首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We assessed the impact of forest management on woodpecker community structure sub-Himalayan dipterocarp sal (Shorea robusta) forests. We selected eight sites representing four management-based ‘forest types’ (natural unworked sal, old- and young managed sal, and teak plantations). At each site, bird surveys were conducted along 2-km-long transects, 20 times during breeding and non-breeding seasons. Habitat characteristics were enumerated using circular and belt plots. Species composition across forest types was compared using multi-response permutation procedures. Indicator analysis identified woodpecker species preferring particular forest types. Biomass, abundance, and mean species richness of woodpeckers were highest in natural sal, intermediate in managed sal, and lowest in teak. There were apparent differences in woodpecker densities between seasons. Densities were higher in breeding season than non-breeding season for natural sal, while the opposite was true for managed sal. Woodpecker species composition significantly differed across forest types. The four largest species, including grey-headed (Picus canus) and greater yellownape (Picus flavinucha) that were identified as indicators, predominated natural sal but were scarce in other types. At a broader level, mean species richness of woodpeckers strongly indicated mean richness of other avifauna during breeding season. Our study suggests that forest management has significantly altered the sub-Himalayan woodpecker community structure. Managed sal forests, particularly teak plantations, are largely unable to support the original woodpecker assemblage during breeding season, although they provide foraging grounds during non-breeding season.  相似文献   

2.
We sampled the carabid beetles in 22 forests managed by six different silvicultural systems, defined by treatment and tree species composition: even-aged conifer, even-aged beech, even-aged oak, uneven-aged conifer, uneven-aged beech and group mixed (beech + conifer). In each of these forests, we placed pitfall traps in young, medium-aged and mature stands (3 stages). We evaluated the effect of treatment, tree species composition, silvicultural system, stage and habitat type (silvicultural system + stage) on indicators of community conservation value and ecological structure. The species composition and the ecological structure of carabid beetles of the managed stands were then compared to that of nine unmanaged stands (without tree exploitation). In the managed forests, species richness was highest in large young stands (3-10 years old) and in forests managed by even-aged systems (with large clear-cuts), mainly due to eurytopic and opportunist carabid species with high dispersal abilities. Oak and beech, uneven-aged, and mature stands were mainly inhabited by typical forest species, and even-aged conifer stands mainly by ubiquitous species. Several typical forest species recorded in unmanaged stands were lacking from the managed forests. Large scale clear-cutting allows open-habitat species to enter the forest, which increases the species richness at a landscape level but can disfavour typical forest species by competition. Long rotations should be implemented and more areas left unmanaged in Belgium, in order to help typical forest species to re-colonise managed forests.  相似文献   

3.
New conservation-oriented forestry aims to maintain intact populations of forest organisms by improving the conservation value of managed forests and providing protected areas. We tested the conservation value of treatments of dead wood for assemblages of early successional saproxylic beetles. In nine areas in northern Sweden, we selected one clear-cut, one mature managed forest and one reserve. In 2001-2002, we placed three blocks of spruce logs, each containing control, burned and shaded logs and a high stump (“snag”) at each site. Saproxylic beetles emerging from the dead wood were collected using emergence traps and beetles flying close to it were collected using flight-intercept traps. After one year of exposure, assemblage composition was examined, with respect to nutritionally-defined functional groups, red-listed species and fire-favoured species. Experimental snags were most complementary to control logs, supporting different assemblages of cambium consumers and fungivores and supporting more red-listed individuals. Burned logs supported depauperate assemblages, particularly with respect to cambium consumers, while shading of logs affected assemblages of fungivores, but only on clear-cuts. Despite containing less dead wood, managed forests provided valuable habitat, supporting similar assemblages of saproxylic beetles to reserves. Most functional groups were less abundant on clear-cuts than in older forests, but fire-favoured species were more common on clear-cuts, suggesting that clear-cuts may support assemblages of species associated with natural disturbances, if suitable substrates are available. Utilization of logs by saproxylic beetles changes over time, so long-term monitoring of our experimental logs will determine their lifetime conservation value.  相似文献   

