首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
甘蓝型油菜高油酸材料的正反交遗传研究   总被引:1,自引:0,他引:1  
用4个高油酸品系和4个常规(低含量型)油酸品系为亲本材料,通过正反交试验,用FOSS近红外分析仪测定油酸含量,初步分析了甘蓝型油菜中突变产生的高油酸特性的遗传规律.结果表明,常规亲本与高油酸亲本油酸含量稳定;高油酸含量在正交组合F1代种子中表现,且其高油酸含量介于常规亲本油酸含量与高油酸亲本油酸含量均值之间;甘蓝型油菜的高油酸特性由显性多基因控制,并具有累加作用,不受母性遗传的影响.  相似文献   

2.
为了提高对高油酸花生的认识,了解高油酸花生的特征特性,笔者对高油酸花生遗传基础、种质资源、育种方法和相关特性国内外研究进行了综述,表明双隐性基因控制高油酸性状,FAD2基因突变是种质资源的主要来源,为育种和应用提供系统的参考。  相似文献   

3.
花生高油酸种质的研究与利用   总被引:2,自引:0,他引:2  
综述了花生高油酸种质在国际和国内的研究现状、高油酸产生的分子机制、高油酸突变体及国内种质资源、高油酸种质的检测技术以及高油酸种质的利用方法等。  相似文献   

4.
在综合分析高油酸菜籽油的品质特性及用途的基础上,论述了发展高油酸油菜产业的重要意义,分析了高油酸油菜国内外研究进展与发展现状,分析了衡阳发展油菜生产的自然条件、产业基础、发展潜力,认为在衡阳发展高油酸油菜产业有优势,并就衡阳率先发展高油酸油菜产业提出了建议与对策.  相似文献   

5.
综述了美国和国内花生高油酸种质的研究现状、检测技术和利用方法,以期对花生高油酸育种和种质资源的发掘与利用提供参考。  相似文献   

6.
高油酸油菜品种比较试验   总被引:2,自引:2,他引:0  
高油酸油菜油品质可与茶油、橄榄油媲美,且油菜种植周期短、简单易行,可以快速扩大种植面积。推广高油酸油菜对中国农业结构调整具有重要意义。采取随机区组排列法,对7个高油酸油菜品种进行比较研究。结果表明,6161全生育期较对照沣油520早6 d,产量2 764.00 kg/hm2,芥酸含量未检出,硫苷<30μmol/g,油酸含量达到80.10%,居第1位,含油量46.16%,居第2位,达到高油酸品种和品种登记要求;C718全生育期与对照沣油520相当,产量2 537.50 kg/hm2,芥酸含量未检出,硫苷<30μmol/g,油酸含量达到78.20%,居第2位,含油量达到48.26%,居第1位,达到高油酸品种和品种登记要求,但是株高较高,产量较对照沣油520略低,应开展进一步研究。  相似文献   

7.
高油酸油菜籽品种是当前油菜育种方向之一,为开发高效、无损测定油酸含量的方法,提高油菜高油酸种质资源筛选效率,选用3个油菜品种为材料,分别采集其种子光谱成像信息及油酸含量数据,首先对光谱信息进行11种预处理,确定多元散射校正(MSC)最佳预处理方法,然后基于主成分分析(PCA)、连续投影(SPA)、竞争性自适应重加权采样(CARS)方法对数据进行降维,最后分别建立支持向量机(SVM)、最小二乘支持向量机(LS-SVM)和极限学习机(ELM)3种定量分析模型,对油菜油酸含量进行无损检测。通过改变训练样本的数量来测试模型,为验证模型的稳定性,用相关系数(R)、均方根误差(RMSE)进行效果评价。结果表明,在所有模型中,多元散射校正+竞争性自适应重加权采样+极限学习机(MSC+CARS+ELM)模型预测效果最好,校正集相关系数(Rc)、均方根误差(RMSEc)分别为0.894、1.993 4%,预测集相关系数(Rp)为0.868,均方根误差(RMSEp)为1.069 8%,可更加准确地预测油酸含量,创建一种快速、无损检测油菜种子油酸含量的方法,为利用高光谱技术进行油菜营养品质无损检测提供理论依...  相似文献   

8.
花生脂肪酸成分中80%以上为油酸和亚油酸,二者均属有益脂肪酸,高油酸含量是花生遗传育种的主要目标之一,借助分子辅助育种技术可提高高油酸花品种的育种效率。为高油酸花生品种选育提供技术支撑,从高油酸花生不饱和脂肪酸的生物合成途径、高油酸性状的遗传机制、分子标记辅助育种技术等方面进行概述,提出分子标记辅助选择技术与回交育种系统结合的高油酸化遗传改良策略。  相似文献   

