首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Soil acidity and Al toxicity are highly extended in agricultural lands of Chile, especially where wheat is widely sown. To evaluate quantitatively the response of wheat biomass and its physiological determinants (intercepted radiation and radiation use efficiency) to Al toxicity, two field experiments were conducted in an Andisol in Valdivia (39°47′S, 73°14′W), Chile, during the 2005–2006 and 2006–2007 growing seasons. Treatments consisted of a factorial arrangement of: (i) two spring wheat cultivars with different sensitivity to Al toxicity (the sensitive cultivar: Domo.INIA and the tolerant cultivar: Dalcahue.INIA) and (ii) five exchangeable Al levels (from 0 to 2.7 cmol(+) kg−1) with three replicates. Crop phenology and intercepted radiation (IR) were registered during the entire crop cycle, while 10 samples of above-ground biomass were taken at different stages between double ridge and maturity. Both biomass and leaf area index (LAI) were recorded in these 10 stages. Radiation use efficiency (RUE) was calculated as the slope of the relationship between accumulated above-ground biomass and accumulated photosynthetically active radiation intercepted by the canopy (IPARa). Crop phenology was little affected by soil Al treatments, showing only up to 17 days delay in the Al-sensitive cultivar under extreme Al treatments. Above-ground biomass at harvest was closely associated (R2 = 0.92) with the crop growth rate but no relationship (R2 = 0.14) was found between the crop cycle length. IPARa explained almost completely (R2 = 0.93) the above-ground biomass reached by the crop at harvest under the wide range of soil Al concentrations explored in both experiments. On the other hand, a weaker relationship was found between above-ground biomass and RUE. The effect of soil Al concentration on IPARa was mainly explained by LAI as a single relationship (R2 = 0.93) between IR (%) and LAI at maximum radiation interception showing a common light attenuation coefficient (k = 0.33).  相似文献   

2.
Leaf removal reduces the epiphytic populations of several filamentous fungi found on grapevine (Vitis vinifera). Consequently this practice is used to prevent foliar diseases of grapevines and rots of grapes. In this study, the effects of leaf removal on Cladosporium rot (Cladosporium cladosporioides and Cladosporium herbarum), which often affects ‘Cabernet Sauvignon’ in Chile, were characterized. The effects of leaf removal on epiphytic populations of Cladosporium spp. on grape berry surfaces and on Cladosporium rot development were investigated. Three leaf removal treatments were compared: (i) severe leaf removal, where leaves from two to three nodes above, opposite and from all nodes below clusters were removed; (ii) mild leaf removal, where leaves opposite each cluster were removed; and (iii) no leaf removal. Regardless of the leaf removal treatment, low population levels of Cladosporium spp. were detected early in the ontogenic development of grape berries which increased as the berries matured, reaching maximum populations on overripe berries. Based on our results, severe leaf removal favors the growth of Cladosporium spp. on grape berries and increases the prevalence of Cladosporium rot at harvest. This increase in Cladosporium spp. was correlated with an increase in lenticel damage in ‘Cabernet Sauvignon’ and ‘Sauvignon blanc’ vines subjected to severe leaf removal. Considering that Cladosporium rot significantly reduces yield and wine quality, farmers should avoid continuous exposure of grape clusters to sunlight in order to prevent severe outbreaks of Cladosporium rot.  相似文献   

3.
The efficacy of Hanseniaspora uvarum against gray mold by adding ammonium molybdate (NH4–Mo) and the mode of actions were evaluated. The results showed that H. uvarum at 1 × 106 CFU ml−1 plus 1 mmol l−1 NH4–Mo greatly reduced gray mold in grape fruits. NH4–Mo at concentrations of 1, 5, 10 and 15 mmol l−1 significantly inhibited spore germination and mycelium growth of Botrytis cinerea. Population growth of H. uvarum was markedly inhibited by NH4–Mo at 5 mmol l−1in vitro and not affected by addition of NH4–Mo at 1 and 5 mmol l−1 in wounds combination of NH4–Mo and H. uvarum induced higher activities of peroxidase (POD), polyphenoloxidase (PPO), phenylalanine ammonialyase (PAL), superoxide dismutase (SOD), catalase (CAT) and β-1,3-Glucanase than individual application of H. uvarum or NH4–Mo. The enhancement of disease control may be directly because of the inhibitory effects of NH4–Mo on spore germination and mycelial growth of B. cinerea in vitro, and indirectly because of the induced defense reactions by NH4–Mo in grape berries.  相似文献   