4.
Although natural disturbance has been widely adopted as a template for forest management that protects biodiversity, this hypothesis has not been adequately tested. We compared litter-dwelling arthropod assemblages (Coleoptera: Carabidae and Staphylinidae; Araneae) in aspen-dominated stands originating as clear-cuts or wildfires across three age classes (1-2, 14-15, and 28-29 years old) to test whether the post-harvest and post-fire assemblages converged following disturbances, and to compare faunal succession. These findings were compared to data about epigaeic arthropods in old and mature pyrogenic aspen stands (>70 years old) to determine whether diversity and community composition of arthropods from the younger age-classes approached what may have been typical pre-disturbance conditions. The resulting data-set of almost 27,000 arthropods and 230 species showed convergence in most taxa, and some general similarities between 28- and 29-year-old stands and old and mature stands. However, not all taxa responded similarly, and faunal succession following clear-cutting appeared to progress more rapidly than following wildfire. Rarefaction-estimated diversity was elevated in 1-2-year-old stands, compared to unharvested stands, reflecting a mix of closed-canopy and open-habitat species. Non-metric multi-dimensional scaling ordinations showed that samples from young wildfire disturbed stands (1-2 years old) included more variable assemblages than all other study sites, and contained species that may depend on unique post-fire habitat characteristics. The fauna of old and mature stands exhibited low diversity, but contained species with limited dispersal abilities, and species tied to old-growth habitats such as dead wood. Harvesting systems that do not allow adequate recovery following a first harvesting pass, or do not maintain microhabitat features associated with older fire-origin forests, may threaten persistence of some elements of boreal arthropod faunas.  相似文献   

5.
Endemic Collembola, privileged bioindicators of forest management   总被引:1,自引:0,他引:1  
Our study compared the soil collembolan community at three semi-natural sites (a beech forest, a beech–fir forest and a fir stand) and three managed sites (Norway spruce, beech–fir and fir). Collembola were extracted from a total of 60 samples with a Berlese–Tullgren funnel, counted and identified to species level. A total of 7187 specimens, representing 51 species and 37 genera, were collected. There were significant differences between managed and natural forests (t-test, P=0.000). The communities and their population densities were significantly lower in the managed site: 51 species with 708,498 ind m−2 in the semi-natural forests to 36 species and 306,042 ind m−2 in the managed stands. The endemic component suffered a particularly severe decrease in species richness and abundance (57% and 71% lower in the managed forests, respectively). These species with narrow distribution and small local populations are doubly vulnerable to alterations of environmental conditions. They are very sensitive to loss of their natural habitat owing to human intervention and thus represent useful indicators of tolerance to environmental stress. We highlight the need to take endemic species into consideration in studies on the conservation of biodiversity because they are most at risk of extinction. Semi-natural forests are refuges for endemic species and should be protected.  相似文献   

6.
This study provides the first assessment of carabid beetle diversity in a natural forest context that encompasses a complete black spruce (Picea mariana) natural succession. Boreal forest conservation has been based on several assumptions about forest age that only consider species richness without accounting for species composition. It has also been guided by studies of incomplete chronologies that do not include naturally burned or old-growth stages. Twenty-one forest stands of different ages following fire - from recently burned to old-growth stages (0-340 years of age) - were sampled, revealing a strong relationship between age of forest and diversity of Carabidae. Over time, species richness followed a parabolic U-shaped pattern both with observed (Obs) and predicted richness (ACE). Chronological clustering identified four groups of species in the succession: the ‘burned’ group characterized 0-2-year-old forests, ‘regenerating’ (21-58 year), ‘mature’ (70-170 year) and ‘old-growth’ (177-340 year). The time spans corresponding to each of these assemblages lengthen with age of forest at an exponential rate. Ward’s and K-means (clustering without constraint) provided support for the four assemblages but showed variation between individual successions, particularly for the ‘regenerating’ assemblage, identified as the most heterogeneous. The IndVal method identified characteristic species in every stage of the succession, particularly Sericoda spp. in the burned stage and Dromius piceus and Platynus mannerheimii associated with old-growth stands. The results obtained here show that diversity of Carabidae varies in primeval conditions according to age of forest and such variation should be taken into account when conservation issues are involved.  相似文献   