9.
在综合分析高油酸菜籽油的品质特性及用途的基础上,论述了发展高油酸油菜产业的重要意义,分析了高油酸油菜国内外研究进展与发展现状,分析了衡阳发展油菜生产的自然条件、产业基础、发展潜力,认为在衡阳发展高油酸油菜产业有优势,并就衡阳率先发展高油酸油菜产业提出了建议与对策。  相似文献   

10.
为进一步深化高油酸花生育种实践,加快我国高油酸花生育种步伐,从高油酸花生不饱和脂肪酸的生物合成途径、高油酸性状的遗传机制、分子标记辅助育种技术等方面展开综述与评价,提出分子标记辅助选择技术与回交育种系统结合的高油酸化遗传改良策略,为推进高油酸花生品种选育提供技术支撑。  相似文献   

11.
【目的】研究辣椒炭疽病抗性基因的遗传规律。在5号连锁群中,定位辣椒炭疽病抗性主效基因AnRGO5,并开发分子标记。【方法】以高抗炭疽病品种PBC932(Capsicum chinense )为父本,以高感炭疽病的中早熟材料77013(Capsicum annuum)为母本杂交产生BC4S1、BC4S2群体,用于辣椒绿熟期抗炭疽病基因定位。选用尖孢炭疽菌为试验用菌,采用显微注射法对绿熟果接病,根据病斑直径进行表型分析。根据抗、感亲本重测序结果,开发与绿熟期抗炭疽病连锁的Kaspar标记。【结果】辣椒果实表面病斑直径呈连续分布,符合数量性状的遗传特点。通过连锁分析,将炭疽病抗性基因AnRGO5定位在5号连锁群的标记P5L-866与标记P5L-259之间,遗传距离2.9 cM。开发的标记P5L-117 与基因紧密连锁,标记准确率93.5%。【结论】在辣椒的BC3S1群体中,将果实绿熟期抗性基因定位于5号染色体的标记区间内。辣椒炭疽病抗性遗传为显性遗传,是由两对主效基因控制的。  相似文献   

12.
【目的】菜籽油包括多种脂肪酸组分,提高油酸(C18:1)含量,降低亚麻酸(C18:2)和芥酸(C22:1)含量是油菜育种改良和遗传研究的重要目标。本研究利用刚开发的油菜60K芯片构建的高世代重组自交系群体遗传连锁图谱,对3个不同环境中影响甘蓝型油菜品质的油酸、亚麻酸及芥酸含量进行QTL定位分析,研究结果可对脂肪酸组分QTL位点在不同的群体之间准确比较分析。【方法】以高芥酸亲本GH06为母本和低芥酸亲本P174为父本构建高世代重组自交系,分别于2008年在德国吉森、德国霍亨里特及2009年德国吉森3个不同的环境中设置田间试验,收获自交种子,采用近红外分析方法3次重复对种子的脂肪酸组分进行分析。利用油菜60K芯片对重组自交系群体进行基因型分析,DNA样品预处理及芯片处理严格按照Illumina Inc公司Infinium HD Assay Ultra操作说明进行。取最小阈值LOD 5.0利用MSTmap软件构建遗传图谱。QTL定位所用的遗传图谱包括2 756个SNP位点,覆盖甘蓝型油菜基因组1 832.4 cM。利用Windows QTL Cartographer复合区间作图法对油酸、亚麻酸及芥酸含量进行QTL定位。【结果】在3个环境中,油酸和芥酸含量均表现为极显著负相关,相关系数均达到-0.95,且表现为主基因控制的性状,芥酸和亚麻酸表现负相关,油酸与亚麻酸表现正相关。3个性状在3个环境中共检测到14个QTL,在A08和C03上都检测到油酸和芥酸含量重叠的主效QTL位点。在3个环境中,油酸主效QTL位点解释表型变异19%-31%,芥酸主效QTL位点解释表型变异19%-34%,两者表现加性效应相反。A08和C03染色体上的芥酸主效QTL位点加性效应在3个环境中为7.6到9.6,加性效应来自低油酸、高芥酸亲本GH06。亚麻酸属于典型的数量性状,受环境影响较大,在3个环境中检测到不同的微效QTL位点,解释表型变异3%-12%。遗传图谱与物理图谱比较分析发现,脂肪酸去饱和酶FAD2基因位于亚麻酸QTL qA05C18:3的置信区间,而脂肪酸延长酶FAE1基因位于芥酸QTL qA08C22:1的置信区间。【结论】利用该套油菜60K芯片准确定位了油酸、亚麻酸及芥酸QTL位点,位于A08和C03染色体上的芥酸主效QTL位点同时也是油酸的主效QTL位点,该研究结果有利于不同群体在使用该套SNP芯片分析及对脂肪酸组分定位后准确比较分析。  相似文献   

