首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil respiration was measured with the enclosed chamber method in an ungrazed Leymus chinensis steppe during the growing seasons of 2001 and 2002. Soil respiration rate (RS) was significantly influenced by air temperature (T) at the diurnal scale, and could be described by Van't Hoff's equation (RS = R10 exp(β(T − 10))). At the seasonal scale, the normalized soil respiration rate at 10 °C (R10) was mainly controlled by soil water content (R2 = 0.717, P < 0.001), while the sensitivity of soil respiration to temperature (Q10) was partially affected by absolute growth rate (R2 = 0.482, P = 0.004). Thus, soil respiration could be described as RS = (20.015W − 84.085) (0.103AGR + 1.786)(T−10)/10 during the growing seasons, integrating soil water content (W) and absolute growth rate (AGR) into the temperature-dependent soil respiration equation. It was validated by the observed soil respiration rates in this study (R2 = 0.890, P < 0.001) and observations from near-field experiment (R2 = 0.687, P = 0.011). It implied that accurately evaluating annual soil respiration should include the effects of plant biomass production and other abiotic factors besides air temperature.  相似文献   

2.
Sclerotia are the primary over wintering inoculum of Sclerotinia sclerotiorum (Lib.) de Bary. The effects of tillage on the primary inoculum are not well understood. The purpose of this research was to study sclerotial viability over time and between burial depths in soil, to identify bacteria colonizing and degrading the sclerotia, and determine whether these bacteria may be utilized as biological control agents. Correlation analysis indicated that a significant negative relationship existed between sclerotial viability and elapsed temporal factors (R2=−0.68, P<0.0001), and depth of burial (R2=−0.58, P<0.0001). After twelve months, sclerotia on the soil surface had the highest viability (57.5%), followed by those at the 5 cm depth (12.5%), and only 2.5% of those placed at the 10 cm depth remained viable. A significant negative relationship between sclerotial viability and bacterial populations also existed (R2=−0.60, P<0.0001). Two hundred and sixty-eight bacteria were isolated from sclerotia, 29 of which showed strong in vitro antagonism to the mycelial growth of S. sclerotiorum. Biodiversity of the inhibitory bacterial isolates was minimal on sclerotia from the soil surface and within all depths sampled at three months (i.e. in January). All burial depths within the April and July sampling dates produced bacterial diversities that were distinct from each other.  相似文献   

3.
The addition of leaf litter to soil influences both the nutrients and polyphenols of soil. It is likely that contrasting nutrient and polyphenolic composition of different plant litters may affect plant growth, mycorrhizal and soil arthropod communities. We report results from a microcosm experiment of effects of incorporation of three single leaf litter species and a mixture of all three on pitch pine seedling growth, their ectomycorrhizal community and soil arthropod community. The three litter species (pine, oak and huckleberry) represent co-dominant species within the New Jersey pine barrens ecosystem. We show that the leaf litters have different composition of nutrients and polyphenols, with rooting matrix containing pine litter having lower inorganic nitrogen content (1.6 μg g−1) than oak (19.9 μg g−1) and huckleberry (4.4 μg g−1), but oak litter having the highest extractable phosphorus (13.3 cf. 0-0.08 μg g−1) and total phenol content and lowest condensed tannin content. These differences were imparted to rooting matrix of homogenized humic (Oa) layer of pine barrens soil to which milled leaf litter was added and used in the microcosms. Pitch pine seedlings grew significantly better in un-amended rooting matrix (0.33±0.02 g) than any of the litter treatments (0.15±0.02-0.17±0.01 g) and tissue P concentrations tracked phosphate concentrations in the rooting matrix. Total P accumulation into plant tissue was higher in oak than control, attributable to a significantly higher (P<0.05) accumulation in roots (3.3±0.19 mg g−1) compared to other species (1.1±0.04-2.3±0.08 mg g−1). No relationship was seen between tissue N concentration and soil N, but seedlings growing in huckleberry litter amended soil accumulated less N than control. The effect of leaf litters on the ectomycorrhizal community composition were determined by PCA (first two axes accounted for 81% of the variance) and stepwise multiple regression analysis. These analyses showed that huckleberry leaf litter had a significant impact on mycorrhizal community composition with morphotypes Cg and DB being more abundant in the presence of huckleberry litter (178±13 cf. 68±15-106±15 for Cg and 141±11 cf. 88±23-111±18 for DB) and its influence of elevating nitrate nitrogen, organic nitrogen, total phenols and protein precipitation content of the rooting matrix. Mycorrhizal morphotypes BS and SB were significantly more abundant in the community where these soil factors were low in the absence of leaf litter addition. Total ectomycorrhizal abundance was negatively related to hydrolysable tannin concentration in the rooting matrix (r2=0.132, P<0.05). There was no influence of leaf litter type on mite density (dominated by non-burrowing phthiracarids), but collembolan density (dominated by Folsomia spp) showed a greater than threefold reduction in population density in the presence of leaf litter (F=6.47, P<0.05). Collembolan density was positively correlated with mycorrhizal morphotypes GS and SB (P<0.05) and negatively related to morphotypes DB (P<0.05) and soil extractable NH4-N (P<0.05), suggesting a possible selection of fungal species in their diet and a relationship between collembola and nitrification.  相似文献   