7.
Staphylinid beetle assemblages from coniferous foothills forest in west-central Alberta, Canada were studied via pitfall trapping to examine the effects of stand age and possible edge effects. Sites included a chronosequence of stands from 1 to 27 years post-harvest, and four types of mature forest that had not been disturbed by fire for at least 80 years. In all, 19 sites were sampled between 1989 and 1991. A total of 98 species were identified, nine of which are reported for the first time in Alberta. Staphylinids were more abundant in mature forest stands but assemblages were more diverse in regenerating stands. Thirty-four rove beetle species showed significant indicator value for particular stands or groups of stands, including mature forest, young forest, and open ground specialists. After harvesting, the catch rate of many forest species decreased dramatically, and open ground species were more commonly collected. Populations of some forest species remained active on logged sites for one or 2 years before disappearing. As stands regenerated, they were colonized by species characteristic of young stands, but true forest species were found only in older unharvested stands. The beetle assemblages from regenerating stands became more similar to those from mature stands as they aged, but still differed considerably from them 27 years after harvesting. Transects across forest-clearcut edges revealed a significant beetle response to habitat edges. Staphylinids assemblages were compared to the ground beetle (Carabidae) assemblage sampled via the same pitfall trapping regime. Mature forest specialists are threatened by fragmentation and loss of habitat. In order to conserve these beetle assemblages, forest managers should retain adequate patches of older successional stages on working landscapes.  相似文献   

8.
Forest management in temperate and boreal regions is often based on a strong foundation of applied ecological research. Increasingly, this has allowed the needs of saproxylic (dead wood associated) insects to be addressed. However, there has been very little equivalent research in tropical forests, where saproxylic insect faunas are likely to be much richer and where forestry is usually subject to weaker environmental controls. This study compares the saproxylic beetle fauna of old-growth, selectively logged and regrowth rainforest in the Daintree lowlands of northeastern Queensland, Australia. Old-growth levels of abundance, species richness, assemblage composition and guild structure were not maintained in logged and regrowth forest, suggesting that intact assemblages may not survive in the long-term in managed tropical rainforest. However, retaining a continuous supply of commercially overmature trees in the managed stand may prevent a repeat of the widespread extinctions of saproxylic insects witnessed in temperate and boreal forest regions.  相似文献   

9.
The extent to which secondary forests occupying degraded and abandoned lands provide suitable habitat for forest-adapted species is an important conservation issue in times of vanishing old growth forests. We used ants (Hymenoptera: Formicidae), a functionally important and diverse group of invertebrates, to investigate the recovery of soil taxa during secondary forest succession in the Atlantic Forest of Southern Brazil. We compared the resilience of epigeic vs. hypogeic ant assemblages. For this purpose we established 27 sites that encompassed a chronosequence from pastures to old growth forests on two contrasting soil types. Our results are based on a collection of 35 508 individuals in 40 genera.Richness and composition of ant assemblages in secondary forests have recovered slowly and have not approached conditions typical of old growth forests. The distribution of genera along the successional stages was arranged in a nested pattern where ant genera of younger successional stages were a subset of genera present in older stages. Edaphic conditions had no influence on the recovery process. Overall, richness of ants was lower at study sites with water-logged soils than at sites where soils did not exhibit hydromorphic properties. The hypogeic ant assemblage recovered more slowly than the epigeic assemblage.Our results show that secondary forests do not act as refuges for many forest-adapted animals which are currently restricted to discontinuous patches of old growth forest in the highly endangered Atlantic Forest of Brazil. Moreover, estimated recovery times of 50 to several hundred years suggest it would take much longer than previously presumed for complete recolonization.  相似文献   

10.
The habitat requirements and effects of forest management on insects belonging to higher trophic levels are relatively unknown in forest ecosystems. We tested the effect of forest successional stage and dead wood characteristics on the saproxylic parasitoid (Hymenoptera, Ichneumonoidea) assemblage in boreal spruce-dominated forests in northern Sweden. Within each of nine areas, we selected three sites with different management histories: (1) a clear-cut (2) a mature managed forest and (3) an old-growth forest. Parasitoids were collected in 2003 using eclector traps mounted on fresh logs, which were either untreated (control), burned, inoculated with fungi, or naturally shaded, and on artificially-created snags.Both forest type and dead wood characteristics had a significant effect on parasitoid assemblages. Grouped idiobionts and some species, such as Bracon obscurator and Ontsira antica, preferred clear-cuts, while others, such as Cosmophorus regius (Hym., Braconidae) and other koinobionts, were associated with older successional forest stages. No single dead wood substrate was sufficient to support the entire community of parasitoids in any forest type, even when the regular host was present. In particular, snags hosted a different assemblage of species from other types of dead wood, with parasitoids of Tetropium spp. such as Rhimphoctona spp. (Hym., Ichneumonidae) and Helconidea dentator (Hym., Braconidae) being abundant. These results indicate that a diversity of dead wood habitats is necessary to support complete assemblages of beetle-associated parasitoids from early successional stages of dead wood and that parasitoids may be more sensitive to habitat change than their hosts.  相似文献   

