首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Variations in physical and compositional bran characteristics among different sources and classes of wheat and their association with bread‐baking quality of whole grain wheat flour (WWF) were investigated with bran obtained from Quadrumat milling of 12 U.S. wheat varieties and Bühler milling of six Korean wheat varieties. Bran was characterized for composition including protein, fat, ash, dietary fiber, phenolics, and phytate. U.S. soft and club wheat brans were lower in insoluble dietary fiber (IDF) and phytate content (40.7–44.7% and 10.3–17.1 mg of phytate/g of bran, respectively) compared with U.S. hard wheat bran (46.0–51.3% and 16.5–22.2 mg of phytate/g of bran, respectively). Bran of various wheat varieties was blended with a hard red spring wheat flour at a ratio of 1:4 to prepare WWFs for determination of dough properties and bread‐baking quality. WWFs with U.S. hard wheat bran generally exhibited higher dough water absorption and longer dough mixing time, and they produced smaller loaf volume of bread than WWFs of U.S. soft and club wheat bran. WWFs of two U.S. hard wheat varieties (ID3735 and Scarlet) produced much smaller loaves of bread (<573 mL) than those of other U.S. hard wheat varieties (>625 mL). IDF content, phytate content, and water retention capacity of bran exhibited significant relationships with loaf volume of WWF bread, whereas no relationship was observed between protein content of bran and loaf volume of bread. It appears that U.S. soft and club wheat bran, probably owing to relatively low IDF and phytate contents, has smaller negative effects on mixing properties of WWF dough and loaf volume of bread than U.S. hard wheat bran.  相似文献   

2.
The possible use of phytase as a breadmaking improver has been tested in whole wheat breads by adding different amounts of fungal phytase. The effect of phytase addition on the fermentation stage and the final bread quality was analyzed. The phytase addition shortened the fermentation period, without affecting the bread dough pH. Regarding the whole wheat bread, a considerable increase of the specific bread volume, an improvement of the crumb texture, and the width/height ratio of the bread slice were obtained. An in vitro assay revealed that the improving effect of phytase on breadmaking might be associated with the activation of alpha-amylase, due to the release of calcium ions from calcium-phytate complexes promoted by phytase activity. As a conclusion, phytase offers excellent possibilities as a breadmaking improver, with two main advantages: first, the nutritional improvement produced by decreasing phytate content, and second, all the benefits produced by alpha-amylase addition can be obtained by adding phytase, which promotes the activation of endogenous alpha-amylase.  相似文献   

3.
Previous attempts have been made to obtain gluten‐free bread of acceptable quality for bread specific volume and crumb texture. Rice bread is a good alternative to celiac patients, but it has a very rapid staling during storage. Rice starch is more prone to retrograde during storage than wheat starch, and the special hydrophobic nature of the rice proteins requires specific enzymes to be used in the rice bread process. To retard rice bread staling, two different starch hydrolyzing enzymes (α‐amylase of intermediate thermostability and cyclodextrin glycoxyl transferase [CGTase]) have been tested and their effect on fresh bread quality and staling during storage has been evaluated. The addition of α‐amylase improved bread specific volume and crumb firmness but very sticky textures were obtained. The addition of CGTase produced even higher specific volume and similar crumb firmness with better texture. Both enzymes decreased the ability of amylopectin to retrograde during storage. The firming kinetic was lowered by the α‐amylase but not the limiting firmness, while the rice crumb from CGTase firmed quickly with a very short range of firmness increase. Results revealed that the starch hydrolysis brought about by the α‐amylase was not sufficient to retard staling. CGTase was considered a better antistaling agent because of its starch hydrolyzing and cyclizing activity.  相似文献   

4.
The influence of bran particle size on bread‐baking quality of whole grain wheat flour (WWF) and starch retrogradation was studied. Higher water absorption of dough prepared from WWF with added gluten to attain 18% protein was observed for WWFs of fine bran than those of coarse bran, whereas no significant difference in dough mixing time was detected for WWFs of varying bran particle size. The effects of bran particle size on loaf volume of WWF bread and crumb firmness during storage were more evident in hard white wheat than in hard red wheat. A greater degree of starch retrogradation in bread crumb stored for seven days at 4°C was observed in WWFs of fine bran than those of coarse bran. The gels prepared from starch–fine bran blends were harder than those prepared from starch–unground bran blends when stored for one and seven days at 4°C. Furthermore, a greater degree of starch retrogradation was observed in gelatinized starch containing fine bran than that containing unground bran after storage for seven days at 4°C. It is probable that finely ground bran takes away more water from gelatinized starch than coarsely ground bran, increasing the extent of starch retrogradation in bread and gels during storage.  相似文献   