4.
Sweet sorghum (Sorghum bicolor (L.) Moench.) is a drought-tolerant crop with high resistance to saline-alkaline soils, and sweet sorghum may serve as an alternative summer crop for biofuel production in areas where irrigation water is limited. A two-year study was conducted in Northern Greece to assess the productivity (biomass, juice, total sugar and theoretical ethanol yields) of four sweet sorghum cultivars (Sugar graze, M-81E, Urja and Topper-76-6), one grain sorghum cultivar (KN-300) and one grass sorghum cultivar (Susu) grown in intermediate (3.2 dS m−1) or in high (6.9 dS m−1) soil salinity with either low (120 mm) or intermediate (210 mm) irrigation water supply (supplemented with 142–261 mm of rainfall during growth). The soil salinity and irrigation water supply effects on the sorghum chlorophyll content index, photosystem II quantum yield, stomatal conductance and leaf K/Na ratio were also determined. The sorghum emergence averaged 75,083 plants ha−1 and 59,917 plants ha−1 in a soil salinity of 3.2 dS m−1 and 6.9 dS m−1, respectively. The most affected cultivar, as averaged across the two soil salinity levels, was the Susu grass sorghum emerging at 53,250 plants ha−1, followed by the Topper-76-6 sweet sorghum emerging at 61,250 plants ha−1. The leaf K/Na ratio decreased with decreasing irrigation water supply, in most cases, but it was not significantly affected by soil salinity. The dry biomass, juice and total sugar yields of sorghum that received 210 mm of irrigation water was 49–88% greater than the yields of sorghum that received the 120 mm of irrigation water. Sorghum plants grown in a soil salinity of 3.2 dS m−1 produced 42–58% greater dry biomass, juice and total sugar yields than the yields of sorghum plants grown in a soil salinity of 6.9 dS m−1. The greatest theoretical ethanol yield was produced by sweet sorghum plants grown in a soil salinity of 3.2 dS m−1 with 210 mm of irrigation water (6130 L ha−1, as averaged across cultivar), and the Urja and Sugar graze cultivars produced the most ethanol (7620 L ha−1 and 6528 L ha−1, respectively). Conclusively, sweet sorghum provided sufficient juice, total sugar and ethanol yields in fields with a soil salinity of 3.2 dS m−1, even if the plants received 50–75% of the irrigation water typically applied to sorghum.  相似文献   

5.
In Argentina, delayed sowing causes a decrease in seed yield and in radiation use efficiency (RUE) of peanut crops (Arachis hypogaea L.), but it is not known if RUE reduction is mainly due to reduced temperature during late reproductive stages or to a sink limitation promoted by decreased seed number in these conditions. We analyzed seed yield determination and RUE dynamics of two cultivars (Florman and ASEM) in four irrigated field experiments (Expn) grown at three sites and five contrasting sowing dates (between 17 October and 21 December) in three growing seasons. An additional field experiment was performed with widely spaced plants (i.e. with no interference among them) to evaluate the effect of peg removal on RUE and leaf carbon exchange rate (CER). Seasonal dynamics of mean air temperature and irradiance, biomass production (total and pods), and intercepted photosynthetically active radiation (IPAR) were followed. Seed yield and seed yield components (pod number, seeds per pod, seed number and seed weight) were determined at final harvest. Crop growth rate (CGR) and pod growth rate (PGR) were computed for growth phases of interest. RUE values for crops sown until 14 November were 1.89–1.98 g MJ−1 IPAR, within the usual range. RUE decreased significantly for cv. Florman in the late sowing of Exp1 (29 November) and for both cultivars in Exp3 (21 December sowing). Across experiments, seed yield (4.5-fold variation relative to minimum) was strongly associated (r2 = 0.87, P < 0.0001) with variations in seed number (3.5-fold variation relative to minimum), and to a lesser extent (r2 ≤ 0.54, P ≤ 0.001) to variations in seed weight (1.9-fold variation relative to minimum). Seed number was positively related (P < 0.01) to CGR (r2 = 0.66) and to PGR (r2 = 0.72) during the R3–R6.5 phase (seed number determination window), while crop growth during the grain-filling phase (i.e. between R6.5 and final harvest) was positively associated with grain number (r2 = 0.80, P < 0.001). No association was found between RUE and mean air temperature, neither for the whole cycle nor for the phase between R6.5 and final harvest, which showed the largest temperature variation (16.4–22.4 °C) across experiments. Use of mean minimum temperature records (range between 13.8 and 18.5 °C) did no improve the relationship. However, grain-filling phase RUE showed a positive (r2 = 0.69, P = 0.003) linear response to seed number across experiments. This apparent sink limitation of source activity was consistent with the reduced RUE (from 2.73 to 1.42 g MJ−1 IPAR) and reduced leaf CER at high irradiance (from ca. 30 to 15 μmol m−2 s−1) for plants subjected to 75% peg removal.  相似文献   

