum in P‐deficient soils under semiarid Mediterranean conditions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
The effects of three commonly used fungicides on the colonization and sporulation by a mixture of three arbuscular mycorrhizal (AM) fungi consisting of Glomus etunicatum (Becker & Gerd.), Glomus mosseae (Nicol. & Gerd.) Gerd. & Trappe, and Gigaspora rosea (Nicol. & Schenck) in symbiosis with pea plants and the resulting response of the host-plant were examined. Benomyl, PCNB, and captan were applied as soil drenches at a rate of 20 mg active ingredient kg-1 soil 2 weeks after transplanting pea seedlings in a silty clay-loam soil containing the mixed inocula of AM fungi (AM plants). Effects of fungicides were compared to untreated plants that were inoculated with fungi (AM control). The effect of mycorrhizal inoculation on plant growth was also examined by including nonmycorrhizal, non-fungicide-treated plants (non-AM control). Fungicides or inoculation with AM fungi had only a small effect on the final shoot weights of pea plants, but had greater effects on root length and seed yield. AM control plants had higher seed yields and lower root lengths than the corresponding non-AM plants, and the fungicide-treated AM plants had intermediate yields and root lengths. Seed N and P contents were likewise highest in AM control plants, lowest in non-AM plants, and intermediate in fungicide-treated AM plants. All three fungicides depressed the proportion (%) of root length colonized by AM fungi, but these differences did not translate to reductions in the total root length that was colonized, since roots were longer in the fungicide-treated AM plants. Pea plants apparently compensated for the reduction in AM-fungal metabolism due to fungicides by increasing root growth. Fungicides affected the population of the three fungi as determined by sporulation at the final harvest. Captan significantly reduced the number, relative abundance, and relative volume of G. rosea spores in the final population relative to the controls. The relative volume of G. etunicatum spores was greater in all the fungicide-treated soils, while G. mosseae relative volumes were only greater in the captan-treated soil. These findings show that fungicides can alter the species composition of an AM-fungal community. The results also show that AM fungi can increase seed yield without enhancing the vegetative shoot growth of host plants.  相似文献   

12.
《Applied soil ecology》2005,28(1):23-36
This study assessed the effect of mycorrhizal colonization by Glomus intraradices (Gi) and G. versiforme (Gv) on the bacterial community composition in the rhizosphere of canola, clover and two tomato genotypes (wild type (76R) and its mutant with reduced mycorrhizal colonization (rmc)). Additionally, the effect of light intensity on the rhizosphere bacterial community composition of the tomato genotypes was studied. The bacterial community composition was assessed by denaturing gradient gel electrophoresis (DGGE). In canola, which is considered to be a non-mycorrhizal species, inoculation with Gi increased the shoot dw compared to Gv and the non-mycorrhizal control plants and also induced changes in the bacterial community composition in the rhizosphere. These fungal effects were observed although less than 8% of the root length of canola was colonized. On the other hand, about 50% of the root length of clover was colonized and inoculation with Gv resulted in a higher shoot dw compared to Gi or the control plants but the rhizosphere bacterial community composition was not affected by inoculation. Plant growth, mycorrhizal colonization and bacterial community composition of the two tomato genotypes were affected by a complex interaction between tomato genotype, AM fungal species and light intensity. Low light intensity (photosynthetic photon flux 200–250 μmol m−2 s−1) increased the shoot–root ratio in both genotypes and reduced colonization in the wild type. The differences in bacterial community composition between the two genotypes were more pronounced at low than at high light intensity (550–650 μmol m−2 s−1).  相似文献   