5.
Preharvest sprouted wheat is often characterized by the falling number (FN) test. FN decreases in preharvest sprouted wheat as enzymatic degradation of the starchy endosperm increases. Wheat with FN values <250–275 is often discounted at the time of sale. The intent of this investigation was to evaluate the effects of debranning or pearling on the flour quality traits of five samples of wheat rated as low, med‐low, medium, med‐high, and sound that exhibited a range in FN values of 62–425 sec. Replicates of each sample were pearled for 30, 60, and 120 sec to remove portions of the outer bran layers before milling. FN was highly correlated with α‐amylase activity (r > ‐0.97) in the med‐low, medium, and med‐high FN sample sets as pearling time increased. FN increased in the medlow, medium, and med‐high FN samples by 128, 123, and 80%, respectively, after 120 sec of pearling. Pearling had no effect on flour FN of the low FN sample but α‐amylase activity was significantly decreased. Pearling had little or no effect on FN and α‐amylase activity of the sound sample. FN was moderately to strongly correlated with Rapid Visco Analyser (RVA), alveograph, and farinograph properties, and poorly correlated with protein content, flour yield, and bread loaf volume. In subsequent breadmaking studies, bread loaf volume, and crumb characteristics of flour from pearled wheat were not significantly different from loaf volume and crumb characteristics of flour from the corresponding nonpearled wheat.  相似文献   

6.
The iron dialyzability and uptake in relation to transit time through the stomach and small intestine was investigated using a dynamic in vitro gastrointestinal model in combination with Caco-2 cells. Three test meals were evaluated, consisting of lactic fermented vegetables with white (I) or whole meal bread (II) and of sourdough-fermented rye bread (III). Three transit times were tested (fast, medium, and slow transport). Iron dialyzability and absorption differed significantly between medium and slow transit time for meal I and between fast and medium transit time for meal III. For meal II, high in phytate, the iron dialyzability and absorption were low irrespective of transit time. The meals could be ranked with respect to iron dialyzability and uptake in the order I > III > II. Although the in vitro models used have limitations compared to in vivo experiments, the results suggest that an increased transit time may improve iron availability.  相似文献   

7.
《Cereal Chemistry》2017,94(5):834-839
The effect of bran prehydration on the composition and bread‐baking quality was determined using bran and flour of two wheat varieties. Bran was hydrated in sodium acetate buffer (50mM, pH 5.3) to 50% moisture at 25 or 55°C for 1.5 or 12 h. The soluble sugar content in bran increased with prehydration. Decreases in phytate and soluble fiber were observed in prehydrated bran, but insoluble fiber was not affected by prehydration. Likewise, free phenolic content decreased, and there was little change in the content of bound phenolics in prehydrated bran. The compositional changes were greater in the bran prehydrated at 55 than at 25°C, and for 12 than for 1.5 h. Addition of prehydrated bran delayed dough development of bran and flour blends and slightly increased water absorption of dough. A higher loaf volume of fresh bread and lower crumb firmness of bread stored for 10 days were observed in bread containing bran prehydrated at 25°C than in bread containing nonhydrated bran or bran prehydrated at 55°C. The prehydration of bran at 25°C before being incorporated into refined flour for dough mixing improved bread quality by altering bran compositional properties, allowing enough water to be absorbed by fibrous materials in the bran and preventing water competition among dough constituents.  相似文献   

8.
The effects of increasing levels of eight commercial fungal enzymes enriched in four types of activity (α‐amylase, protease, xylanase, or cellulase) on Japanese‐style sponge and dough bread quality and processing characteristics have been studied using a Canadian red spring wheat straight‐grade flour. At optimum levels, the enriched α‐amylases, xylanases, and cellulases increased loaf volume and bread score and reduced crumb firmness, while the proteases only reduced crumb firmness. For α‐amylases, xylanases, and cellulases, optimum levels for crumb firmness were obtained at higher levels of addition than for loaf volume and bread score. At high levels of addition, all four enriched enzyme types reduced loaf volume and bread score and increased crumb firmness relative to optimum levels, with the proteases showing the most dramatic effects. α‐Amylases and cellulases had little impact on dough mixing requirements, while xylanases increased and proteases greatly reduced mixing requirements. All enzymes at optimum levels reduced sheeting work requirements, resulting in softer more pliable dough. Optimum bread properties for α‐amylases, xylanases, and cellulases were attained within a relatively narrow range of dough sheeting work values. This similarity in response suggests a dominant common nonspecific mechanism for their improver action, which is most likely related to water release and the resulting impact on physical dough properties.  相似文献   