6.
An active crop canopy reflectance sensor could be used to increase N-use efficiency in maize (Zea mays L.), if temporal and spatial variability in soil N availability and plant demand are adequately accounted for with an in-season N application. Our objective was to evaluate the success of using an active canopy sensor for developing maize N recommendations. This study was conducted in 21 farmers’ fields from 2007 to 2009, representing the maize production regions of east central and southeastern Pennsylvania, USA. Four blocks at each site included seven sidedress N rates (0–280 kg N ha−1) and one at-planting N rate of 280 kg N ha−1. Canopy reflectance in the 590 nm and 880 nm wavelengths, soil samples, chlorophyll meter (SPAD) measurements and above-ground biomass were collected at the 6th–7th-leaf growth stage (V6–V7). Relative amber normalized difference vegetative index (ANDVIrelative) and relative SPAD (SPADrelative) were determined based on the relative measurements from the zero sidedress treatment to the 280 kg N ha−1 at-planting treatment. Observations from the current study were compared to relationships between economic optimum N rate (EONR) and ANDVIrelative, presidedress NO3 test (PSNT), or SPADrelative that were developed from a previous study. These comparisons were based on an absolute mean difference (AMD) between observed EONR and the previously determined predicted relationships. The AMD for the relationship between EONR and ANDVIrelative in the current study was 46 kg N ha−1. Neither the PSNT (AMD = 66 kg N ha−1) nor the SPADrelative (AMD = 72 kg N ha−1) provided as good an indicator of EONR. When using all the observations from the two studies for the relationships between EONR and the various measurements, ANDVIrelative (R2 = 0.65) provided a better estimate of EONR than PSNT (R2 = 0.49) or SPADrelative (not significant). Crop reflectance captured similar information as the PSNT and SPADrelative, as reflected in strong relationships (R2 > 0.60) among these variables. Crop canopy reflectance using an active sensor (i.e. ANDVIrelative) provided as good or better an indicator of EONR than PSNT or SPADrelative, and provides an opportunity to easily adjust in-season N applications spatially.  相似文献   

7.
The objective of this study was to develop a whole-process model for explaining genotypic and environmental variations in the growth and yield of irrigated rice by incorporating a newly developed sub-model for plant nitrogen (N) uptake into a previously reported model for simulating growth and yield based on measured plant N. The N-uptake process model was developed based on two hypotheses: (1) the rate of root system development in the horizontal direction is proportional to the rate of leaf area index (LAI) development, and (2) root N-absorption activity depends on the amount of carbohydrate allocated to roots. The model employed two empirical soil parameters characterizing indigenous N supply and N loss. Calibration of the N-uptake process sub-model and validation of the whole-process model were made using plant N accumulation, and growth and yield data obtained from a cross-locational experiment on nine rice genotypes at seven locations in Asia, respectively. Calibration of the N-uptake process sub-model indicated that a large genotypic difference exists in the proportionality constant between rate of root system development and that of LAI development during early growth stages. The whole-process model simultaneously explained the observed genotypic and environmental variation in the dynamics of plant N accumulation (R2 = 0.91 for the entire dataset), above-ground biomass growth (R2 = 0.94), LAI development (R2 = 0.78) and leaf N content (R2 = 0.79), and spikelet number per unit area (R2 = 0.78) and rough grain yield (R2 = 0.81). The estimated value of the site (field)-specific soil parameter representing the rate of N loss was negatively correlated with cation exchange capacity of the soil and was approximated by a logarithmic function of cation exchange capacity for seven sites (R2 = 0.95). Large yearly and locational variations were estimated in the soil parameter for representing the rate of indigenous N supply at 25 °C. With the use of these two soil parameters, the whole-system model explained the observed genotypic and environmental variations in plant N accumulation, growth and yield of rice in Asia.  相似文献   

