首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The fall armyworm, Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) is considered the main key pest of corn crops in Brazil. Entomopathogenic nematodes (EPNs) may be used to control this pest, applied together with other different entomopathogen agents or phytosanity products in the spraying mixture. Thus, the objective of work was to evaluate the compatibility of EPNs with different insecticides used of S. frugiperda control in laboratory conditions. Three species of EPNs (Heterorhabditis indica, Steinernema carpocapsae and Steinernema glaseri) and 18 insecticides registered to control of S. frugiperda in corn crops were tested. Compatibility of the insecticides with EPNs was evaluated by observing mortality and infectivity of infecting juveniles (IJs) 48 h after immersion in solution of the insecticide formulations. Among all insecticides tested, Lorsban™ (chlorpyrifos), Decis™ (deltamethrin), Match™ (lufenuron), Deltaphos™ (deltramethrin + triazophos), Dimilin™ (diflubenzuron), Stallion™ (gamacyhalothrin), Karate Zeon™ (lambdacyhalothrin) Tracer™ (spinosad), Vexter™ (chlorpyrifos), Galgotrin™ (cypermethrin), Certero™ (triflumuron), and Talcord™ (permethrin) were compatible (class 1) with the three nematode species tested under laboratory conditions.  相似文献   

2.
Studies were carried out to evaluate the resistance of Pakistani populations of the beet armyworm, Spodoptera litura (F) to several commonly used insecticides. Different field populations of S. litura from four districts of the Punjab were monitored from 2009 to 2011 for resistance to insecticides using a standard leaf dip bioassay method. For organophosphates and pyrethroids, resistance ratios compared with a susceptible Lab-Pk population were in the range of 8–109 fold for deltamethrin, 11–139 fold for cypermethrin, 19–143 fold for chlorpyrifos and 39–162 fold for profenofos. For new chemistry insecticides, resistance levels were 2–74 fold for spinosad, 4–216 fold for abamectin, 7–87 fold for indoxacarb, 2–77 fold for emamectin benzoate, 1.9–58 fold for lufenuron and 4–43 fold for methoxyfenozide. Pairwise correlation coefficients of LC50 values showed a positive correlation with cross-resistance among deltamethrin, cypermethrin and chlorpyrifos, while resistance to profenofos showed correlations with resistances to other insecticides except chlorpyrifos. New chemistry insecticides showed no correlations between any of the tested insecticides. There were high to very high levels of resistance to organophosphates in most of the population, which suggested that the use of these should be avoided against this pest. Selective use of pyrethroids in several areas, including Bahawalpur and Lodhran, where the pest showed a low level of resistance, would appear to be acceptable, the new chemistry insecticides, lufenuron, methoxyfenozide, emamectin and indoxacarb had no, very low, low and moderate resistance levels against populations, respectively. These are considered to be safe to the environment and safer to natural enemies.  相似文献   

3.
Toxicity effects and field persistence of the insect growth regulators lufenuron, flufenoxuron and triflumuron were assessed in the laboratory using second and fourth larval instars of Spodoptera littoralis. Laboratory bioassays indicated that lufenuron was more effective on both 2nd and 4th larval instars, as well as killing both larval instars faster than flufenoxuron or triflumuron. Field-laboratory experiments were conducted to show direct and residual effects of the tested IGRs in terms of toxicity and stability. They indicated that all the tested insecticides were stable under field conditions and give high percentages of mortality. Overall, lufenuron was more efficient than the other tested insecticides. In addition, it gave a faster kill in some testing periods. Data presented in this work show greater efficiency of lufenuron in controlling S. littoralis than flufenoxuron or triflumuron. Using this insecticide for cotton leafworm control in cotton fields may give better results under field condition.  相似文献   

