首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Condensed tannins (proanthocyanidins, PAs) in the seed meal of oilseed rape can potentially have a negative impact on non-ruminant livestock nutrition, particularly because of their ability to form indigestible, astringent or bitter-tasting complexes with proteins. One option to overcome this problem is the breeding of oilseed rape varieties with reduced condensed tannins in the seed coat. This might be achievable via selection of genotypes with thinner seed coats and consequently reduced condensed tannin accumulation (seed coat structural cell mutants), or alternatively by selection of genotypes with reduced biosynthesis of condensed tannins (flavonoid biosynthesis mutants). Both types of transparent testa (TT) mutants are well-characterised in Arabidopsis; however the genetic basis of the yellow-seed trait in the polyploid genome of rapeseed is still not completely understood. In this study, genetic and chemical analyses of PAs were performed in 166 doubled haploid (DH) rapeseed lines from the segregating Brassica napus doubled haploid population YE2-DH (black seed × yellow seed). Using these analyses, the relationship between seed colour and PA fractions in B. napus was investigated with a view to improving the rapeseed meal quality. Proanthocyanidin contents were estimated by vanillin and HPLC assays and the obtained values were used to identify quantitative trait loci. Closely linked molecular markers that were identified during this study for the target traits (seed colour, condensed tannins) can be valuable tools for breeding of new oilseed rape cultivars with reduced levels of antinutritive PA compounds.  相似文献   

2.
Increasing seed oil content is one of the most important breeding targets for rapeseed (Brassica napus). In this study, we combined quantitative trait loci (QTL) mapping and marker-trait association analysis to dissect the genetic basis of seed oil content in rapeseed. A doubled haploid (DH) population with 261 lines was grown in two highly contrasting macro-environments, Germany with winter ecotype environment and China with semi-winter ecotype environment, to explore the effect of environment effect of on seed oil content. Notable macro-environment effect was found for seed oil content. 19 QTL for seed oil content were identified across the two macro-environments. For association analysis, a total of 142 rapeseed breeding lines with diverse oil contents were grow in China macro-environment. We identified 23 simple sequence repeat (SSR) markers that were significantly associated with the seed oil content. Comparative analysis revealed that five QTL identified in the DH population, located on chromosomes A03, A09, A10 and C09, were co-localized with 11 significantly associated SSR markers that were identified from the association mapping population. Of which, the QTL on chromosome A10 was found to be homeologous with the QTL on chromosome C09 by aligning QTL confidence intervals with the reference genomes B. napus. Those QTL associated with specific macro-environments provides valuable insight into the genetic regulation of seed oil content and will facilitate marker-assisted breeding of B. napus.  相似文献   

3.
Soybean (Glycine max [L.] Merr.) is cultivated primarily for its protein and oil in the seed. In addition, soybean seeds contain nutraceutical compounds such as tocopherols (vitamin E), which are powerful antioxidants with health benefits. The objective of this study was to identify molecular markers linked to quantitative trait loci (QTL) that affect accumulation of soybean seed tocopherols. A recombinant inbred line (RIL) population derived from the cross ‘OAC Bayfield’ × ‘OAC Shire’ was grown in three locations over 2 years. A total of 151 SSR markers were polymorphic of which a one‐way analysis of variance identified 42 markers whereas composite interval mapping identified 26 markers linked to tocopherol QTL across 17 chromosomes. Individual QTL explained from 7% to 42% of the total phenotypic variation. Significant two‐locus epistatic interactions were identified for a total of 122 combinations in 2009 and 152 in 2010. The multiple‐locus models explained 18.4–72.2% of the total phenotypic variation. The reported QTL may be used in marker‐assisted selection (MAS) to develop high tocopherol soybean cultivars.  相似文献   