8.
Biological control of plant pathogens on strawberries may be improved by the simultaneous application of different biological control agents (BCAs). Therefore, the compatibility of various BCAs which had previously shown to be effective against powdery mildew (Podosphaera aphanis (Wallr.) U. Braun & S. Takam) under laboratory conditions was examined in vitro. Inhibitory effects between fungal and bacterial BCAs were demonstrated in dual culture tests on two solid nutrient media. Leaf disc assays with single and multiple strain treatments demonstrated either unaffected or significantly improved control of P. aphanis for many multiple strain treatments, even if antagonistic interactions previously occurred in dual culture tests. Highest inhibition of powdery mildew conidiation (80.7% reduction) was achieved with multiple strain treatments with Bacillus subtilis FZB24 and Metarhizium anisopliae (p < 0.001). In this combination, conidiation was 3.7 times lower than in single treatments with B. subtilis indicating synergistic interactions between these BCAs. Combinations of Trichoderma harzianum T58 and B. subtilis FZB24 showed antagonistic interactions in dual culture tests as well as in leaf disc assays. In this combination, powdery mildew conidiation on leaf discs was four times higher compared to single treatments with T. harzianum T58.  相似文献   

9.
The impacts of acidic soils and Al toxicity on wheat nutrient economy have been scarcely researched under field conditions even though these soils are widely spread in wheat production areas around the world. The main objective of this study was to quantitatively evaluate the element (N, P, K, Ca and Al) economy of an Al-sensitive and an Al-tolerant wheat cultivar growing under different soil Al concentrations at field conditions. To reach this objective, two field experiments were conducted in an Andisol in Valdivia (39°47′18″S, 73°14′05″W), Chile. Treatments were a factorial arrangement of: (i) two spring wheat cultivars (Al-sensitive, Domo.INIA and Al-tolerant, Dalcahue.INIA) and (ii) five exchangeable Al levels (0-2.7 cmol(+) kg−1) with three replicates. At harvest, plant biomass was sampled and divided into 5 organ categories: ears, grains, blade leaves, stems plus sheath leaves and roots. The element content (N, P, K, Ca and Al) in each organ was measured to quantify element uptake and concentration, nutrient uptake efficiency (UPE) and nutrient utilization efficiency (UTE). Element uptake (N, P, K, Ca, and Al) was negatively affected by the increased soil Al concentration in above-ground and root biomass in both cultivars (R2 = 0.61-0.98, p < 0.01), although clear differences were found between cultivars. On the contrary, the impact of soil exchangeable Al on the plant element concentration was minor, showing weak associations with soil Al levels. However, the Al concentration in above-ground tissues of the Al-sensitive cultivar was an exception because it increased exponentially with the Al soil concentration (R2 = 0.96-0.99, p < 0.001). Nutrient uptake efficiencies, UPEs (N, P, K and Ca), were negatively affected by soil Al concentrations and were well described by linear equations in both cultivars (R2 = 0.58-0.98, p < 0.05), with notable differences between them. Both nutrient uptake (capture) and UPE were the traits that best explained above-ground biomass production (R2 = 0.82-0.99, p < 0.001, n = 20). Nutrient utilization efficiency, UTEs (N, P, K and Ca) responded more conservatively to the soil Al concentration, except for the Al sensitive cultivar under very high soil Al levels.  相似文献   