11.
Saproxylic Coleoptera are diverse insects that depend on dead wood in some or all of their life stages. In even-aged boreal forest management, remnant habitats left as strips and patches contain most of the dead wood available in managed landscapes and are expected to act as refuges for mature forest species during the regeneration phase. However, use of remnant habitats by the saproxylic fauna has rarely been investigated. Our objective was to characterize the saproxylic beetle assemblages using clearcuts and forest remnants in western Québec, Canada, and to explore the effects of forest remnant stand characteristics on saproxylic beetle assemblages. We sampled both beetle adults and larvae, using Lindgren funnels and snag dissection, in five habitat locations (clearcuts, forest interiors of large patches, edges of large patches, small patches and cut-block separators) from three distinct landscapes. Adult saproxylic beetles (all feeding guilds combined) had significantly higher species richness and catch rates in small patches compared to forest interiors of large patches; the phloeophagous/xylophagous group had significantly higher species richness only. Small patches, cut-block separators and edges of large patches also had the highest snag density and basal area, increasing habitat for many saproxylic beetles. No significant differences in density of saproxylic larvae were found between habitat patches, but snag dissection nevertheless suggests that snags in forest remnants are used by comparable densities of insects. Saproxylic beetles appear to readily use habitat remnants in even-aged managed landscapes suggesting that forest remnants can insure the local persistence of these species, at least in the timeframe investigated in our study.  相似文献   

12.
Effects of clear-cutting on biodiversity have mainly been studied in the short-term, although knowledge of longer term effects are often more important for managers of forest biodiversity. We assessed relatively long-term effects of clear-cutting on litter dwelling land snails, a group with slow active dispersal and considered to be intolerant to microclimate changes. In a pair wise design we compared snail abundance, species density, and species composition between 13 old seminatural stream-side stands and 13 matched young stands developed 40-60 years after clear-cutting. Using a standardized semi-quantitative method, we identified all snail specimens in a 1.5 l subsample of a pooled litter sample collected from small patches within a 20 × 5 m plot in each stream-side stand. From the young stands a mean of 135 shells and 9.5 species was extracted which was significantly higher than the 58.1 shells and 6.9 species found in old forests. Only two of the 16 species encountered showed a stronger affinity to old than to young forests. In short-term studies of boreal stream-side forests land snail abundance is reduced by clear-cutting. Our results indicate that this decline is transient for most species and within a few decades replaced by an increase. We suggest that local survival in moist stream-side refugia makes the land snails able to benefit from the higher pH and more abundant non-conifer litter in young than in old boreal forests. Our results highlight the importance of longer term studies as a basis for management guidelines for biodiversity conservation.  相似文献   

13.
We show how Chilean forest bird species richness, abundance and guild structure changes as a function of structural properties of forest stands. We surveyed bird assemblages in two old-growth (>200 years), two mid-successional (30-60 years), and two early-successional forest stands (4-20 years), from November 1999 to September 2000, on Chiloé Island, southern Chile (42°S). Birds were grouped into four habitat-use guilds: large-tree users, vertical-profile generalists, understory species, and shrub-users that occasionally use forests. We recorded a total of 24 bird species: 21 in old-growth, 14 in mid-successional and 16 in early-successional stands. Large-tree users and understory birds were most abundant in old-growth stands, vertical-profile generalists were common in both old-growth and mid-successional stands, and shrub-users were only common in early-successional stands. For nine bird species we found significant relationships between their local abundance and forest structural elements. Higher bird densities in old-growth forests were associated with greater availability of canopy emergent trees, snags, logs and understory bamboo cover in this habitat. Accordingly, bird species diversity in forest stands can be predicted by the presence of these structural elements, and forests should be managed to conserve structural elements that create favorable habitat for bird species in order to prevent future species losses due to logging practices.  相似文献   