13.
航天诱变高油酸甘蓝型油菜突变体分子标记的筛选   总被引:1,自引:1,他引:0  
【目的】利用与候选基因FAD2紧密连锁的SSR标记对航天诱变的高油酸F2群体进行SSR标记分析,筛选与该高油酸性状紧密连锁的SSR标记及分析其突变位点。【方法】F2群体母本10L421为黄籽低油酸高亚麻酸自交系,父本10L422为航天诱变的高油酸低亚麻酸的突变株自交系后代。对4条染色体(A05、A01、C05及C01)上的候选基因FAD2上下游100 kb区域设计的148对SSR引物在两亲本、高低油酸混合池及F2群体中进行分析。亲本及群体油酸含量采用气相色谱分析,根据分子标记结果对F2群体油酸含量进行单标记分析。【结果】有36对引物在亲本间表现多态性,多态频率为24%。其中10对SSR引物在2个亲本和高油酸、低油酸极端群体间均具有相同的多态性。显著性检验和单标记分析表明,A05和A01上与FAD2共分离的SSR标记在0.01显著水平上与油酸性状相关,单标记分析分别解释表型变异31.1%和29.4%。【结论】A05和A01染色体上的FAD2是控制该突变体材料高油酸性状变异的主效位点,且该高油酸突变体是由于A05和A01上FAD2的双隐性突变所致。  相似文献   

14.
【目的】研究远缘杂交将结球白菜的A基因组导入包心芥菜,利用高分辨率熔解曲线(high-resolution melting, HRM)结合InDel标记辅助选择技术,筛选出保留白菜基因较多的回交后代,改良包心芥的结球性,丰富包心芥菜的种质资源。【方法】利用幼胚培养技术辅助6份包心芥菜与2份结球白菜进行远缘杂交和回交,选取20个InDel标记追踪白菜A基因组全部染色体,从192的BC1单株中筛选出白菜A基因组标记占比较高的单株。田间调查筛选结球性近似结球白菜的单株。【结果】远缘杂交结合幼胚培养获得了9个种间杂种组合和14个BC1群体。筛选并获得203个在全基因组分布均匀的可区分白菜与芥菜的HRM-InDel标记;利用20个InDel标记追踪192株BC1单株的白菜基因,分离群体偏向传递白菜基因组,有54棵单株标记含量超过90%。【结论】幼胚培养技术可提高白菜与芥菜远缘杂交后回交的结实率,并可加快育种进程;筛选出了白菜基因组占比较高的组合和单株;分离群体明显偏向于传递白菜基因。  相似文献   