10.
In various crop species, high levels of powdery mildew infection and severity have been associated with high vegetative vigour. In grapevine this relationship has also been observed by vine growers, though it has not been quantified. This study was undertaken to investigate the relationship between the development of powdery mildew on leaves and berries and canopy growth, and thus to quantify the relationship between the pathogen and its host. Over a two-year period (2005 and 2006), an experiment was carried out in a vineyard (cv. Aranel) near Montpellier, southern France. Several levels of canopy growth were generated by implementing four soil management strategies: i) perennial cover crop in the inter-row, ii) annual cover crop in the inter-row, iii) chemical weed control over the entire soil surface, iv) chemical weed control all over the soil surface and drip irrigation and fertilization in the row. Powdery mildew was artificially inoculated on experimental sub-plots with Erysiphe necator [Schw.] Burr. conidia. The most vigorous vines developed a larger number of diseased leaves and a higher percentage of mildewed berries compared to low-vigour vines. The major explanatory variable highlighted in these experiments was the shoot leaf number, mainly early in the season. A higher leaf population generated a larger number of powdery mildew colonies close to grapes and consequently a higher probability of berry infection. Our experimental results provide evidence of a positive relationship between powdery mildew development and grapevine vegetative development. These results provide an opportunity to develop new IPM strategies in vineyards.  相似文献   

11.
Simple plant-based diagnostic tools can be used to determine crop P status. Our objectives were to establish the relationships between P and N concentrations of the uppermost collared leaf (PL and NL) of spring wheat (Triticum aestivum L.) and maize (Zea mays L.) during the growing season and, in particular, to determine the critical leaf P concentrations required to diagnose P deficiencies. Various N applications were evaluated over six site-years for wheat and eight site-years for maize (2004-2006) with adequate soil P for growth. Phosphorus and N concentrations of the uppermost collared leaf were determined weekly and the relationships between leaf N and P concentrations were established using only the sampling dates from the stem elongation stage for wheat and from the V8 stage of development for maize. Leaf P concentration generally decreased with decreasing N fertilization. Relationships between PL and NL concentrations (mg g−1 DM) using all site-years and sampling dates were described by significant linear-plateau functions in both maize (PL = 0.82 + 0.089 NL if NL ≤ 32.1 and PL = 3.7 if NL > 32.1; R2 = 0.41; P < 0.001) and wheat (PL = 0.02 + 0.106 NL if NL ≤ 33.2 and PL = 3.5 if NL > 33.2; R2 = 0.42; P < 0.001). Variation among sampling dates in the relationships were noted. By restricting the sampling dates [413-496 growing degree days (5 °C basis) in wheat (i.e., stem elongation) and 1494-1579 crop heat units in maize (i.e., silking), relationships for wheat (PL = 0.29 + 0.073 NL, R2 = 0.66; P < 0.001) and maize (PL = 1.04 + 0.084 NL, R2 = 0.66; P < 0.001) were improved. In maize, expressing P and N concentrations on a leaf area basis (PLA and NLA) at silking further improved the relationship (PLA = 0.002 + 0.101 NLA, R2 = 0.80; P < 0.001). Predictive models of critical P concentration as a function of N concentration in the uppermost collared leaf of wheat and maize were established which could be used for diagnostic purposes.  相似文献   

12.
The fungus Fusarium guttiforme (Syn. F. subglutinans f. sp. ananas) is responsible for fusariosis, one of the main phytosanitary threats to pineapple (Ananas comosus var. comosus). A structural study comparing epidermal differences in pineapple cultivars resistant and susceptible to fusariosis was performed, relating properties of the epidermis to known susceptibility to the disease. The basal, non-chlorophylled, portions of mature leaves of pineapple plants were analyzed by light and electron microscopy. All cultivars showed common morpho-anatomic aspects characteristic of Bromeliaceae, such as scutiform scales and unstratified epidermis. However, cultivar Vitoria (resistant) had less scales than cultivars Smooth Cayenne (susceptible, intermediate severity) and Perola (susceptible, with extreme severity of fusariosis symptoms). Inoculation of conidia suspension (105 conidia ml−1) of the fungus F. guttiforme to leaves and harvesting 24 h later yielded numbers of viable colonies related to the density of leaf scales. This suggests that scales can act as havens for fungal conidia and favour the epiphytic stage of the fungus on pineapple plants, and are involved in the interaction of plant and pathogen. A reduction in scale numbers was related to lower infection levels and is relevant to the future breeding programme for development of new pineapple cultivars resistant to fusariosis and their involvement in integrated control strategies.  相似文献   