4.
Emissions of N2O were measured following addition of 15N-labelled (2.6-4.7 atom% excess 15N) agroforestry residues (Sesbania sesban, mixed Sesbania/Macroptilium atropurpureum, Crotalaria grahamiana and Calliandra calothyrsus) to a Kenyan oxisol at a rate of 100 mg N kg soil−1 under controlled environment conditions. Emissions were increased following addition of residues, with 22.6 mg N m−2 (124.4 mg N m−2 kg biomass−1; 1.1 mg 15N m−2; 1.03% of 15N applied) emitted as N2O over 29 d after addition of both Sesbania and Macroptilium residues in the mixed treatment. Fluxes of N2O were positively correlated with CO2 fluxes, and N2O emissions and available soil N were negatively correlated with residue lignin content (r=−0.49;P<0.05), polyphenol content (r=−0.94;P<0.05), protein binding capacity (r=−0.92;P<0.05) and with (lignin+polyphenol)-to-N ratio (r=−0.55;P<0.05). Lower emission (13.6 mg N m−2 over 29 d; 94.5 mg N m−2 kg biomass−1; 0.6 mg 15N m−2; 0.29% of 15N applied) after addition of Calliandra residue was attributed to the high polyphenol content (7.4%) and high polyphenol protein binding capacity (383 μg BSA mg plant−1) of this residue binding to plant protein and reducing its availability for microbial attack, despite the residue having a N content of 2.9%. Our results indicate that residue chemical composition, or quality, needs to be considered when proposing mitigation strategies to reduce N2O emissions from systems relying on incorporation of plant biomass, e.g. improved-fallow agroforestry systems, and that this consideration should extend beyond the C-to-N ratio of the residue to include polyphenol content and their protein binding capacity.  相似文献   

5.
Phosphomonoesterase (PMEase) activity plays a key role in nutrient cycling and is a potential indicator of soil condition and ecosystem stress. We compared para-nitrophenyl phosphate (pNPP) and 4-methylumbelliferyl phosphate (MUP) as substrate analogues for PMEase in 7 natural ecosystem soils and 8 agricultural top soils with contrasting C contents (8.0-414 g kg−1 C) and pH (3.0-7.5). PMEase activities obtained with pNPP (0.05-5 μmol g−1 h−1) were significantly less than activities obtained with MUP (0.9-13 μmol g−1 h−1), especially in soils with a high organic matter content (>130 g kg−1). Only PMEase activities assayed with MUP correlated significantly with total C and total N (r=0.7, P<0.01 all), and pH (r=−0.71, P<0.01). PMEase activities obtained with the two substrate analogues were correlated when expressed on a C-content basis (r=0.8, P<0.001), but not when expressed on an oven-dry soil weight basis. This indicated that interference by organic matter is related to the quantity rather than to the quality of organic matter. Overall, assaying with MUP was more sensitive compared to assaying with pNPP, particularly in the case of high organic and acid soils.  相似文献   