4.
Field corn, Zea mays L., plants expressing Cry1Ab and Cry1F insecticidal crystal (Cry) proteins of Bacillus thuringiensis (Bt) Berliner are planted on considerable acreage across the Southern region of the United States. The fall armyworm, Spodoptera frugiperda (J.E. Smith), is an economically important pest during the mid-to-late season on non-Bt and some commercial Bt corn hybrids. The objective of this study was to quantify foliar injury and survivorship of fall armyworm on transgenic corn lines expressing Cry1Ab or Cry1F Bt proteins. Corn lines/hybrids expressing Cry1Ab, Cry1F, and a conventional non-Bt cultivar were evaluated against artificial infestations of fall armyworm in field trials. Larvae (second instars) of fall armyworm were placed on corn plants (V8-V10 stages). Leaf injury ratings were recorded 14 d after infestation. Hybrids expressing Cry1F had significantly lower feeding injury ratings than non-Bt corn plants. Development and survivorship of fall armyworm on Bt corn lines/hybrids were also evaluated in no-choice laboratory assays by offering freshly harvested corn leaf tissue to third instars. Transgenic corn hybrids expressing Cry1Ab or Cry1F significantly reduced growth, development, and survivorship of fall armyworm compared to those offered non-Bt corn tissue. However, 25-76% of third instars offered Bt corn leaf tissues successfully pupated and emerged as adults. These results suggest Cry1Ab has limited effects on fall armyworm; whereas Cry1F demonstrated significant reductions in foliar injury and lower survivorship compared to that on non-Bt corn tissues. Although fall armyworm is not considered a primary target for insect resistance management by the U.S. Environmental Protection Agency, these levels of survivorship could impact selection pressures across the farmscape, especially when considering that transgenic Bt cotton cultivars express similar Cry (Cry1Ac or Cry1F) proteins.  相似文献   

5.
Transgenic corn hybrids that express toxins from Bacillus thuringiensis (Bt) are highly effective against the European corn borer, Ostrinia nubilalis (Hübner), and the closely related Asian corn borer, Ostrinia furnacalis (Guenée). Since the registration of Bt corn hybrids in the U.S. in 1996, there has been a great deal of information generated on O. nubilalis. However, relatively little information exists for O. furnacalis. To help determine whether the information generated for O. nubilalis can be leveraged for decisions regarding the use of transgenic Bt corn against O. furnacalis, experiments were designed to determine whether the pattern of sensitivity to various Bt Cry1 toxins is similar between the two species. Test insects included laboratory-reared O. furnacalis originating from Malaysia, a Bt-susceptible laboratory colony of O. nubilalis maintained at the University of Nebraska-Lincoln (UNL) and an out-group consisting of the sugarcane borer, Diatraea saccharalis (F.), from Louisiana which represents a different genus from the same family. O. furnacalis and O. nubilalis exhibited a similar pattern of susceptibility to all the Cry1 toxins and were highly susceptible to the range of Bt toxins tested including Cry1Aa, Cry1Ab, Cry1Ac and Cry1F. Both of the Ostrinia species were more tolerant to Cry1Ba compared with D. saccharalis, although sensitivity of O. furnacalis was intermediate and did not differ significantly from that of O. nubilalis and D. saccharalis. D. saccharalis was also susceptible to the range of toxins tested but unlike the two Ostrinia species, was more tolerant to Cry1F and more susceptible to Cry1Ba. These results indicate that both of the Ostrinia corn borer species are similar in sensitivity to the Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ba and Cry1F toxins, thus suggesting shared toxin receptors and mechanisms of toxicity for the two species.  相似文献   

6.
Extracts of 12 Asteraceae were tested on Spodoptera frugiperda (Lepidoptera: Noctuidae) and on their parasitoids Telenomus remus (Hymenoptera: Scelionidae) and Trichogramma pretiosum (Hymenoptera: Trichogrammatidae). The plants Lychnophora ericoides and Trichogonia villosa were toxic for 97.7 ± 0.15% of one-day-old eggs of S. frugiperda and Lepidaploa lilacina for 72.0 ± 2.50% for two-day-old eggs of this insect. Extracts of Vernonia holosenicea, Lychnophora ramosissima and Chromolaena chaseae had higher impact on S. frugiperda, while those of Eremanthus elaeagnus and L. ericoides were more selective to T. pretiosum and T. remus. Asteraceae extracts present potential for integrated pest management programs of S. frugiperda.  相似文献   