13.
Recycling of olive mill wastewaters (OMW) into agricultural soils is a controversial issue since benefits to soil fertility should counterbalance potential short-term toxicity effects. We investigated the short-term effects of OMW on the soil-plant system, regarding the diversity, structure and root colonization capacity of arbuscular mycorrhizal (AM) fungi and the respective growth response of Vicia faba L, commonly used as green manure in olive-tree plantations. A compartmentalized pot system was used that allowed the establishment of an AM fungal community in one compartment (feeder) and the application of three OMW dose levels in an adjacent second compartment (receiver). At 0, 10, and 30 days after OMW treatment (DAT), V. faba pre-germinated seeds were seeded in the receiver compartment. At harvest, shoot and root dry weights, AM fungal root colonization, soil hyphal length and P availability were recorded in the receiver compartment. In addition, OMW effects on AM fungal diversity in plant roots were studied by DGGE. A transient effect of OMW application was observed; plant growth and AM fungal colonization were initially inhibited, whereas soil hyphal length was stimulated, but in most cases differences were absent when seeding was performed 30 DAT. Similarly, changes induced in the structure of the root AM fungal community were of transient nature. Cloning and sequencing of all the major DGGE bands showed that roots were colonized by Glomus spp. The transient effects of OMW on the structure and function of AM fungi could be attributed to OMW-derived phytoxicity to V. faba plants or to an indirect effect via alteration of soil nutritional status. The high OMW dose significantly increased soil P availability in the presence of AM fungi, suggesting efficient involvement of AM fungi in organic-P minerilization. Overall our results indicate that soil application of OMW would cause transient changes in the AM fungal colonization of V. faba plants, which, would not impair their long-term plant growth promoting ability.  相似文献   

14.
《Pedobiologia》2014,57(4-6):223-233
Mycorrhizal fungi and earthworms can individually or interactively influence plant growth and heavy metal uptake. The influence of earthworms and arbuscular mycorrhizal (AM) fungi either alone or in combination on maize (Zea mays L.) growth and cadmium (Cd) uptake was investigated in a calcareous soil artificially spiked with Cd. Soils were contaminated with Cd (10 and 20 mg Cd kg−1), inoculated or un-inoculated with the epigeic earthworm Lumbricus rubellus and two AM fungal species (Rhizophagus irregularis and Funneliformis mosseae) for two months of growth under greenhouse conditions. Generally, earthworms alone increased both shoot P uptake and biomass but decreased shoot Cd concentration and root Cd uptake. AM fungi individually often increased total maize P uptake, declined shoot Cd concentration, and consequently produced higher total biomass. However, R. irregularis enhanced shoot Cd uptake at low Cd level and root Cd uptake at high Cd level. In plants inoculated with F. mosseae species, earthworms increased shoot biomass and Cd uptake, decreased root biomass and Cd uptake at all Cd levels, and increased shoot Cd concentration at low Cd level. In plants colonized by R. irregularis species, however, earthworm addition decreased maize biomass only at high Cd level and root Cd concentration and total maize Cd uptake at both Cd levels. Earthworm activity decreased Cd transfer from the soil to maize roots at low Cd level, but this was counterbalanced in the presence of F. mosseae. Mycorrhizal symbiosis significantly reduced the transfer of Cd from roots to shoots, independence of earthworm effect. Overall, it is concluded that L. rubellus and AM fungi, in particular F. mosseae isolate, improved maize tolerance to Cd toxicity both individually and interactively by increasing plant growth and P nutrition, and restricting Cd transfer to the aboveground biomass. Consequently, the single and interactive effects of the two soil organisms might potentially be important not only in protecting maize plants against Cd toxicity, but also in Cd phytostabilization in soils polluted by this highly toxic metal.  相似文献   