6.
To increase wetland acreage and biodiversity, Delaware agencies constructed >220 depressional wetlands. During construction, agencies included amendments thought to increase biodiversity. Because the efficacy of amendments is unknown, we investigated their effects on macroinvertebrate and vegetative communities. We selected 20 standardized wetlands (five contained coarse woody debris (CWD) and microtopography amendments (land surface ridges and furrows), five had neither, five had CWD only, and five had microtopography only). Additionally, 12 wetlands had received organic matter amendments (i.e., straw). Insect richness (P = 0.010; r2 = 0.16), insect biomass (P = 0.023; r2 = 0.13), intolerant insect biomass (P = 0.033, r2 = 0.03), Ephemeroptera biomass (P = 0.027; r2 = 0.12), and Odonata biomass (P = 0.046; r2 = 0.10) increased with CWD volume. Obligate plant percent cover increased with microtopographic variation (P = 0.029; r2 = 0.120). Although organic matter amendments did not increase percent soil organic matter (t13.7 = −1.16, P = 0.264), total (P = 0.027; r2 = 0.12), native (P = 0.036; r2 = 0.11), and facultative (P = 0.001; r2 = 0.24) plant richness increased with percent soil organic matter. To enhance biodiversity, constructed wetlands should contain CWD, but additional research is needed to understand the benefits of microtopography and organic matter amendments.  相似文献   

7.
8.
Biodiversity surveys were conducted in 13, 10×50 m2 plots located between 1400 to 3700 m above mean sea level in a range of habitats in temperate mixed Oak and Coniferous forests through sub-alpine to the alpine grasslands in Chamoli district of Uttaranchal state in the Indian Garhwal Himalaya. Cross-taxon congruence in biodiversity (α-diversity and β-diversity) across macrolichens, mosses, liverworts, woody plants (shrubs and trees) and ants was investigated, so as to examine the extent to which these groups of organisms can function as surrogates for each other. Although woody plants provided a major substrate for macrolichens and mosses, there was no species-specific association between them. Woody plant species richness was highly positively correlated with mosses (r2=0.63, P<0.001), but the relationship was not particularly very strong with lichens and liverworts. While there was a significant correlation in the species turnover (β-diversity) of macrolichens with mosses (r2=0.21, P<0.005), the relationship was relatively poor with the woody plants. On the other hand, negative correlations emerged in the species richness of ants with those of macrolichens, mosses and woody plants (r2=−0.44, P<0.05), but most of the complementarity (turnover) relationships among them were positive. Since diversity between taxonomic hierarchies within the group was consistently significantly positively correlated in all these taxa, the higher taxonomic categories such as genus and family may be employed as surrogates for rapid assessment and monitoring of species diversity. Although no single group other than macrolichens has emerged as a good indicator of changes in species richness in all other groups, some concordant relationships between them conform to the hypothesis that species assemblages of certain taxonomic groups could still be used as surrogates for efficient monitoring of species diversity in other groups whose distribution may further predict the importance of conserving overall biodiversity in landscapes such as the Garhwal Himalaya.  相似文献   