9.
The breadmaking potential of six oat varieties was compared with and related to their physicochemical properties. The most significant differences in the bread characteristics were found in the crumb structure. The varieties Buggy, Energie, and Zorro resulted in good bread quality with an even gas‐cell distribution characterized by a high number of relatively small pores. In contrast, Typhon, Ivory, and Nord 08/311 each had a large hole in the center of the crumb and accordingly poor quality. Breads differed little in specific volume, bake loss, and density. Rheological analysis revealed positive effects of low batter resistance to deformation on oat bread quality. On the basis of the physicochemical characterization, protein and fat contents were identified as key factors responsible for differences observed in bread quality, provided that starch damage and water‐hydration capacity were low. Additionally, high setback and final viscosity, as determined by Rapid Visco Analyser (RVA) analysis, positively affected oat bread quality. High α‐amylase activity was found to influence negatively the breadmaking performance of oats. Overall, protein, fat, dietary fiber content, starch pasting properties, and α‐amylase activity were responsible for the breadmaking properties of oat varieties.  相似文献   

10.
《Cereal Chemistry》2017,94(6):922-927
The degradation of inositol hexakisphosphate (IP6) was evaluated in whole meal wheat dough fermented with baker's yeast without phytase activity, different strains of Saccharomyces cerevisiae (L1.12 or L6.06), or Pichia kudriavzevii with extracellular phytase activity to see if the degradation of IP6 in whole meal dough and the corresponding bread could be increased by fermentation with phytase‐active yeasts. The IP6 degradation was measured after the dough was mixed for 19 min, after the completion of fermentation, and in bread after baking. Around 60–70% of the initial value of IP6 in the flour (10.02 mg/g) was reduced in the dough already after mixing, and additionally 10–20% was reduced after fermentation. The highest degradation of IP6 was seen in dough fermented with the phytase‐active yeast strains S. cerevisiae L1.12 and P. kudriavzevii L3.04. Activity of wheat phytase in whole meal wheat dough seems to be the primary source of phytate degradation, and the degradation is considerably higher in this study with a mixing time of 19 min compared with earlier studies. The additional degradation of IP6 by phytase‐active yeasts was not related to their extracellular phytase activities, suggesting that phytases from the yeasts are inhibited differently. Therefore, the highest degradation of IP6 and expected highest mineral bioavailability in whole meal wheat bread can be achieved by use of a phytase‐active yeast strain with less inhibition. The strain S. cerevisiae L1.12 is suitable for this because it was the most effective yeast strain in reducing the amount of IP6 in dough during a short fermentation time.  相似文献   

11.
The present investigation aims at understanding the mechanism of bread firming during staling. Changes in the starch fraction due to the addition of amylases and their influence on the texture of bread crumb were studied during aging and after rebaking of stale bread. Pan bread was prepared by a conventional baking procedure. The influence of three different starch‐degrading enzymes, a conventional α‐amylase, a maltogenic α‐amylase, and a β‐amylase were investigated. The mechanical properties of bread were followed by uniaxial compression measurements. The microstructure was investigated by light microscopy, and starch transformations were assessed by differential scanning calorimetry (DSC) and wide‐angle X‐ray powder diffraction. Firming of bread crumb and crystallization of starch are not necessarily in agreement in systems with added amylases. Reorganization of both starch fractions, amylopectin and amylose, and the increase of starch network rigidity due to increase of polymer order are important during aging. Starch‐degrading enzymes act by decreasing the structural strength of the starch phase; for instance, by preventing the recrystallization of amylopectin or by reducing the connectivity between crystalline starch phases. On the other hand, starch‐degrading enzymes may also promote the formation of a partly crystalline amylose network and, by this, contribute to a kinetic stabilization of the starch network. Based on the results, a model for bread staling is proposed, taking into account the biphasic nature of starch and the changes in both the amylose and amylopectin fraction.  相似文献   