7.
In the United States, fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), is a target species of transgenic corn (Zea mays L.) expressing pyramided Bacillus thuringiensis proteins. In 2011, a total of 150 F2 two-parent families of S. frugiperda were established using single-pair matings of feral individuals collected from three locations in Louisiana and Florida. The objective of this study was to determine the susceptibility of these field derived families of S. frugiperda to a pyramided Bt corn hybrid containing Agrisure®Viptera™ 3111 traits. For each F2 family, 96 neonates were assayed on leaf tissue of Agrisure®Viptera™ 3111 corn in the laboratory. None of the 150 families survived for 7 days on leaf tissue of the Bt corn plants. The results demonstrate that the field populations of S. frugiperda collected from Louisiana and Florida were susceptible to the pyramided Bt corn product containing Agrisure®Viptera™ 3111 traits. The data generated in this study can be used as baseline data for resistance monitoring.  相似文献   

8.
Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is a global pest of citrus and vector of Candidatus Liberibacter, a bacteria that causes huanglongbing or greening, a devastating disease of citrus. Mature citrus trees are dormant in winter and produce most new shoots in spring, followed by sporadic canopy growth in summer and fall. Young shoots are required for oviposition and nymphal development, but adults can survive and overwinter on hardened leaves. Surviving adults reproduce in spring shoots and their progeny are probably responsible for a large portion of disease spread as they disperse to search for food. Therefore, foliar sprays of broad-spectrum insecticides applied to mature trees in winter were evaluated in a commercial citrus orchard as tactic to reduce pest populations and insecticide use in spring and summer when beneficial insects are most active. A single spray of chlorpyrifos (2.8 kg a.i. ha−1) in January 2007 reduced adult psyllids an average of 10-fold over six months compared to untreated trees. The following year, differences with the untreated control averaged 15-fold for over five months following a single spray of chlorpyrifos, fenpropathrin (0.34 kg a.i. ha−1), or oxamyl (1.12 kg a.i. ha−1) applied in January. Spiders, lacewings and ladybeetles were equally abundant during the growing season in both treated and untreated trees both years (P = 0.05). Thus foliar sprays of broad-spectrum insecticides before spring growth suppressed D. citri for five to six months, with no detectible impact on key natural enemies. This tactic has been widely adopted to control the psyllid in Florida, in some cases area-wide. Additional sprays during the growing season should be based on scouting and targeted at adults before anticipated new flush.  相似文献   

9.
The fall armyworm, Spodoptera frugiperda (J.E. Smith), is a major target of transgenic corn, Zea mays L., expressing Bacillus thuringiensis (Bt) proteins in both North and South America. A highly Cry1F-resistant strain of S. frugiperda was established from a field collection in Puerto Rico in 2011. In this study, three greenhouse trials were conducted to evaluate larval survival and leaf injury of Cry1F-susceptible, -resistant, and -heterozygous genotypes of S. frugiperda on whole plants of five non-Bt and eight Bt corn hybrids. The Bt corn products included two single-gene Bt corn hybrids containing Herculex®I (Cry1F) and YieldGard® (Cry1Ab) traits and six pyramided Bt corn hybrids representing four traits: Genuity® VT Double Pro™, Genuity®VT Triple Pro™, Genuity® SmartStax™, and Agrisure® Viptera™ 3111. In each trial, neonates of S. frugiperda were placed into the plant whorls at vegetative plant stages (V6–V10). Larvae of the three insect genotypes on non-Bt corn hybrids survived well and caused serious plant injury. Cry1Ab corn was ineffective against all three insect genotypes. On Cry1F corn plants, resistant larvae survived on 72.9% plants after 12–15 d and caused a leaf injury rating (Davis' 1 to 9 scales) of 5.7 after 7 d and 7.6 after 12–15 d. Both the larval survivorship and leaf injury rates of the resistant larvae on Cry1F corn plants were not significantly different from those observed on non-Bt corn hybrids. In contrast, no live larvae and little or no leaf injury were observed on the Cry1F corn plants that were infested with susceptible or heterozygous genotypes, or on the pyramided Bt plants. The results demonstrated that the Cry1F-resistant S. frugiperda was highly resistant to whole plants of Cry1F corn and the resistance was recessive. Hybrids that contained one of the four pyramided Bt traits were effective for managing the Cry1F resistance in S. frugiperda.  相似文献   