15.
【目的】蜡粉是植物抵御外界胁迫的第一层保护性屏障,对西瓜果实表皮蜡粉的结构、化学成分、遗传规律进行研究,并预测控制该性状的基因,以便全面了解性状的生理生化作用,发掘候选基因。【方法】试验选用无蜡粉的西瓜自交系‘美佳选黑’(P1)和有蜡粉的西瓜自交系‘FH’(P2)为双亲配制杂交组合,构建六世代群体(P1、P2、F1、F2、BC1P1、BC1P2),利用扫描电子显微镜(SEM)对双亲成熟期果实表皮结构进行观察,通过气相色谱-质谱联用仪(GC-MS)对蜡粉的化学成分进行测定,以峰面积为指标,定量计算蜡粉化学成分的含量,采用BSA-seq对西瓜表皮蜡粉进行基因初定位,应用BLAST软件将定位区间内的编码基因与多个数据库比对完成基因信息注释,并通过详细的基因注释信息及突变位点分析,快速筛选候选基因。【结果】西瓜果实表皮蜡粉为灰白色,呈致密的板状结构,长度约为5 μm;无蜡粉材料表皮较为光滑,无蜡粉层附着。GC-MS分析显示,蜡粉中共检测到24种脂肪族化学成分,分别属于烃类、醇类、酯类、酸类、酚类和醛类。包括烃类物质10种,含量占表皮蜡粉有效化学提取物总含量的77.72%,链长变化范围为C17—36,主要为C27、C28、C29、C32、C33、C34、C36的饱和正链烷烃;醇类物质5种,占12.60%;酯类物质5种,占0.43%;酸类物质2种,占0.53%;酚类1种,占0.80%;醛类1种,占3.99%;含量最高的5种化学成分依次为:正三十四烷、正二十九烷、1,30-三十烷二醇、正三十三烷、正二十八烷。在后代群体中,F1、BC1P2群体西瓜果实表皮全部有蜡粉,F2群体有蜡粉和无蜡粉西瓜果实的分离比符合3﹕1的孟德尔分离比例,BC1P1回交群体有蜡粉和无蜡粉分离比符合1﹕1的理论比,说明蜡粉的有无符合单基因显性遗传模式,有蜡粉对无蜡粉为显性。对BSA-seq数据进行SNP和InDel关联分析,关联结果取交集得到1号染色体3.16—4.84 Mb的候选区域,该区域共含有144个基因。数据库比对结果显示,在关联区域中,共138个基因有功能注释,包括10个非同义突变,1个移码突变。结合已有文献报道,其中5个非同义突变基因可能与西瓜表皮蜡粉的生成有关:Cla002367为烯酰ACP-还原酶(ECR)类基因,该类基因是特长链脂肪酸合成所必须;Cla011514、Cla002337和Cla002342为细胞色素P450(CYP)家族基因,该家族部分编码蛋白能够通过烃基羟化等反应催化脂肪族化合物的生成;Cla002353的基因注释信息为ABC转运体,ABC转运体与蜡质分子的转运息息相关。【结论】西瓜果实表皮蜡粉为板状结构,主要由特长链脂肪酸衍生成的脂肪族化合物组成。该性状是单基因遗传,有蜡粉为显性性状。BSA关联分析得到1号染色体1.68 Mb的关联区域,并预测关联区域中Cla002367、Cla011514、Cla002337、Cla002342、Cla002353这5个非同义突变基因为调控西瓜果实表皮蜡粉性状的候选基因。  相似文献   

16.
【目的】薯肉颜色是马铃薯重要的农艺性状,它直接影响马铃薯的营养和商品价值,一直是马铃薯遗传研究和育种改良的重要目标。本研究通过对二倍体红色薯肉分离群体的混池分析、基因精细定位和候选基因表达分析,确定调控红色薯肉的候选基因,为下一步基因功能、遗传调控研究及彩色马铃薯的分子育种奠定基础。【方法】本研究通过向二倍体红色薯肉亲本导入自交不亲和抑制基因Sli获得BC1S1群体,从300个单株中挑选18株红色薯肉和21株黄色薯肉个体提取基因组DNA,分别测序进行混池分析。通过集团分离分析法(bulked segregation analysis,BSA)对基因进行初步定位;在定位区间内开发分子标记,对796份BC1S1植株进行基因型分析,筛选交换单株,并结合表型对基因进行精细定位;借助参考基因组注释信息和qRT-PCR表达量分析确定候选基因。【结果】本研究通过构建薯肉颜色分离的二倍体BC1S1群体,利用BSA-seq分析把调控薯肉花青素合成的主效位点定位在第10号染色体48.70—52.20 Mb。最终,利用分子标记将该基因定位于51.47—51.85 Mb的377 kb区间内。基于参考基因组注释信息,此区间包括5个基因,其中2个基因注释为MYB类转录因子,结合表达量数据推测这2个基因为候选基因,编号分别为PGSC0003DMG400013966、PGSC0003DMG400013965。【结论】本研究将调控马铃薯薯肉花青素积累的一个主效位点定位于第10号染色体51.47—51.85 Mb之间,推测PGSC0003DMG400013966和PGSC0003DMG400013965为候选基因。  相似文献   

17.
【目的】 研究甜瓜2号连锁群中果长基因fl与性别表达基因a的连锁关系。分析果实长度和性别表达类型(雄花两性花同株、雌雄异花同株)的遗传规律,定位两性状基因。【方法】 以圆形甜瓜、雄花两性花同株品种西州蜜为父本,长形甜瓜、雌雄异花同株品种蛇瓜为母本杂交产生的160个BC1(Back Cross 回交群体)单株为作图群体,研究BC1群体中果实长度和性别类型的分布,对二者进行遗传分析。利用集团分离分析法(Bulked Segregant Analysis, BSA),用甜瓜2号连锁群上的48个SSR分子标记,对甜瓜果实长度和花性型性状进行多态性标记的筛选,对两性状基因定位。【结果】 甜瓜果实长度符合数量性状的遗传特点;雄花两性花同株与雌雄异花同株可能受双基因遗传控制。通过连锁分析,将果长基因fl定位于2号连锁群的标记SSR247159和标记SSR252089之间,遗传距离为3 cM;将性别表达基因a定位于标记SSR227156和标记CMGA36/SSR235092之间,遗传距离为3.59 cM;两区间之间的遗传距离为0。【结论】 在甜瓜西州蜜和蛇瓜的BC1群体中,将果实长度基因fl和性别表达基因a的初步定位于不同标记区间内,证明二者不是同一基因。  相似文献   