4.
Linseed (Linum usitatissimum L.) is an important oilseed as well as stem fiber crop and rich source of omega-3 fatty acid. The present study aims to develop linkage map based on Indian genotypes and utilize it for mapping QTLs for important agronomic traits. Two diverse parental genotypes (KL-213 and RKY-14) of linseed showed wide range of variability for oil content and yield attributes. These parental genotypes also showed reasonable level of SSR polymorphism (~ 9.0%). The mapping population showed normal distribution of phenotypic traits. One hundred forty-six SSR markers were mapped on 15 linkage groups with marker density ranging from 3 to 18 markers per linkage group at average distance of 14.2 cM. A total of 11 QTLs were identified for six quantitative traits. Three QTLs for capsules/plant, 2 QTLs each for plant height, seeds/capsule and oil content and 1 QTL each for branches/plant and seed weight/plant were detected. Phenotypic variability explained by these QTLs varied from 1 to 15.23%. This study provides framework linkage map of linseed using Indian genotypes, which needs to be enriched further for future application in marker assisted breeding of linseed.  相似文献   

5.
A genetic map was constructed with 353 sequence-related amplified polymorphism and 34 simple sequence repeat markers in oilseed rape (Brassica napus L.). The map consists of 19 linkage groups and covers 1,868 cM of the rapeseed genome. A recombinant doubled haploid (DH) population consisting of 150 lines segregating for oil content and other agronomic traits was produced using standard microspore culture techniques. The DH lines were phenotyped for days to flowering, oil content in the seed, and seed yield at three locations for 3 years, generating nine environments. Data from each of the environments were analyzed separately to detect quantitative trait loci (QTL) for these three phenotypic traits. For oil content, 27 QTL were identified on 14 linkage groups; individual QTL for oil content explained 4.20–30.20% of the total phenotypic variance. For seed yield, 18 QTL on 11 linkage groups were identified, and the phenotypic variance for seed yield, as explained by a single locus, ranged from 4.61 to 24.44%. Twenty-two QTL were also detected for days to flowering, and individual loci explained 4.41–48.28% of the total phenotypic variance.  相似文献   

6.
Association analysis studies can be used to test for associations between molecular markers and quantitative trait loci (QTL). In this study, a genome-wide scan was performed using 150 simple sequence repeat (SSR) markers to identify QTL associated with seed protein content in soybean. The initial mapping population consisted of two subpopulations of 48 germplasm accessions each, with high or low protein levels based on data from the USDA’s Germplasm Resources Information Network website. Intrachromosomal LD extended up to 50 cM with r 2 > 0.1 and 10 cM with r 2 > 0.2 across the accessions. An association map consisting of 150 markers was constructed on the basis of differences in allele frequency distributions between the two subpopulations. Eleven putative QTL were identified on the basis of highly significant markers. Nine of these are in regions where protein QTL have been mapped, but the genomic regions containing Satt431 on LG J and Satt551 on LG M have not been reported in previous linkage mapping studies. Furthermore, these new putative protein QTL do not map near any QTL known to affect maturity. Since biased population structure was known to exist in the original association analysis population, association analyses were also conducted on two similar but independent confirmation populations. Satt431 and Satt551 were also significant in those analyses. These results suggest that our association analysis approach could be a useful alternative to linkage mapping for the identification of unreported regions of the soybean genome containing putative QTL.  相似文献   