10.
The southern United States has a long growing period between corn, Zea mays L., harvest and first winter frost, so volunteer corn which germinates after harvest has a growing period sufficient for corn earworm, Helicoverpa zea (Boddie) and fall armyworm, Spodoptera frugiperda (J. E. Smith) to feed on these plants. However, lower air temperatures can limit larval development on late season volunteer corn and thereby successful pupation. Here we explore the suitability of late season volunteer corn for larval development and the potential contribution of H. zea larvae to the overwintering population. Our survey revealed the occurrence of volunteer corn in high densities, with monthly mean densities ranging from 56,000 to 143,000 plants ha−1. H. zea larvae were found feeding on both vegetative and reproductive stage plants while S. frugiperda were only found on vegetative stage plants. An analysis of H. zea growing degree day (GDD) accumulations based on Mississippi weather data from 1980 to 2010 revealed that sufficient GDD to reach prepupation would always be accumulated before first frost if oviposition occurred by 9 September, with the probability of successful pupation decreasing rapidly thereafter. However, most of the H. zea larvae were oviposited after this, and could not reach pupation. Because S. frugiperda cannot overwinter in Mississippi, their ability to pupate was not examined. Low suitability of whorl stage corn for H. zea development coupled with low larval densities during this stage effectively diminish the number of larvae that complete development on late season volunteer transgenic corn expressing genes from the soil bacterium, Bacillus thuringiensis (Bt). This limits the Bt resistance risk posed by larvae developing on late season volunteer corn in all but the most southern locations in the US.  相似文献   

11.
Bactericera cockerelli has recently become a major concern because of its direct feeding and vectoring of bacterial diseases in many solanaceous crops. The repellency of four biorational insecticides, MOI-201 (a Chinese medicine plant extract), Requiem (a plant extract of Chenopodium ambrosioides), BugOil (a mixture of four plant essential oils), and SunSpray oil (a mineral oil), to B. cockerelli adults was tested on tomato. In a no-choice test, all the insecticides had significant repellency to adults and deterred oviposition as compared with untreated controls. Of the four insecticides, the two oils showed a stronger repellency to adults and deterred oviposition more strongly than Requiem or MOI-201. In a choice test, all insecticides had significant repellency to adults and deterred oviposition compared to untreated controls. Of the four tested insecticides, <1 adults and no eggs were found on the leaves treated with SunSpray Oil, BugOil or Requiem 3 d after treatment. The repellency rates of these three insecticides were 77.2–95.4%. MOI-201 also repelled adults significantly and deterred oviposition compared to untreated controls even though it was the least effective insecticide among the four evaluated. In conclusion, all four insecticides tested showed significant repellency to B. cockerelli adults and deterred oviposition, especially the two oils. The overall repellency to potato psyllid adults can be arranged in a descending order of SunSpray oil > BugOil > Requiem > MOI-201. These insecticides could be used in integrated pest management programs targeted against the potato psyllid on solanaceous crops.  相似文献   