13.
Heterogeneous crop stands require locally adapted nitrogen fertilizer application based on rapid and precise measurements of the local crop nitrogen status. In the present study, we validated a promising technique for the latter, namely a tractor-mounted field spectrometer with an oblique quadrilateral-view measuring optic, measuring solar radiation and canopy reflectance in four directions simultaneously. Dry matter yield (kg ha−1), total N content (g N g−1 dry matter) and total aerial N (aboveground N-uptake) (kg N ha−1) in maize were determined in 10 m2 calibration areas in 60 plots differing in their N treatment and seeding density three times in each of three years under field conditions. Results show that the sensor used can reliably determine total aerial N ranging from as little as 5 kg N to 150 kg N ha−1 with R2-values ≥0.81 in 2002 and 2004, and with R2-values ranging from ≥0.57 to 0.84 in 2003. Dry matter yields from as low as 0.3–4.2 t ha−1 could be determined with R2-values ranging from 0.67 to 0.91 in 2002 to 2004. The capacity to ascertain DM yield spectrally was drastically reduced in the higher yield range (>6 t ha−1) probably due to decreased sensitivity of the spectral signal. N-contents were generally not well determined. Taken together there is a good potential to determine reliably differences in total aerial N or DM yield from the five leaf stages unfolded to the five node stage where typically nitrogen applications are carried out.  相似文献   

14.
Sugarcane in an important crop due to the economic value of its products. Physiological characteristics and yield components of sugarcane were studied in three field-grown sugarcane cultivars B 63118, POJ 2878 and Ja 60-5. Three growth stages were identified: formative phase (until 140 DAP), grand growth (140–300 DAP) and maturity (after 300 DAP). Results indicated that cultivars showed contrasting yield mainly after 300 DAP. At ripening, the most productive cultivar (Ja 60-5) achieved higher leaf area, an optimum leaf area index for light interception, a high and stable net assimilation rate and an elevated leaf area and biomass duration. In addition, this cultivar showed the higher density and lower area of leaf sieve elements as compared with other, which could influence the high translocation rate (1.85 cm min−1) at 8 MAP. The higher efficiency of this process in Ja 60-5 might also be supported by a higher (15–25%) apparent free space of stem parenchyma as compared with POJ 2878 and B 63118. Our results suggest that Ja 60-5 reduced carbon partitioned to foliar respiration which led to a higher partitioning of sucrose to stems evidenced by a higher Pol%.  相似文献   

15.
Growing cotton during the tropical dry season avoids many insect pests endemic in the wet season. The impact of low mid-season radiation and night temperature that characterise the dry season, on the conversion of radiation to biomass (RUE) and the partitioning of this biomass were measured as these were largely unknown. Over three seasons, two Gossypium hirsutum (upland) cultivars and a Gossypium barbadense cultivar were sown from March to June at the Ord River (15.5°S), Western Australia. For the highest yielding March and April sowings, final biomass was similar to high yielding temperate grown cotton (∼30° latitude) and was generally greater than May or June sowings. However, biomass was accumulated differently: maximum growth rate was 6–12 g/m2/day for 78–134 days compared with 15–25 g/m2/day for 25–60 days reported for temperate grown cotton. RUE changed significantly with ontogeny, peaking between squaring and early flowering. The range in RUE of 1.2–2.0 g/MJ throughout the crop lifecycle for the upland cultivars was similar to temperate climates where biomass was corrected to a glucose equivalent. The RUE of 1.2–2.3 g/MJ measured over the lifecycle of G. barbadense cultivar was the first reported for this species. From first square to first flower the variation in RUE could be explained by a linear decline (p < 0.05) with temperature, which may limit vegetative biomass in May and June sowings and in cooler than average seasons for March and April sowings. Due to favourable temperatures and water supply, sowing in March would have the greatest risk of rank growth. It was concluded the low temperature and radiation during flowering and boll growth combined to reduce crop growth rate but high yields were achieved when the crop boll filling phase was extended. Management must be tailored to ensure a high proportion of boll growth (60–80%) can occur after vegetative growth has terminated.  相似文献   