9.
Using pre-established trial sites on allophanic soils, we investigated the impacts of long to medium-term pastoral management practices, such as fertilisation and grazing intensity, on a range of soil biological and biochemical properties; hot water-extractable C (HWC), water-soluble C (WSC), hot-water extractable total carbohydrates, microbial biomass-C and N and mineralisable N. These properties were examined for their usefulness as soil quality indicators responding to changes in the rhizosphere caused by management practices. Adjacent cropping, market garden and native bush sites located on similar soil types were included to determine the changes in soil biological and biochemical properties resulting from changes in land use. The seasonal variability of HWC and its relationship with other labile fractions of soil organic matter was also examined.Microbial biomass-C, mineralisable N and extractable total carbohydrates showed promise in differentiating treatment and land use effects. However, HWC was one of the most sensitive and consistent indicators examined at 52 different sites. The impact of different land uses on the amounts of HWC in the same soil type was far greater than that was observed for the soil organic carbon. The average values of HWC for soil under different land use were: native (4000 μg C g−1 soil), sheep/beef pastures (3400), dairy pastures (3000), cropping (1000) and market gardening soils (850). HWC was also sensitive to differences within an ecosystem, e.g. effects of grazing intensities and effects of N or P fertilisers on pastures. The sheep and beef/cattle grazed pastures always had higher amounts of HWC than the intensively grazed dairy pastures. Nitrogen fertiliser application (200 and 400 kg N ha−1 yr−1) over the previous 5 yr had significant (P<0.001) negative impacts on HWC and other soil microbial properties. In contrast, long-term application of P fertilisers had a significant (P<0.001) positive effect on the HWC levels in pastoral soils. In the case of long-term P trials, HWC increased even though no increase in the total soil carbon pool was detected.HWC was positively correlated with soil microbial biomass-C (R2=0.84), microbial nitrogen (R2=0.72), mineralisable N (R2=0.86), and total carbohydrates (R2=0.88). All these correlations were significant at P<0.001 level of significance. The HWC was also positively correlated with WSC and total organic C. However, these correlations were poorer than those found for other soil parameters. Most of these measurements have been actively promoted as key indicators of soil quality. Given the strong correlations between HWC and other biochemical measurements, HWC could be used as an integrated measure of soil quality. When HWC is extracted, other pools of labile nutrients are also extracted along with C. Therefore it is suggested that decline in HWC would also indicate a decline in other labile organic pools of nutrients such as nitrogen, sulphur and phosphorus. About 40-50% of the C in the HWC extract was present as carbohydrates.  相似文献   

10.
Phosphorus deficiency and aluminium toxicity in weathered soils can be amended by applying organic residues. Nitrogen mineralization, changes in P-availability and changes in salt-extractable Al following the incorporation of residues of various green manures (Flemingia congesta, Mucuna pruriens, Pueraria phaseoloides, Tithonia diversifolia) were quantified in a field core incubation experiment. Dried residues were added at an application rate of 45 kg P ha−1 to two soils representative for the main soil groups of the South Vietnamese uplands, set up in incubation cores in an experimental field near Ho Chi Minh City, Vietnam.Decomposition of the residues proceeded at high rates. Mineralized nitrogen from the residues was recovered mainly as ammonium during the first 2 weeks of incubation. Nitrogen release from Tithonia residues with the highest lignin content and lignin:N ratio occurred more gradually compared to the three legumes. Resin-extractable P was significantly increased by residue treatments. Largest and sustained increases in resin-extractable P (0.67 and 2.06 mg P kg−1 in the two soils) were observed in samples amended with Tithonia, which was related to the large P-content (0.37%) and small C:P ratio (110) of the residues. The P-concentration in the residues, rather than the total amount of P applied through the residues, affected the increase in P-availability. The increase in resin-extractable P was correlated to the P-content (R=0.64) and C:P ratio (R=−0.65) of the residues. Salt-extractable Al-concentrations were considerably reduced by the organic amendments, up to 70 and 50% in the two soils. At the rate of 45 kg P ha−1, no significant differences between the residue treatments to reduce soil acidity were observed.As such, the application of high quality residues that are rich in P, in particular T. diversifolia, may enhance crop production by creating favourable soil conditions during the initial stages of plant development of the main crop.  相似文献   

11.
Small changes in C cycling in boreal forests can change the sign of their C balance, so it is important to gain an understanding of the factors controlling small exports like water-soluble organic carbon (WSOC) fluxes from the soils in these systems. To examine this, we estimated WSOC fluxes based on measured concentrations along four replicate gradients in upland black spruce (Picea mariana [Mill.] BSP) productivity and soil temperature in interior Alaska and compared them to concurrent rates of soil CO2 efflux. Concentrations of WSOC in organic and mineral horizons ranged from 4.9 to 22.7 g C m−2 and from 1.4 to 8.4 g C m−2, respectively. Annual WSOC fluxes (4.5-12.0 g C m−2 y−1) increased with annual soil CO2 effluxes (365-739 g C m−2 y−1) across all sites (R2=0.55, p=0.02), with higher fluxes occurring in warmer, more productive stands. Although annual WSOC flux was relatively small compared to total soil CO2 efflux across all sites (<3%), its relative contribution was highest in warmer, more productive stands which harbored less soil organic carbon. The proportions of relatively bioavailable organic fractions (hydrophilic organic matter and low molecular weight acids) were highest in WSOC in colder, low-productivity stands whereas the more degraded products of microbial activity (fulvic acids) were highest in warmer, more productive stands. These data suggest that WSOC mineralization may be a mechanism for increased soil C loss if the climate warms and therefore should be accounted for in order to accurately determine the sensitivity of boreal soil organic C balance to climate change.  相似文献   