14.
In some areas of the tropics forests are recovering on abandoned cattle pastures. These secondary forests may be important habitats for conserving biodiversity, but we know little about their species composition over the long term. We studied herpetofaunal community changes in a 40 years chronosequence of forest succession on abandoned pastures in Puerto Rico. Twelve submontane sites (100-250 masl) represented four forest recovery stages: pasture, young (1-5 years after abandonment), intermediate (10-20 years), and advanced (40 years). Among these stages we analyzed the relationship of forest structure, microclimate, and herpetofaunal community structure. During succession total forest height increased, new strata of vegetation appeared in the understory, and the forest gained heterogeneity and complexity. Microclimate changed with changes in the physiognomy and structure of the vegetation. Microclimatic shifts were more dramatic in forest <20 years since abandonment. During 1 year we observed 7991 individuals of thirteen reptilian species (60% of observations) and six anuran species. Herpetofaunal richness was similar among stages, but the total abundance increased through succession. Relative abundance of anurans and reptiles was similar between stages, but species dominance changed with succession. Forest >20 years old resembles mature forest in some structural characteristics important to herpetofauna and can provide habitat for forest herpetofauna in disturbed areas.  相似文献   

15.
Species diversity of polypores (Basidiomycetes) was compared between woodland key habitats (WKHs) and old-growth forest controls in boreal forests in eastern Finland. WKHs, which were set aside for their rich vascular plant flora, turned out not to be hot spots for the species richness of polypores, nor did their species composition represent the overall species richness of the area. Differences in the total volume of CWD, tree species composition and several CWD qualities were reflected as differences in the species assemblages between the groups. The results indicated that only a fraction of the overall polypore diversity was represented in the small-size WKHs (<0.5 ha), and the protection of red-listed and indicator polypores in WKHs was random. However, rare old-growth forest indicators were found even in small-size WKHs, if the CWD quality was appropriate for them. Nevertheless, our study does not answer the question whether the occurrences of rare and red-listed species will survive in small-size WKHs surrounded by altered environments such as clear-cuts, because our study sites were located in undisturbed areas. The results stress the importance to protect typical old-growth forest patches with high CWD volume and quality in boreal forests.  相似文献   

16.
We investigated oribatid mite community diversity and structure in the managed conversion of coniferous stands into semi-natural montane forests that are composed of a small-scale mosaic formed by different age classes of silver fir, Norway spruce and European beech in the southern Black Forest area, South-Western Germany, using the space-for-time substitution method. The core hypothesis was that changing tree composition and management practice will affect functional structure and diversity of oribatid mite community through changing substrate quality and litter diversity. Three forest districts were selected within the research region. Four stand types representing the major stages of forest conversion were selected within each forest district: (i) even-aged spruce monocultures, (ii) species enrichment stage, (iii) forest stand structuring stage, at which fur and beech and other deciduous trees penetrate the upper storey of the forest and (iv) a diverse continuous cover forest respectively. Oribatid mite abundance, species richness and composition, biomass, ecomorphs and feeding groups relative abundance were determined. An overall increase in species richness moving from the spruce monoculture to a continuous cover forest was detected. However, the herbivorous and litter-dwelling mites were most sensitive to forest conversion demonstrating significant differences in abundance between conversion stages. Almost all changes in the oribatid community were associated with the properties of the changing litter layer. Abundance of soil-dwelling mites remained very stable what is in contradiction with the response of the other soil fauna groups found at the same sites. Overall oribatid community seemed to be more dependent on total microbial biomass than fungi. However, observed effects were overshadowed by considerable district-induced differences.  相似文献   

17.
Climate warming is projected to increase the frequency and severity of wildfires in boreal forests, and increased wildfire activity may alter the large soil carbon (C) stocks in boreal forests. Changes in boreal soil C stocks that result from increased wildfire activity will be regulated in part by the response of microbial decomposition to fire, but post-fire changes in microbial decomposition are poorly understood. Here, we investigate the response of microbial decomposition to a boreal forest fire in interior Alaska and test the mechanisms that control post-fire changes in microbial decomposition. We used a reciprocal transplant between a recently burned boreal forest stand and a late successional boreal forest stand to test how post-fire changes in abiotic conditions, soil organic matter (SOM) composition, and soil microbial communities influence microbial decomposition. We found that SOM decomposing at the burned site lost 30.9% less mass over two years than SOM decomposing at the unburned site, indicating that post-fire changes in abiotic conditions suppress microbial decomposition. Our results suggest that moisture availability is one abiotic factor that constrains microbial decomposition in recently burned forests. In addition, we observed that burned SOM decomposed more slowly than unburned SOM, but the exact nature of SOM changes in the recently burned stand are unclear. Finally, we found no evidence that post-fire changes in soil microbial community composition significantly affect decomposition. Taken together, our study has demonstrated that boreal forest fires can suppress microbial decomposition due to post-fire changes in abiotic factors and the composition of SOM. Models that predict the consequences of increased wildfires for C storage in boreal forests may increase their predictive power by incorporating the observed negative response of microbial decomposition to boreal wildfires.  相似文献   