16.
Poor yields of East African highland bananas (Musa spp., AAA-EAHB) on smallholder farms have often been attributed to problems of poor soil fertility. We measured the effects of mineral fertilizers on crop performance at two sites over two to three crop cycles; Kawanda in central Uganda and Ntungamo in southwest Uganda. Fertilizers were applied at rates of 0N–50P–600K, 150N–50P–600K, 400N–0P–600K, 400N–50P–0K, 400N–50P–250K and 400N–50P–600K kg ha−1 yr−1. In addition 60Mg–6Zn–0.5Mo–1B kg ha−1 yr−1 was applied to all treatments, with the exception of the control plots which received no fertilizer. Fresh bunch mass and yield increased with successive cycles. Yield increases above the control ranged from 3.1 to 6.2 kg bunch−1 (average bunch weight for all treatments 11.5 kg bunch−1) and 2.2–11.2 Mg ha−1 yr−1 (average yield for all treatments 15.8 Mg ha−1 yr−1) at Kawanda, compared with 12.4–16.0 kg bunch−1 (average bunch weight for all treatments 14.7 kg bunch−1) and 7.0–29.5 Mg ha−1 yr−1 (average yield for all treatments 17.9 Mg ha−1 yr−1) at Ntungamo. The limiting nutrients at both sites were in the order K > P > N. Potassium, N and P foliar nutrient mass fractions were below previously established Diagnosis and Recommendation Integrated System (DRIS) norms, with the smallest K mass fractions observed in the best yielding plots at Ntungamo. Total nutrient uptakes (K > N > P) were higher at Ntungamo as compared with Kawanda, probably due to better soil moisture availability and root exploration of the soil. Average N, P and K conversion efficiencies for two crop cycles at both sites amounted to 49.2 kg finger DM kg−1 N, 587 kg finger DM kg−1 P and 10.8 kg finger DM kg−1 K. Calibration results of the model QUEFTS using data from Ntungamo were reasonable (R2 = 0.57, RMSE = 648 kg ha−1). Using the measured soil chemical properties and yield data from an experiment at Mbarara in southwest Uganda, the calibrated QUEFTS model predicted yields well (R2 = 0.68, RMSE = 562 kg ha−1). We conclude that banana yields can be increased by use of mineral fertilizers, but fertilizer recovery efficiencies need to improve substantially before promoting wide-scale adoption.  相似文献   

17.
The main objective of this research is to determine the influence of leaf position on corn plants with white spot caused by Pantoea ananatis, which better represents the infection on the whole plant. A diagrammatic scale to quantify the severity of the disease was elaborated and validated. For scale elaboration, the minimal and maximal limits of the disease severity observed in the field were considered, and intermediate levels followed logarithmic increments according to the Weber–Fechner stimulation law. The scale has nine classes: 0.1, 1, 2, 4, 8, 16, 24, 32 and 64%. For scale evaluation, a severity evaluation for white spot was performed by 10 raters with no experience in disease evaluation. Initially, severity estimation was performed without a scale for 41 leaves with different levels of severity. Afterward, the same raters used the proposed diagrammatic scale. Through linear regression to compare the actual and estimate severity values, the raters’ accuracy and precision were analyzed. Satisfactory accuracy and precision were achieved when estimation was performed with a diagrammatic scale. To determine the best leaf disease severity evaluation, correlation and regression analyses were performed with 25 plants of five genotypes, for a total of 284 leaves analyzed. Results analysis leads us to conclude that the severity of white spot on corn plants significantly correlates with the disease mean severity of leaves 0 and -1, i.e., a leaf of the corn ear and the one immediately below it. This scale provided good levels of accuracy and precision (a mean R2 of 94%), with errors concentrating around 10%. Raters presented increased reproducibility (R2 > 90% in 82% of cases) of severity estimates. The proposed diagrammatic scale is considered adequate to estimate the severity of white spot in corn for germplasm evaluations, for epidemiological studies and for evaluation of control strategies for this disease.  相似文献   