12.
The inclusion of the cry gene in corn may produce direct effects on non-target pests. Our research was focused on the relationship between Bt corn germplasm, expressing the cry1F protein to control the fall armyworm [Spodoptera frugiperda (Noctuidae)], and a non-target pest, the corn leafhopper [Dalbulus maidis (Cicadellidae)]. The aim of this contribution was to elucidate if Bt corn plants have influence on the oviposition preference of the leafhopper and to evaluate the effect of the transgenic plant on the hatching rate of egg. Female corn leafhoppers were released in cages each containing two potted plants in the V2 stage: a Bt germplasm and the corresponding isogenic hybrid. Laid eggs were counted and the number of hatched nymphs recorded. D. maidis females oviposited and laid more eggs in Bt plants. The egg hatching rate was negatively affected by the Bt germplasm. In addition, a field study was conducted in order to determine the abundance of D. maidis adults in Bt corn and the corresponding non-Bt isoline. Two corn plots sown with the same germplasms as used in the laboratory bioassays were sampled weekly. In the field, the population of the corn leafhopper was higher in the Bt corn plot than in the non-Bt isoline. Possible hypotheses for the differences in abundance of the vector in the field are: a) that pleiotropic effects of Bt corn could attract adults; b) the existence of a possible direct competition between the corn leafhopper and the target pest in order to utilize the whorls of corn plants as refuge and feeding sites, so the high populations of the vector could be due to the large supply of healthy whorls in the transgenic plot; and/or c) a differential attack of natural enemies occurring in non-Bt plots.  相似文献   

13.
Field populations of beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae), from Pakistan were assessed for their resistance to the chlorinated hydrocarbon endosulfan, the organophosphates chlorpyrifos and quinalphos, and the pyrethroids cypermethrin, deltamethrin, bifenthrin and fenpropathrin. Using a leaf-dip bioassay, resistance to endosulfan was high during 1998–2000 but declined to very low, to low levels during 2001–2007, following a reduced use of the insecticide. Organophosphates and pyrethroids were consistently used over the past three decades, and the resistance had been increasing to these insecticide classes. Generally, the resistance to chlorpyrifos and pyrethroids remained low from 1998 to 2002–2003, but resistance increased to moderate to high levels from 2003–2004 to 2006–2007. For deltamethrin, resistance was very high during 2004–2007. Quinalphos resistance remained low during 1998–2006. Correlation analysis of LC50 and LC90 values showed a positive correlation between organophosphates and pyrethroids, but no correlation between endosulfan and organophosphates or pyrethroids tested herein. These results suggest that the conventional chemistries should be replaced with new chemistries for the successful management of S. exigua.  相似文献   

14.
A field survey was conducted in Ataulfo mango (Mangifera indica L.) orchards in Chiapas, Mexico, with the objective of determining the natural enemies of the Frankliniella complex species (Thysanoptera: Thripidae). Seven species of this genus feed and reproduce in large numbers during the mango flowering. Two representative orchards were selected: the orchard “Tres A” characterized by an intensive use of agrochemicals directed against thrips, and the orchard “La Escondida” that did not spray insecticides. During mango flowering, five inflorescences were randomly collected every 5 d in both orchards, for a total of 18 sampling dates. Results revealed the presence of 18 species of arthropods that were found predating on Frankliniella. There were 11 species in the families Aeolothripidae, Phlaeothripidae, Formicidae, Anthocoridae and Chrysopidae; and seven species of spiders in the families Araneidae, Tetragnathidae, and Uloboridae. Over 88% of predators were anthocorids, including, Paratriphleps sp. (Champion), Orius insidiosus (Say), Orius tristicolor (White), and O. perpunctatus (Reuter). The orchard that did not spray insecticides had a significantly higher number of predators suggesting a negative effect of the insecticides on the abundance of these organisms.  相似文献   