12.
Research in phenology change has been one heated topic of current ecological and climate change study. In this study, we use satellite derived NDVI (Normalized Difference Vegetation Index) data to explore the spatio-temporal changes in the timing of spring vegetation green-up in the Qinghai-Xizang (Tibetan) Plateau from 1982 to 2006 and to characterize their relationship with elevation and temperature using concurrent satellite and climate data sets. At the regional scale, no statistically significant trend of the vegetation green-up date is observed during the whole study period (R2 = 0.00, P = 0.95). Two distinct periods of green-up changes are identified. From 1982 to 1999, the vegetation green-up significantly advanced by 0.88 days year−1 (R2 = 0.56, P < 0.001). In contrast, from 1999 to 2006, a marginal delaying trend is evidenced (R2 = 0.44, P = 0.07), suggesting that the persistent trend towards earlier vegetation green-up in spring between 1980s and 1990s was stalled during the first decade of this century. This shift in the tendency of the vegetation green-up seems to be related to differing temperature trends between these two periods. Statistical analysis shows that the average onset of vegetation green-up over the Qinghai-Xizang Plateau would advance by about 4.1 days in response to 1 °C increase of spring temperature. In addition, results from our analysis indicate that the spatial patterns of the vegetation green-up date and its change since 1982 are altitude dependent. The magnitude of the vegetation green-up advancement during 1982-1999, and of its postponement from 1999 to 2006 significantly increases along an increasing elevation gradient.  相似文献   

13.
Forest soils contain the largest carbon stock of all terrestrial biomes and are probably the most important source of carbon dioxide (CO2) to atmosphere. Soil CO2 fluxes from 54 to 72-year-old monospecific stands in Rwanda were quantified from March 2006 to December 2007. The influences of soil temperature, soil water content, soil carbon (C) and nitrogen (N) stocks, soil pH, and stand characteristics on soil CO2 flux were investigated. The mean annual soil CO2 flux was highest under Eucalyptus saligna (3.92 μmol m−2 s−1) and lowest under Entandrophragma excelsum (3.13 μmol m−2 s−1). The seasonal variation in soil CO2 flux from all stands followed the same trend and was highest in rainy seasons and lowest in dry seasons. Soil CO2 flux was mainly correlated to soil water content (R2 = 0.36-0.77), stand age (R2 = 0.45), soil C stock (R2 = 0.33), basal area (R2 = 0.21), and soil temperature (R2 = 0.06-0.17). The results contribute to the understanding of factors that influence soil CO2 flux in monocultural plantations grown under the same microclimatic and soil conditions. The results can be used to construct models that predict soil CO2 emissions in the tropics.  相似文献   

14.
The relative effects of road traffic and forest cover on anuran populations   总被引:1,自引:0,他引:1  
Road traffic and the loss of forests are both known to have negative effects on anurans. However, the relative importance of these two predictors is poorly understood because forest cover in the landscape is usually negatively correlated with the density of roads and traffic. To evaluate the independent effects of traffic and forest cover, we selected 36 ponds near Ottawa, Canada, at the center of four landscape types: low forest/low traffic; low forest/high traffic; high forest/low traffic; and high forest/high traffic, where traffic and forest cover were measured within 100-2000 m of the edge of each pond. We surveyed all ponds in 2005 and re-surveyed a 23-pond subset in 2006. The negative association between species richness and traffic density was stronger (partial R2 = 0.34; P < .001) than the positive association of species richness with forest cover (partial R2 = 0.10; P > .05) in the landscape. Three of six common species showed stronger associations with traffic density than with forest cover - Bufo americanus, Rana pipiens, and Hyla versicolor; two species - Pseudacris crucifer and Rana sylvatica - showed stronger associations with forest cover than with traffic; while Rana clamitans showed similar associations with traffic and forest cover. Our results show that the overall negative effect of traffic on anuran populations in northeastern North America is at least as great as the negative effect of deforestation, and also that the relative effects of these two predictors on anuran abundance vary between species.  相似文献   