7.
B. Wittkop  R. J. Snowdon  W. Friedt 《Euphytica》2009,170(1-2):131-140
Vegetable oils are a high-value agricultural commodity for use in refined edible oil products and as renewable industrial or fuel oils, and as the world population increases demand for high-quality seed oils continues to grow. Worldwide the oilseed market is dominated by soybean (Glycine max), followed by oilseed rape/canola (Brassica napus). In Europe the major oilseed crop is oilseed rape (B. napus), followed some way behind by sunflower (Helianthus annuus) and other minor crops like linseed (Linum usitatissimum) or camelina (Camelina sativa). The seed oil of these crops is characterized by a specific quality, i.e. fatty acid composition and other fat-soluble compounds: Camelina and linseed oils are characterised by high contents of linolenic acid (C18:3); in sunflower very high-oleic (up to 90% C18:1) types exist in addition to classical high-linoleic (C18:2) oilseeds; in B. napus a broad diversity of oil-types is available in addition to the modern 00 (canola) type, e.g. high-erucic acid rapeseed or high-oleic and low-linolenic cultivars. Moreover, vegetable oils contain valuable minor compounds such as tocopherols (vitamin E). Increases of such contents by breeding have lead to value-added edible oils. After oil extraction, oilseed meals—such as rapeseed extraction meal—contain a high-quality protein that can be used as a valuable animal feed. However, in comparison to soybean the meal from oilseed rape also contains relatively high amounts of anti-nutritive fibre compounds, phenolic acids, phytate and glucosinolates. Breeding efforts with respect to meal quality are therefore aimed at reduction of anti-nutritive components, while increasing the oil content, quality and yield also remains a major aim in oilseed rape breeding. This review article provides a general overview of the status of oilseed production in Europe and uses examples from winter oilseed rape to illustrate key breeding aims for sustainable and high-yielding production of high-quality vegetable oil. Emphasis is placed on analytical tools for high-throughput selection of overall seed quality.  相似文献   

8.
Stachyose is an unfavorable sugar in soybean meal that causes flatulence for non‐ruminant animals. Understanding the genetic control of stachyose in soybean will facilitate the modification of stachyose content at the molecular level. The objective of this study was to identify quantitative trait loci (QTL) associated with seed stachyose content using simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers. A normal stachyose cultivar, ‘Osage’, was crossed with a low stachyose line, V99‐5089, to develop a QTL mapping population. Two parents were screened with 33 SSR and 37 SNP markers randomly distributed on chromosome 10, and 20 SSR and 19 SNP markers surrounding a previously reported stachyose QTL region on chromosome 11. Of these, 5 SSR and 16 SNP markers were used to screen the F3:4 lines derived from ‘Osage’ x V99‐5089. Seed samples from F3:5 and F3:6 lines were analyzed for stachyose content using high‐performance liquid chromatography (HPLC). Composite interval mapping analysis indicated that two stachyose QTL were mapped to chromosome 10 and 11, explaining 11% and 79% of phenotypic variation for stachyose content, respectively. The SSR/SNP markers linked to stachyose QTL could be used in breeding soybean lines with desired stachyose contents. Chi‐square tests further indicated that these two QTL probably represent two independent genes for stachyose content. Therefore, a major QTL was confirmed on chromosome 11 and a novel QTL was found on chromosome 10 for stachyose content.  相似文献   

9.
As PCR techniques have developed over the last 15 years, a wealth of new DNA marker technologies have arisen which have enabled the generation of high‐density molecular maps for all the major Brassica crop species. Molecular markers have also been heavily used in analyses of genetic diversity in Brassica crops. The majority of the work utilizing molecular markers in Brassica oilseed breeding has to date been based on genetic mapping using various DNA marker systems in segregating populations generated for specific investigations of particular traits of interest. For numerous qualitative traits, traditional mapping approaches have led to the development of marker‐assisted selection strategies in oilseed Brassica breeding, and in some cases to map‐based cloning of the responsible genes. For quantitative traits, however, it has become apparent that traditional mapping of quantitative trait loci (QTL) is often not sufficient to develop effective markers for trait introgression or for identification of the genes responsible. In this case, allele‐trait association studies in non‐structured genetic populations represent an interesting new approach, provided the degree of gametic phase disequilibrium between the QTL and the marker loci is sufficient. Because Brassica species represent the closest crop plant relatives to the model plant Arabidopsis thaliana, significant progress will be achieved in the coming years through integration of candidate gene approaches in crop brassicas, using the detailed information now available for the Arabidopsis genome. Integration of information from the model plant with the increasing supply of data from physical mapping and sequencing of the diploid Brassica genomes will undoubtedly give great insight into the genetics underlying both simple and complex traits in oilseed rape. This review describes the current use of available genetic marker technologies in oilseed rape breeding and provides an outlook for use of new technologies, including single‐nucleotide polymorphism markers, candidate gene approaches and allele‐trait association studies.  相似文献   