15.
In order to study the variations in spore abundance and root colonization parameters of arbuscular mycorrhizal (AM) fungi in a naturally heavy metals polluted site and their relationships with soil properties, 35 plots in the Anguran Zn and Pb mining region were selected along a transect from the mine to 4500 m away. Within each plot, a composite sample of root and rhizospheric soil from a dominant indigenous plant was collected. The soil samples were analyzed for their physico-chemical characteristics. Spores were extracted, counted and identified at genus level. The roots were examined for colonization, arbuscular abundance, mycorrhizal frequency and intensity. Along the transect, the total and available (DTPA-extractable) concentration of Zn decreased from 6472 to 45 mg kg−1 and 75 to 5 mg kg−1, respectively. For Pb the values varied from 5203 to 0 mg kg−1 and 32 to 0 mg kg−1, respectively. In parallel, root colonization rate in the dominant native plants (except Alyssum sp.) varied from 35% to 85% and the spore numbers from 80 to 1306 per 200 g dry soil along the transect. Spores of Glomus were abundantly found in all plots as dominant, while Acaulospora spores were observed only in some moderately polluted and in control plots. AM fungal propagules never disappeared completely even in soils with the highest rates of both heavy metals. Spore numbers were more affected by Zn and Pb concentrations than root colonization. The variations of AM fungi propagules were better related to available than to total concentration of both metals. Spore numbers were positively correlated with mycorrhizal colonization parameters, particularly with arbuscular abundance.  相似文献   

16.
It is not known why sweet potato (Ipomoea batatas) cultivated in tropical regions tolerates acid soil. Here, we report the involvement of mycorrhizal symbiosis in this tolerance. Plants were grown in root-boxes filled with either acidic soil (pH 4.2) or the same soil amended with lime (pH 5.2) for 30 d in a growth chamber. In the inoculated treatments, the percentage of root length colonized by Gigaspora margarita was not affected by soil pH (23±9% at pH 4.2 vs. 30±12% at pH 5.2). The root and shoot dry weights of the non-mycorrhizal plants at pH 4.2 were 27 and 35%, respectively, of those at pH 5.2. The root and shoot dry weights of the mycorrhizal plants at pH 4.2 were 70 and 51% of those at pH 5.2. Growth promotion in mycorrhizal plants was significant only at pH 4.2 (2-fold increase in whole plant dry weight), but not at pH 5.2. As a result, no significant difference was detected in whole plant dry weight between the mycorrhizal plants at pH 4.2 and non-mycorrhizal plants at pH 5.2. The mycorrhizal plants at pH 4.2 showed reduced toxic symptoms of Mn (brown specks on mature leaves) and Al (poor root growth) compared to non-mycorrhizal ones, but tissue concentrations of P, K and Ca did not increase in mycorrhizal plants. We assume that the mycorrhizal colonization can reduce toxic effects of those elements while the exact mechanisms should be further investigated.  相似文献   

17.
Root colonization, abundance of spores and hyphae, as well as species diversity of arbuscular mycorrhizal (AM) fungi were analyzed in citrus orchards along an altitudinal gradient. The citrus trees were heavily colonized (50.87–77.45%) by native AM fungi. In citrus orchards located at <600 m above sea level (asl), we recorded more extensive hyphal and arbuscular colonization, and higher spore and hyphal length density. AM fungal colonization, spore density, and hyphal length density were closely correlated with edaphic factors such as available phosphorus, pH, and organic matter. A total of 18 AM fungal species belonging to 3 different orders, Archaeosporales (1 species), Diversisporales (7 species) and Glomerales (10 species), were identified on the basis of spore morphological characteristics. In orchards located at higher altitudes (≥700 m asl), we observed a significant decrease in species richness and Shannon–Wiener index values. However, in all of the surveyed orchards, Glomus aggregatum, Funneliformis mosseae and Rhizophagus intraradices were the dominant species. Isolate frequency and relative abundance of AM fungi exhibited clearly distinct distribution patterns among taxonomic families. Canonical correspondence analysis revealed that the AM fungal community structure was significantly influenced by environmental factors, especially altitude, pH, soil moisture, and available nitrogen. Our data indicated that environmental factors are important in determining AM fungal root colonization, propagule numbers, and species diversity in citrus orchards.  相似文献   