15.
The sweetpotato whitefly, Bemisia tabaci (Gennadius), has become a major threat to agriculture worldwide. The development of insecticide resistance in B. tabaci has necessitated the exploration of new management tactics. The toxicity of imidacloprid and buprofezin to various life stages of B. tabaci was determined in the laboratory. Also, the sublethal effects of both insecticides were studied on demographic and biological parameters of B. tabaci. Both insecticides were very toxic against first stage larvae of the pest with LC50 values of 1.0 and 19.3 ppm for buprofezin and imidacloprid, respectively. Toxicities decreased between successive stages (LC50 values ranging from 1.0 to 2854.0 ppm). The LC50 values of imidacloprid for adult males, females and eggs were 11.8, 71.6 and 151.0 ppm, respectively. Buprofezin had no significant effect on adults and eggs. The sublethal concentration of imidacloprid had no significant effect on demographic and biological parameters of B. tabaci but the maximal value for the mean generation time (T) (18.8 day) was observed in imidacloprid treatment. Buprofezin significantly decreased stable population and biological parameters of B. tabaci except it did not decrease the rate of population increase or the sex ratio of offspring.  相似文献   

16.
Transgenically expressed Bacillus thuringiensis insecticidal-protein Cry1Ab was quantified in target tissues of insect feeding of several YieldGard® corn hybrids. The Cry1Ab protein is intended to protect corn plants from two economically important stem borers, Chilo partellus and Sesamia inferens. A total of seven YieldGard hybrids, all with MON810 event, were field-tested in a total of fourteen locations during the dry season (October–March) of 2005/2006 and wet season (May–October) of 2006. S. inferens and C. partellus oviposit on leaves of young corn plants, 15–60 days after emergence (DAE). The neonates initially feed by scraping the leaf lamina before migrating to bore into the stem. Thus high concentrations of Cry1Ab in whorl leaf and stem tissues would ensure effective control of the borers. The mean tissue Cry1Ab concentrations during the oviposition window of the borers (15–60 DAE), ranged from 50.05 to 21.01 ppm in whorl leaf, and between 9.26 and 3.47 ppm in stem tissue during the same period in the dry season of 2005/06. Similarly, Cry1Ab concentrations in whorl leaf and stem between 15 and 60 DAE during the wet season of 2006 ranged between 19.30 to 11.08 and 14.28 to 4.69 ppm, respectively. The baseline-sensitivity data of these insects to Cry1Ab in laboratory assays was determined. The concentrations of Cry1Ab in the target tissues as studied in seven YieldGard hybrids tested suggest effective management of the two borers. This paper also provides a summary of the expression of the Cry1Ab gene in various genetic backgrounds.  相似文献   

17.
Between 2002 and 2004, collections of egg masses of Asian corn borer (ACB), Ostrinia furnacalis (Guenée) were made from corn-planting sites on the major Philippine islands of Luzon (Laguna, Pangasinan, Camarines Sur and Isabela provinces) and Mindanao (Bukidnon and South Cotabato provinces). The resulting neonates were bioassayed for susceptibility to Bacillus thuringiensis (Bt) Cry1Ab protein. The median lethal concentrations (LC50s) for the different collections ranged from 0.42 to 2.37 ng/cm2. The bioassay results suggest that Philippine corn borer populations were highly susceptible to Cry1Ab protein prior to the widespread deployment of Bt corn. The upper limit of the estimated LC99 (104 ng/cm2) from the pooled bioassay data was selected as a candidate diagnostic concentration and subsequently tested on eleven ACB populations. Results of the validation assays showed that the mortality response of all the tested ACB populations was higher than the expected mortality (99%). Therefore, the concentration of 104 ng/cm2 was used to monitor susceptibility in ACB populations in the Philippines. Monitoring of field populations during 2009 in areas where Bt corn had been grown for 3 years found some enhanced survival of neonates at the diagnostic concentration but progeny of the diagnostic-concentration survivors did not survive on Bt corn, indicating that ACB populations in the Philippines remain susceptible to Cry1Ab-containing Bt corn hybrids.  相似文献   