18.
Mycetophilids is a species-rich insect group for which the ecological requirements in temperate forests are poorly understood. This study of mycetophilids was based on trap samples from 15 oak-dominated sites in the boreonemoral zone of southern Sweden. Species richness and composition were analysed in relation to environmental variables at a local and at larger scales (multiple regression), and compared to results from similar studies in spruce-dominated sites in the boreal zone of Norway (PCA and two-sample t tests). Regressions showing a dominance of regional factors over local in-site variables agree with species-richness models assuming that local communities most often are unsaturated. Precipitation (inter-correlated with elevation) was the strongest factor for explaining the variation in species-richness, which is consistent with previous results indicating that mycetophilids are disfavoured by drought. In addition to precipitation, the area of mixed forest with high biodiversity values (woodland key habitats and protected areas) was a positive factor for species-richness, probably because such habitats combine elements of both coniferous and deciduous forests. PCA ordination revealed a clear separation of the species composition between boreal and boreonemoral forests. Species-richness in boreal forest was significantly higher than in boreonemoral forest, indicating a preference for boreal habitats in many of the species. For mycetophilids and other drought-sensitive insects, it is suggested that (partial) cutting in some dense successional oak stands should be avoided, and that some invading spruces should be tolerated.  相似文献   

19.
Throughout the northern hemisphere old forests with high abundance of dead wood are rare features in most landscapes today, and the loss of dead wood constitutes a serious threat to the existence of many species. This study, using field surveys and dendrochronology, examines the relationship between wood-inhabiting fungi and past forest utilisation along a gradient of early logging activity. Data were collected in three late-successional Scots pine forests in northern Sweden. Nonmetric Multidimensional Scaling (NMS) was then used to assess differences in species composition among the forests. Our results show that minor forest logging (22-26 cut stumps ha−1) carried out a century ago may have continuing effects on forest characteristics, including dead wood dynamics and the wood-inhabiting fungal community - especially the abundance of red-listed species. The most important effects are lower numbers of logs in early and intermediate stages of decomposition. Additionally, numbers of species (including red-listed species) can be high in forests that have been subject to low levels of logging. Overall, the high species numbers recorded in this study (= 60-87) show that old, low-productivity pine forests harbour a considerable fraction of the total diversity of Basidiomycetes in northern Fennoscandian boreal forests. We conclude that the formation of a framework linking forest history and environmental data is vital for understanding the ecology and formulating goals for future management of these forests.  相似文献   

20.
Investigations to determine stable or source-sink animal population dynamics are challenging and often infeasible for most species due to the time and expense of mark-recapture studies and the challenge of life histories attributes that result in low detectability and low recapture probabilities. Often, managers rely solely on occupancy or relative abundance patterns to assess a species’ sensitivity to environmental changes. Greater insight into population-level responses to environmental change can be gained by consideration of a combination of readily obtainable metrics, including occupancy, relative abundance, demographic structure and body condition. We examined how these metrics can improve our understanding of population-level responses to forest disturbance, using datasets for two exemplar species of terrestrial salamanders resident to the Pacific Northwestern USA. We compared population metrics for the Del Norte salamander (Plethodon elongatus) and the Siskiyou Mountains salamander (Plethodon stormi) across the seral continuum represented by four forest age classes: pre-canopy, young, mature, and old-growth. We compared these data with those collected from reference stands in mature (P. stormi) or old-growth (P. elongatus) forest containing robust populations. P. elongatus was twice as common as P. stormi. Both occupancy and salamander counts were lowest at pre-canopy sites for both species. Although there were numerous P. elongatus detections in young forests, higher proportions of these individuals were juveniles and sub-adults when compared to populations in late-seral forests. We found a negative relationship between the proportion of immature animals and total counts at a site, indicating that the high proportion of young animals in young forest stands is likely due to dispersal of young salamanders from nearby source populations and/or low survival of adult animals in young forests. We also found reduced body condition of P. stormi populations in young forests. Our results suggest that there are costs to populations occupying early seral forests, such as skewed age class structure and reduced body condition that are indicative of sink populations. Consideration of population-level metrics beyond occupancy and relative abundance can provide important insights when assessing a species’ sustainability in managed forest landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号