10.
A partial resistance to maize mosaic virus (MMV) and maize stripe virus (MStV) was mapped in a RILs population derived from a cross between lines MP705 (resistant) and B73 (susceptible). A genetic map constructed from 131 SSR markers spanned 1399 cM with an average distance of 9.6 cM. A total of 10 QTL were detected for resistance to MMV and MStV, using composite interval mapping. A major QTL explaining 34–41% of the phenotypic variance for early resistance to MMV was detected on chromosome 1. Another major QTL explaining up to 30% of the phenotypic variation for all traits of resistance to MStV was detected in the centromeric region of chromosome 3 (3.05 bin). After adding supplementary SSR markers, this region was found to correspond well to the one where a QTL of resistance to MStV already was located in a previous mapping study using an F2 population derived from a cross between Rev81 and B73. These results suggested that these QTL of resistance to MStV detected on chromosome 3 could be allelic in maize genome.  相似文献   

11.
Genetic analysis of resistance of plant introduction (PI) 438489B to soybean cyst nematode (SCN) have shown that this PI is highly resistant to many SCN HG types. However, validation of the previously detected quantitative trait loci (QTL) has not been done. In this study, 250 F2:3 progeny of a Magellan (susceptible) × PI 438489B (resistant) cross were used for primary genetic mapping to detect putative QTL for resistance to five SCN HG types. QTL confirmation study was subsequently conducted using F6:7 recombinant inbred lines (RILs) derived from the same cross. Simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers were employed for molecular genotyping. Interval mapping (IM), permutation tests, cofactor selection, and composite interval mapping (CIM) were performed to identify and map QTL. Results showed that five QTL intervals were associated with resistance to either multiple- or single-HG types of SCN. Among these, two major QTL for resistance to multiple-SCN HG types were mapped to chromosomes (Chr.) 8 and 18, consistent with the known rhg1 and Rhg4 locations. The other QTL were mapped to Chr. 4. The results of our study confirmed earlier reported SCN resistance QTL in this PI. Moreover, SSR and SNP molecular markers tightly linked to these QTL can be useful for the near-isogenic lines (NILs) development aiming to fine-mapping of these QTL regions and map-based cloning of SCN resistance candidate genes.  相似文献   

12.
Association mapping was undertaken in common wheat to identify markers associated with pre-harvest sprouting tolerance (PHST). For this purpose, a population of 242 wheat genotypes and 250 SSR markers were used. The population used consisted of diverse germplasm, which carried sufficient phenotypic variation for PHS for conducting association mapping. The population was found to be structured and stratified into 15 sub-populations; the tolerant and moderately tolerant wheat genotypes were distributed in all the sub-populations. This feature of the population along with other information on population structure was used in association mapping using both the available models, the general linear model (GLM) and the mixed linear model (MLM); hopefully, this minimized the rate of false positives. As many as 30 markers were found to be associated with PHST, 26 markers with GLM and 17 markers with MLM; 13 markers were detected using both the approaches. Only eight SSR markers associated with QTL for PHST were such, which were located within the marker intervals that were earlier reported to carry QTLs for PHST. The remaining 22 markers that were found to be associated with PHST could not be associated with any of the genomic regions known to carry QTLs for PHST, which are known to occur on all the 42 chromosome arms of wheat genome.  相似文献   

13.
Generation of novel genetic diversity for maximization of heterosis in hybrid production is a significant goal in winter oilseed rape breeding. Here, we demonstrate that doubled haploid (DH) production using microspore cultivation can simultaneously introgress favourable alleles for double‐low seed quality (low erucic acid and low‐glucosinolate content) into a genetically diverse Brassica napus genetic background. The DH lines were derived from a cross between a double‐low quality winter rapeseed variety and a genetically diverse semisynthetic B. napus line with high erucic acid and high glucosinolates (++ quality). Twenty‐three low‐glucosinolate lines were identified with a genome component of 50–67% derived from the ++ parent. Four of these lines, with a genome component of 50–55% derived from the ++ parent, also contained low erucic acid. Heterosis for seed yield was confirmed in test‐crosses using these genetically diverse lines as pollinator. The results demonstrate the potential of marker‐assisted identification of novel genetic pools for breeding of double‐low quality winter oilseed rape hybrids.  相似文献   