12.
The effect of protein quality, protein content, bran addition, diacetyl tartaric acid ester of monoglycerides (DATEM), proving time, and their interaction on hearth bread characteristics were studied by size‐exclusion fast protein liquid chromatography, Kieffer dough and gluten extensibility rig, and small‐scale baking of hearth loaves. Protein quality influenced size and shape of the hearth loaves positively. Enhanced protein content increased loaf volume and decreased the form ratio of hearth loaves. The effect of protein quality and protein content was dependent on the size‐distribution of the proteins in flour, which affected the viscoelastic properties of the dough. Doughs made from flours with strong protein quality can be proved for a longer time and thereby expand more than doughs made from weak protein quality flours. Doughs made from strong protein quality flours tolerated bran addition better than doughs made from weak protein quality flours. Doughs made from high protein content flours were more suited for hearth bread production with bran than doughs made from flours with low protein content. DATEM had small effect on dough properties and hearth loaf characteristics compared with the other factors.  相似文献   

13.
Simulations of gastro-intestinal digestion, used to estimate in vitro iron and zinc availability, were performed on two kinds of samples: (i) samples with decreased phytate contents from whole pearl millet flour and (ii) nondephytinized or dephytinized samples from two pearl millet grain fractions, a decorticated fraction with low fiber and tannin contents and a bran fraction with high fiber and tannin contents. Iron and zinc in vitro availabilities of whole pearl millet flour were significantly improved by phytate degradation, even if the IP6 were not all degraded. Total dephytinization of decorticated fraction led to a marked increase in iron and zinc in vitro availabilities, but that of bran fraction had no effect on either iron or zinc in vitro availability. Even if phytates are involved in reducing in vitro iron and zinc availability in pearl millet flour, fibers and tannins play an important role by chelating a high proportion of iron and zinc in grain hulls.  相似文献   

14.
Whole wheat bread is an important source of minerals but also contains considerable amounts of phytic acid, which is known to impair their absorption. An in vitro trial was performed to assess the effect of a moderate drop of the dough pH (around 5.5) by way of sourdough fermentation or by exogenous organic acid addition on phytate hydrolysis. It was shown that a slight acidification of the dough (pH 5.5) with either sourdough or lactic acid addition allowed a significant phytate breakdown (70% of the initial flour content compared to 40% without any leavening agent or acidification). This result highlights the predominance of wheat phytase activity over sourdough microflora phytase activity during moderate sourdough fermentation and shows that a slight drop of the pH (pH value around 5.5) is sufficient to reduce significantly the phytate content of a wholemeal flour. Mg "bioaccessibility"of whole wheat dough was improved by direct solubilization of the cation and by phytate hydrolysis.  相似文献   

15.
In vitro digestions were performed on pearl millet flours with decreased phytate contents and on two dephytinized or nondephytinized pearl millet grain fractions, a decorticated fraction, and a bran fraction with low and high fiber and tannin contents, respectively. Insoluble residues of these digestions were then incubated with buffer or enzymatic solutions (xylanases and/or phytases), and the quantities of indigestible iron and zinc released by these different treatments were determined. In decorticated pearl millet grain, iron was chelated by phytates and by insoluble fibers, whereas zinc was almost exclusively chelated by phytates. In the bran of pearl millet grain, a high proportion of iron was chelated by iron-binding phenolic compounds, while the rest of iron as well as the majority of zinc were chelated in complexes between phytates and fibers. The low effect of phytase action on iron and zinc solubility of bran of pearl millet grain shows that, in the case of high fiber and tannin contents, the chelating effect of these compounds was higher than that of phytates.  相似文献   

16.
Cereals are introduced to infants between the ages of 4 and 6 months to supplement breast milk and follow-on formula. Our objectives were to examine the content and in vitro availability of Fe, Ca, and Zn from five commercially available infant cereals mixed with water or follow-on formula before and after dephytinization. We estimated the bioaccessibility by measuring the soluble or dialyzable mineral fraction resulting from in vitro gastrointestinal digestion of the sample. For most infant cereals analyzed, dephytinization increased the in vitro availability of iron and zinc. This finding was especially dramatic among infant cereals mixed with follow-on formula rather than with water. However, the liquid used for reconstitution did not always show a significant (p < 0.05) interaction with phytase addition and in vitro mineral availability. The results of this study indicate that adding follow-on formula to infant cereals does not improve the bioaccessibility of iron, calcium, and zinc, despite the increase in mineral content it implies. Results obtained also showed that mineral solubility and dialyzability do not always follow parallel trends.  相似文献   