18.
It has been established that arbuscular mycorrhizal (AM) fungi are involved in the conservation of soil structure. However, the effect of ectomycorrhizal (EM) fungi alone or in interaction with AM fungi in soil structure has been much less studied. This experiment evaluated EM and AM fungi effects on soil aggregation and plant growth. Ash plants (Fraxinus uhdei) were grown in pots, and were inoculated with Glomus intraradices and Pisolithus tinctorius separately but also in combination. Our results showed that F. uhdei established a symbiotic association with EM and AM fungi, and that these organisms, when interacting, showed synergistic and additive effects on plant growth compared to singly inoculated treatments. EM and AM fungi prompted changes in root morphology and increased water-stable aggregates. AM fungi affect mainly small-sized macroaggregates, while EM and EM-AM fungi interaction mainly affected aggregates bigger than 0.5 mm diameter. These results suggest that ectomyccorrhizal as well as arbuscular mycorrhizal fungi should be considered in restoration programs with Fraxinus plants.  相似文献   

19.
Two indole-producing Paenibacillus species, known to be associated with propagules of arbuscular mycorrhizal (AM) fungi, were examined for their mycorrhization helper bacteria activity at pre-symbiotic and symbiotic stages of the AM association. The effects were tested under in vitro and in vivo conditions using an axenically propagated strain of the AM fungus Glomus intraradices and Glycine max (soybean) as the plant host. The rates of spore germination and re-growth of intraradical mycelium were not affected by inoculation with Paenibacillus strains in spite of the variation of indole production measured in the bacterial supernatants. However, a significant promotion in pre-symbiotic mycelium development occurred after inoculation of both bacteria under in vitro conditions. The Paenibacillus rhizosphaerae strain TGX5E significantly increased the extraradical mycelium network, the rates of sporulation, and root colonization in the in vitro symbiotic association. These results were also observed in the rhizosphere of soybean plants grown under greenhouse conditions, when P. rhizosphaerae was co-inoculated with G. intraradices. However, soybean dry biomass production was not associated with the increased development and infectivity values of G. intraradices. Paenibacillus favisporus strain TG1R2 caused suppression of the parameters evaluated for G. intraradices during in vitro symbiotic stages, but not under in vivo conditions. The extraradical mycelium network produced and the colonization of soybean roots by G. intraradices were promoted compared to the control treatments. In addition, dual inoculation had a promoting effect on soybean biomass production. In summary, species of Paenibacillus associated with AM fungus structures in the soil, may have a promoting effect on short term pre-symbiotic mycelium development, and little impact on AM propagule germination. These findings could explain the associations found between some bacterial strains and AM fungus propagules.  相似文献   

20.
A pot culture experiment was carried out to study the growth of and Cu uptake by maize (Zea mays) inoculated with or without arbuscular mycorrhizal (AM) fungus Acaulospora mellea in sterilized soil with different Cu amounts added (0, 100, 200, 400, 800 mg kg−1). Root colonization rates were significantly lower with the addition of 400 and 800 mg kg−1 Cu. AM inoculation increased shoot dry weights at 200 and 400 mg kg−1 Cu added but showed no effects at other levels, while increased root dry weights at all Cu addition levels except 800 mg kg−1. Compared with the nonmycorrhizal plants, shoot Cu concentrations in mycorrhizal plants were higher when no Cu was added but lower at other levels, while root Cu concentrations were lower at 400 and 800 mg kg−1 Cu added but not affected at other levels. Thus, shoot Cu uptake in mycorrhizal plants increased with no Cu added but decreased at other levels, while mycorrhizal effects on root Cu uptake varied. Compared with nonmycorrhizal controls, Cu uptake efficiency and phytoextraction efficiency in mycorrhizal plants were higher when no Cu was added but lower at other levels, and Cu translocation efficiency was lower at all Cu addition levels. AM inoculation improved shoot and root P nutrition at all Cu addition levels. Soil pH was higher in mycorrhizal treatment than in the control when 200 mg kg−1 or more Cu was added. These results indicate that A. mellea ZZ may be not suitable for Cu phytoextraction by maize, but shows a potential role in phytostabilization of soil moderately polluted by Cu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号