14.
Quantitative trait loci (QTL) analysis was conducted to identify QTL for seed yield and color retention following processing of a recombinant inbred line (RIL) black bean population. A population of 96 RILs were derived from the cross of black bean cultivars ‘Jaguar’ and 115M and evaluated in replicated trials at one location over 4 years (2004–2007) in Michigan. A 119-point genetic map constructed using simple sequence repeat (SSR), sequence related amplified polymorphism (SRAP), target region amplified polymorphism (TRAP) and phenotypic markers spanned fifteen linkage groups (LG) or 460 cM of the bean genome. Fourteen QTL for yield and color retention in four environments were identified by composite interval mapping on six linkage groups. A major QTL SY10.2J115 for seed yield was identified on LG B10 with additional QTL on B3, B5, and B11. Color retention following processing was associated with loci on B1, B3, B5, B8, and B11. 115M possessed positive alleles for yield, but negative alleles for color retention. Some QTL for yield and color retention co-localized with regions identified in previous studies while others, particularly for color retention, were unique. Additional QTL for agronomic and canning quality traits were detected and individual contributions to future black bean breeding are discussed.  相似文献   

15.
F. Dreyer    K. Graichen  C. Jung   《Plant Breeding》2001,120(6):457-462
Turnip yellows virus (TuYV) is responsible for a recognizable loss of yield in European winter oilseed rape cultivation. To map genes involved in TuYV resistance, a double haploid population was established by crossing a resynthesized rapeseed line (R54) as donor for TuYV resistance with an elite rapeseed line (‘Express’). Resistance was determined with 10 plants per line by double antibody sandwich‐enzyme‐linked immunosorbent assay. After screening 17 primer combinations (Pstl/Msel and EcoRI/Msel), 143 amplified fragment length polymorphism markers were mapped to 20 linkage groups representing 15 chromosomes of the rapeseed genome. Quantitative trait loci (QTL) were mapped using the composite interval mapping approach. As a result, one major quantitative trait locus was found on linkage group MS17, explaining up to 50% of the phenotypic variation. Because no other factors displaying a significant effect on the expression of resistance could be identified, a simple mode of inheritance for TuYV resistance is suggested, thus enabling marker‐assisted selection during rapeseed breeding.  相似文献   

16.
Rice blast is one of the major fungal diseases that badly reduce rice production in China and worldwide. Association mapping for blast resistance was performed on 226 japonica rice cultivars with 118 pairs of SSR markers. The blast resistance was evaluated by inoculating with two isolates, DB22 and DB77, at the tillering stage in 2013 and 2014, separately. A total of 31 associations with 17 different SSRs were significantly (P < 0.05) associated with blast resistance based on the mixed linear model (MLM), of which nine markers could be detected in both 2013 and 2014, including two markers that were simultaneously associated with the two isolates. Five of the nine stable markers were consistent with the genome regions identified by linkage mapping in previous reports. Phenotypic effects of each allele of the nine stable markers were compared, and 18 favourable alleles were identified. Five elite parental combinations were designed for improving blast resistance in rice. Our results demonstrate that association mapping can complement and enhance previous QTL information for marker‐assisted selection and breeding by design.  相似文献   