17.
In this study, the influence of phytase-producing Bifidobacterium strains during the breadmaking process (direct or indirect) on final bread Fe dialyzability and ferritin formation in Caco-2 cell as a measure of cell Fe uptake was assessed. The addition of bifidobacteria significantly reduced the InsP(6) + InsP(5) concentrations compared to control samples. Fe-dialyzable contents for samples with bifidobacteria were increased 2.3-5.6-fold, and dialyzability was improved by 2.6-8.6% compared to controls. However, this was not reflected in an increase of Fe uptake by Caco-2 cells as was predicted by the phytate/Fe molar ratios. The results demonstrated the usefulness of phytase-producing bifidobacteria to reduce phytate during the breadmaking process and to increase Fe accessibility, although the effects appeared to be still insufficient to improve Fe bioavailability in Caco-2 cells. Further refinement of the use of phytase-producing bifidobacterial strains and/or breadmaking technological processes is deserved for improving Fe uptake.  相似文献   

18.
Different bran pretreatments and bran cultivars were investigated with the aim of alleviating the adverse effects caused by bran addition in brown (fiber-rich) bread. Three different bran treatments: hydration, wet heat, and wet oxidation, all hydrate bran before its addition to other breadmaking ingredients. Four different bran cultivars were investigated. All treatments improved brown bread quality significantly, resulting in larger, softer loafs. All treatments resulted in an increase in the water absorption of brown bread doughs and a decrease in potentially oxidizable substances (POS) in brans. It is suggested that prehydration treatment activates bran lipoxy-Different bran pretreatments and bran cultivars were investigated with the aim of alleviating the adverse effects caused by bran addition in brown (fiber-rich) bread. Three different bran treatments: hydration, wet heat, and wet oxidation, all hydrate bran before its addition to other breadmaking ingredients. Four different bran cultivars were investigated. All treatments improved brown bread quality significantly, resulting in larger, softer loafs. All treatments resulted in an increase in the water absorption of brown bread doughs and a decrease in potentially oxidizable substances (POS) in brans. It is suggested that prehydration treatment activates bran lipoxygenase which oxidizes POS in bran, reducing bran's contribution to brown bread dough. A further reduction of these substances is caused by a washout effect of the treatments. On average across all bran cultivars, the hydration and wet oxidation treatments improved brown bread quality significantly more than the wet heat treatment, which also reduced the bran POS significantly less than the other treatments, probably due to its rapid inactivation of lipoxygenase. The bran cultivars differed significantly in their effects on brown bread quality, suggesting that bran selection according to cultivar should be considered.  相似文献   

19.
The effects of increasing levels of eight commercial enzymes representing four types of fungal hydrolytic enzymes (α‐amylases, proteases, xylanases, and cellulases) on Canadian short process (CSP) bread quality and processing characteristics were studied. Addition of all enzymes types at optimum levels resulted in increased loaf volume and bread score and softer crumb. All four types of enzymes appeared to be equally effective in improving bread properties compared with the controls. At high levels, greater tolerance to the addition of xylanases and cellulases compared with the addition of α‐amylases and proteases was apparent. Mixing requirements increased with increasing levels of α‐amylase but no change was apparent with the other enzymes. Addition of all enzymes reduced sheeting work requirements, indicating a dough softening effect. Optimum bread properties for all enzymes were attained within a relatively narrow range of dough sheeting work values, which presumably correspond to optimum dough handling properties. The similarity in response of bread and sheeting characteristics at optimum levels of addition for all four enzyme types suggests a common nonspecific mechanism for improver action that is probably related to water release and the resulting impact on physical dough properties.  相似文献   

20.
Thermostable mutant α‐amylases (21B, M111, and M77) with various degrees of thermostability were purified from Bacillus amyloliquefaciens F and used as improvers for breadmaking. Test baking with the mutant enzymes was conducted using the long fermentation sponge‐dough method. Addition of an appropriate amount of mutant α‐amylases to the ingredients distinctly increased the specific volume of the bread and improved the softness of breadcrumb as compared with the addition of Novamyl (NM), an exo‐type α‐amylase. M77 was the most effective in retarding the staleness of breadcrumb. The softness of breadcrumb during storage, however, was not correlated with the thermostability. All mutant α‐amylases weakened the mixing property of the dough, whereas they strengthened the property of fermented dough. Especially, M77 and NM had different effects on the dough properties, but their bread qualities were similar to each other. The strong tolerance of M77 dough to the long baking process might be due to the production of hydrolyzed starches, oligosaccharides in the range of maltopentaose to maltohexaose, as compared with NM. Therefore, in the light of present findings, these mutant α‐amylases are possible substitutes for NM as bread improvers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号