18.
【目的】有效发掘利用海岛棉优异性状基因,拓宽陆地棉栽培种遗传基础。【方法】采用新疆主栽早中熟陆地棉品种新陆中60号为母本,与优质海岛棉品种新海41号为父本杂交,并以新陆中60号为轮回亲本构建出由151个BC1F1单株组成的回交群体,利用SSR分子标记和Join Map4.0软件构建遗传连锁图谱,采用复合区间作图法(CIM)对BC1F2纤维品质性状的进行QTL定位。【结果】构建的遗传连锁图谱包含52个多态性标记、14个连锁群,该图谱总长824 cM,覆盖棉花基因组的18.5%;最长的连锁群为150.3 cM,包含6个标记,最短的为0.3 cM,包含2个标记。检测到1个与纤维上半部平均长度相关的QTL,qFL-Chr14-1,定位在第14号染色体上,解释表型变异8.59%。【结论】筛选的与优质QTL位点相关SSR标记可应用于棉花优质分子标记辅助选择。  相似文献   

19.
【目的】明确江西省油茶油酸含量的关键气象因子和关系模型,为江西省油茶品质气候评价及油茶品质气候区划等提供技术参考。【方法】利用6份油茶油酸含量检测数据(2018—2019年江西九江市柴桑区、丰城市和万安县油茶油酸含量检测数据)和同期气象数据(2018—2019年逐日平均气温、最低气温、最高气温、降水量、平均相对湿度和日照时数等),采用相关分析和线性回归方法,研究影响江西油茶油酸含量的关键气象因子,建立江西省油茶油酸含量气象评价模型,再利用10组油茶油酸含量检测数据(2018—2019年江西省10家油茶基地油茶油酸含量检测数据)和同期气象数据对评价模型进行检验。【结果】影响江西省油茶油酸含量的关键气象因子有10月下旬—11月下旬降水日数(X2)、3月极端最高气温(X6)、8月下旬—9月下旬气温日较差(X9)和10月下旬—11月下旬日照时数(X12),其中10月下旬—11月下旬降水日数对油茶油酸含量影响最大。研究建立的油酸含量(Y)气象评价模型为Y=0.1777X2+0.1078X6+0.2320X9-0.0152X12+75.5950,模型决定系数R2=0.9871。模型检验结果显示,油茶油酸含量评价值与实测值之差在±5%以内,模型对油酸含量等级的评价结果准确率为70%。【结论】依据关键气象因子建立的江西省油茶油酸含量气象评价模型准确率较高,能较好地反映气象条件对油茶油酸含量的影响程度,可应用于江西省油茶气候品质评价,同时可为油茶品质气候区划提供参考。  相似文献   

20.
花生油酸和亚油酸含量的遗传模式分析   总被引:1,自引:0,他引:1  
【目的】利用F2遗传群体分析油酸和亚油酸含量的遗传模式,为高油酸种质的利用奠定基础。【方法】利用高油酸亲本wt08-0932和wt08-0934与普通(低)油酸含量品种配制杂交组合,建立不同杂交组合的遗传模型,并进行遗传参数估计,明确控制油酸性状的主基因个数、加性或显性效应值、遗传力等。【结果】获得控制油酸和亚油酸性状遗传的2对主基因加性-显性-上位性遗传模型,油酸和亚油酸性状的2对主基因遗传力分别为66%-89%和70%-85%,并存在多基因效应。控制油酸含量的2个主基因显性效应值均为负值,控制亚油酸含量的2个主基因的显性效应值均为正值。【结论】花生的油酸和亚油酸性状分别由2对主基因控制,同时存在基因互作及多基因效应。第一对主基因的加性和显性效应均大于第二对主基因。2对主基因同时变异形成高油酸性状;2对主基因之间的加性和显性效应的差异导致在1对主基因变异时形成中低油酸含量和中高油酸含量的性状表现。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号