18.
Potassium phosphite for control of downy mildew of soybean   总被引:1,自引:0,他引:1  
Downy mildew of soybean, caused by Peronospora manshurica, is widely spread throughout Brazil. The objective of this study was to evaluate the use of potassium phosphite to control this disease. Field experiments were conducted during the growing season of 2006/2007 and 2007/2008 in the state of Parana in southern Brazil. The experimental design consisted of completely randomized blocks in a factorial arrangement (4 × 2) with four replications. Four rates of potassium phosphite (0, 375, 750 and 1500 g P2O5 + K2O ha−1) were applied at two growth stages, V6 (fifth trifoliolate leaf) and R2 (full flowering), followed by one or two applications of pyraclostrobin and epoxiconazole (66.5 + 25 g a.i. ha−1) at R3 (pod development) or R2 and R5.1 (10% of pod filling), mainly for the control of Asian soybean rust (Phakopsora pachyrhizi) and powdery mildew (Microsphaera diffusa). Field experiments were conducted to quantify the severity of downy mildew on leaves, nutrient content in leaf tissue (N, P and K), leaf area index (LAI), yield and seed weight. The maximum severity of downy mildew was observed at a growth stage of R5.3 (50% of pods were ripe), with 14% and 46% of the leaf area affected in 2006/2007 and 2007/2008, respectively. Also it was detected some effect of phosphite on Asian rust control but it was mostly in the trial of 2007/08 when the epidemic was very low (9.7-21.8% of severity). There was a linear reduction in the severity of downy mildew and a significant improvement in the LAI with an increase in the rate of phosphite applied. During the 2006/2007 growing season, a significant yield improvement was observed due to the application of the highest rate of phosphite. Two fungicide applications following phosphite application significantly improved the control of Asian soybean rust and powdery mildew, yield and seed weight when compared to a single fungicide application.  相似文献   

19.
The quantification of the below-ground N of legumes is a key to understand its effect on soil N fertility and the N economy of subsequent legume-based rotations. Significant amounts of the N fixed by legumes are incorporated into the soil as fallen leaves and stems. However, the N from roots, nodules and root exudates has rarely been quantified under field conditions, nor have the management effects been evaluated. This study measured the effects of tillage system [no-tillage (NT) and conventional tillage (CT)] on N rhizodeposition in faba bean (Vicia faba L.) and chickpea (Cicer arietinum L.) during a 3-year period (2003–2004, 2005–2006 and 2006–2007) in a Vertisol under rainfed Mediterranean conditions. Faba bean and chickpea plants were labelled in situ with 15N using stem feeding and leaf feeding, respectively. NT increased the N derived from rhizodeposition (NdfR) with respect to CT (135 vs. 68 kg N ha−1 in faba bean and 115 vs. 97 kg N ha−1 in chickpea). Such differences between tillage methods can be attributed to the more favourable conditions for root growth produced by NT. NdfR was significantly influenced by depth; in faba bean, the greatest amount (70%) was found in the 0–30 cm layer, whereas in chickpea, 41% of the NdfR was concentrated in the 30–60 cm depth. The 54% and 61% of total plant N was NdfR (in faba bean and chickpea, respectively) representing 90% of the below-ground plant N in both crops. Our results show that the N derived from rhizodeposition is an important source for N balance and is a key to soil fertility in rain-fed Mediterranean cropping systems.  相似文献   

20.
Wastage of agricultural chemicals and ensuing environmental pollution is an issue, where ineffective spray deposition is a major concern with conventional pesticide application methods. Electrostatic spraying is known to be one of the most effective methods to improve leaf abaxial (underside) surface deposition, overall deposition, and distribution on the plant targets. Deposition of charged sprays on leaf abaxial and adaxial (upper) surfaces as influenced by the spray charging voltage (system), application speed (operational), target height and orientation (target) parameters was studied in the laboratory. An air-assisted electrostatic induction spray charging system attached to a moving carriage was used to apply charged spray at uniform application (ground) speeds. Spray deposition (101–71 μm NMD), determined using a fluorescent tracer technique increased with charging (0–5.5 mC kg−1) on leaf abaxial and decreased with charging on adaxial surface. The deposition was higher on abaxial (0.66–1.33 μg cm−2) at 30° below (horizontal plane) and on adaxial (0.78–1.79 μg cm−2) at 0° (horizontal) target orientation for lower (0.278 m s−1) application speed. At all target heights, abaxial deposition increased with charging voltage (0–4.0 kV) for medium application speed (0.417 m s−1) and adaxial deposition decreased with charging voltage for lower application speed (0.278 m s−1). The medium application speed with higher charging voltage was optimum for abaxial and adaxial deposition. The droplet velocity and charging voltage were the key factors for obtaining desired spray deposition on targets. All the selected factors including target orientation (O), application speed (S), target surface (L), and charging voltage (V), and their interactions except between O and S were significant at lower (0.35 m) and medium (0.65 m) target heights. All the factors and their interactions except between O and V were significant at higher (0.95 m) height. Electrostatically charged spray improved the underside (abaxial) and overall deposition. The deposition was substantially influenced by factors such as charging voltage, application speed, plant target height, and target orientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号