17.
In order to identify the markers linked to microspore embryogenic ability in Brassica crops, RAPD segregation analyses were performed in a microspore-derived (MD) population and a F2 population derived from F1between ‘Ho Mei’ (high responsive parent in microspore embryogenesis) and ‘269’ (low responsive parent) in Chinese cabbage, and between ‘Lisandra’ (high responsive parent) and ‘Kamikita’ (low responsive parent) in oil seed rape. After 230 and 143 primers were screened, a total of 148 and 52markers were detected to be polymorphic between the parents in Chinese cabbage and oilseed rape, respectively. Twenty-seven percent of the markers in the MD population showed a significant segregation distortion in both crops. Of the markers showing segregation distortion in the MD population, 71–75% of the markers followed the expected Mendelian segregation ratio in the F2 population. When the relationships between such distorted markers and microspore embryogenesis of the F2 population were examined, 7 and 3 markers were identified to be associated with embryogenic ability in Chinese cabbage and oilseed rape, respectively. These markers showed additive effects on embryo yields, and the plants having more alleles of the high responsive parent produced higher embryo yields. These markers maybe useful in marker-assisted selection for improving microspore responsiveness straits in Brassica crops. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Soybean is a major source of protein meal in the world. Soybean kunitz trypsin inhibitor (SKTI) protein is a responsible for the inferior nutritional quality of unheated or incompletely heated soybean meal. The primary objective of this research was to identify DNA markers linked to the Ti locus controlling presence and absence of kunitz trypsin inhibitor protein. Two mapping populations were developed. Population 1 was derived from a cross between cultivar Jinpumkong2 (TiTi) and C242 (titi). Population 2 was made from a mating between cultivar Clark (TiTi) and C242. The F1 plants were grown in the greenhouse to produce F2 seeds. Each F2 seed from F1 plants was analyzed electrophoretically to determine the presence of the SKTI protein band. One-thousand RAPD primers, 342 AFLP primer sets, and 35 SSR primers were used to map Ti locus in population 1 and 2. The presence of SKTI protein was dominant to the lack of a SKTI protein and kunitz trypsin inhibit protein band was controlled by a single locus. Twelve DNA markers (4 RAPD, 4 AFLP, and 3 SSR) and Ti locus were found to be genetically linked in population 1 consisted with 94 F2 individual plants. Three SSR markers (Satt409, Satt228, and Satt429) were linked with Ti locus within 10 cM. Satt228 marker was tightly linked with Ti locus. Satt228 marker was tightly linked within 0–3.7 cM of the Ti locus and may be useful in a marker assisted selection program.  相似文献   

19.
A population of 108 common bean recombinant inbred lines (RILs) (F5:6‐9), derived from a leafhopper (Empoasca fabae and E. kraemeri)‐susceptible cultivar (‘Berna’) and a leafhopper‐resistant line (EMP 419) was used to identify molecular markers genetically linked to leafhopper resistance and seed weight. Bulked segregant analysis and quantitative trait analysis identified eight markers that were associated with resistance to E. fabae, and four markers that were associated with E. kraemeri resistance. Three markers were associated with resistance to both species. A partial linkage map of the bean genome was constructed. Composite interval mapping identified quantitative trait loci (QTL) for resistance to both leaf hopper species on core‐map linkage groups B1, B3 and B7. QTL for seed weight were found close to the locus controlling testa colour and an α‐phaseolin gene.  相似文献   

20.
Good germination and seedling vigour are major breeding targets in winter oilseed rape (Brassica napus), because seedling vigour and prewinter crop establishment are closely associated with postwinter growth and yield. Here, we identified quantitative trait loci (QTL) related to germination, seedling vigour and seedling‐regulated hormones in a doubled haploid (DH) mapping population from a cross between winter oilseed rape parents with high vigour (Express 617) and low vigour (1012‐98). By phenotyping in a climate‐controlled glasshouse, we identified a total of 13 QTL on nine chromosomes for germination and seedling‐related traits at 7 and 14 days after sowing (DAS), explaining up to 11.2% of the phenotypic variation for seedling vigour. Forty‐seven metabolic QTL on 15 chromosomes were identified for auxin, abscisic acid (ABA) and dihydrophaseic acid (DPA) at 5 and 12 DAS, explaining up to 49.4% of phenotypic variation in seedling hormone composition. Multitrait QTL hot spots contribute to our understanding of the genetics and metabolomics of germination and seeding vigour in B. napus, and represent potential targets to breed high‐vigour cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号