18.
Winter wheat producers in Oklahoma often combine an insecticide with a top-dress application of nitrogen during late fall and winter to control existing greenbug populations. We evaluated the efficacy of three classes of insecticides applied in cold weather field conditions ranging from −13.3 to 28.9 °C from 2002 to 2004 for greenbug control in winter wheat in replicated small plots. Insecticides provided control ranging from 0% to 98%, but generally responded similarly to temperature. Percent control of greenbugs resulting from applications of dimethoate, chlorpyrifos and λ-cyhalothrin was correlated with maximum, minimum and average daily temperatures that occurred two days post-treatment. While percent control was unique for each insecticide, a combined regression of percent control against average daily temperature predicted that a 95% level of control would be achieved when post-treatment temperatures exceeded 13.6 °C. Rainfall that occurred post-treatment affected the efficacy of dimethoate but did not affect the other insecticides. Insecticide persistence was extended under cooler temperatures, allowing acceptable control 14 days post-treatment if temperatures warmed. The decision to apply insecticides should be made based on existing treatment thresholds for greenbug, but if treatment with an insecticide is warranted, winter wheat producers can expect reasonable control of greenbugs from insecticides applied during the winter, as long as post-treatment temperatures exceed 13 °C within the following 14 days.  相似文献   

19.
The effects of extracts of different parts of the perennial tropical plant Balanites aegyptiaca (L) Del., including various solvent extracts of roots, methanol extracts from leaves, fruits, flowers and roots, partially purified saponins obtained from its roots and a standard saponin were studied on the life cycle (adult longevity, number of eggs, crawlers, adults, weight of adults and % wax content) of a laboratory-reared parthenogenic line of the mealy bug, Maconellicoccus hirsutus (Homoptera: Pseudococcidae). Extracts derived from various parts of B. aegyptiaca (leaves, fruits, flowers, and roots in methanol) affected the life cycle of M. hirsutus with a methanol root extract being the most effective at a concentration of 500 μg ml−1. Partially purified saponin of B. aegyptiaca and the commercial bark saponin extract (Sigma) from Quillaja saponaria at a concentration of 500 μg ml−1 were effective in reducing the longevity of M. hirsutus. Significant reductions in oviposition by M. hirsutus were found for all the extracts at a concentration of 500 μg ml−1. Extracts also affected the number of emerging crawlers, number of adults as well as the weight and wax content of emerging adults. These studies suggest that B. aegyptiaca plant extracts and saponins can be useful botanical insecticides for the protection of crops from mealy bugs.  相似文献   

20.
The Mexican rice borer, Eoreuma loftini (Dyar), is the key pest of sugarcane, Saccharum hybrids, in south Texas, having largely displaced the sugarcane borer, Diatraea saccharalis (F.), and it is moving into rice- and sugarcane-growing areas of east Texas and Louisiana. While a number of alternative weed and crop hosts have been reported, the extent to which they might support Mexican rice borer populations is unknown. This study involved choice assays that compared oviposition preference for and larval infestations of five mature graminaceous weed species. Levels of infestation between sugarcane and corn, Zea mays L., crop hosts and between corn and sorghum, Sorghum bicolor (L.) Moench, were also assessed. We determined that the average number of larval entry holes in sudangrass stems was ≥2.5-fold more than for any of the other four weed host plants, that corn had ≥5.9-fold more larval entry holes than sorghum and ≥8.2-fold more than sugarcane. Greater oviposition and infestation of one non-crop host over another was not related to numbers of stems per plant, but was associated with the greater stem diameter and abundance of dry leaf tissue found in Sudangrass, Sorghum bicolor (L.) Moench ssp. drummondi (Nees ex Steud.) de Wet & Harlan, johnsongrass, S. halepense (L.) and barnyardgrass, Echinochloa crus-galli (L.) P. Beauv.; relative to the other weed species in this study. In terms of the crop plants, stalk diameter and quantity of dry leaf tissue were not associated with numbers of eggs or larval entry holes in the choice assays between corn and sorghum, and between sugarcane and corn. While corn has been known as a host of the Mexican rice borer for at least 84 yr, its role in area-wide population dynamics and control efforts has likely been greatly underestimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号