15.
Soil samples were collected from Panchamarhi dry deciduous forest in Satpuda Biosphere Reserve, India to determine the effect of hill slopes and altitude on the population size of methanotrophic bacteria. Population size, in range of 4×105-3.6×107 g−1 dry soil, was negatively correlated with altitude and increased exponentially (r2=0.97, P<0.001) at steep slope (60°) while logarithmically (r2=0.97, P<0.001) at low slope (45°). Soil organic C, total N, and soil moisture increased while C/N ratio and temperature decreased down the hill slope. The results indicated that nutritional status of the soil across the slopes determines the methanotrophic bacterial population size.  相似文献   

16.
A wheat seedling rhizobox approach was used to differentiate between the rhizosphere and non-rhizosphere (bulk) soil amended with low and high rates of biochar (20 and 60 t ha−1 vs. control). Nitrate (NO3) was added as the main nitrogen (N) source because emerging biochar research points to reduced NO3 loss through leaching and gaseous loss as nitrous oxide. The rhizosphere under the different treatments were distinct (P = 0.021), with greater soil-NO3 and biochar-NO3 contents in the high biochar treatment. Biochar addition increased wheat root length ratio (P = 0.053) and lowered root N uptake (P = 0.017), yet plant biomass and N content were similar between treatments. The results indicate localisation of NO3 within the rhizosphere of biochar-amended soils which has implications for NO3 loss and improved nitrogen use efficiency.  相似文献   

17.
Seven most efficient phytase and phosphatases producing fungi were isolated from the soils of arid and semi-arid regions of India and tested for their efficiency on hydrolysis of two important organic P compounds: phytin and glycerophosphate. The native soil organic P may be exploited after using these organisms as seed inoculants, to help attain higher P nutrition of plants. The identified organisms belong to the three genera: Aspergillus, Emmericella and Penicillium. Penicillium rubrum released the most acid into the medium during growth. Aspergillus niger isolates were found to accumulate biomass the fastest. A significant negative correlation (r=−0.593,n=21, p<0.01) was observed between the development of fungal mat and pH of the media. The extracellular (E) phosphatases released by different fungi were less than their intracellular (I) counterpart, but the trend was reversed in case of phytase production. The E:I ratio of different fungi ranged from 0.39 to 0.86 for acid phosphatase, 0.29 to 0.41 for alkaline phosphatases and 9.4 to 19.9 for phytase. The efficiency of hydrolysis of different organic P compounds of different fungi varied from 2.12-4.85 μg min−1 g−1 for glycerophosphate to 0.92-2.10 μg min−1 g−1 for phytin. The trend of efficiency was as follows: Aspergillus sp.>Emmericella sp.>Penicillium sp. The results indicated that the identified fungi have enough potential to exploit native organic phosphorus to benefit plant nutrition.  相似文献   

18.
Earthworms are known to be important regulators of soil structure and soil organic matter (SOM) dynamics, however, quantifying their influence on carbon (C) and nitrogen (N) stabilization in agroecosystems remains a pertinent task. We manipulated population densities of the earthworm Aporrectodea rosea in three maize-tomato cropping systems [conventional (i.e., mineral fertilizer), organic (i.e., composted manure and legume cover crop), and an intermediate low-input system (i.e., alternating years of legume cover crop and mineral fertilizer)] to examine their influence on C and N incorporation into soil aggregates. Two treatments, no-earthworm versus the addition of five A. rosea adults, were established in paired microcosms using electro-shocking. A 13C and 15N labeled cover crop was incorporated into the soil of the organic and low-input systems, while 15N mineral fertilizer was applied in the conventional system. Soil samples were collected during the growing season and wet-sieved to obtain three aggregate size classes: macroaggregates (>250 μm), microaggregates (53-250 μm) and silt and clay fraction (<53 μm). Macroaggregates were further separated into coarse particulate organic matter (cPOM), microaggregates and the silt and clay fraction. Total C, 13C, total N and 15N were measured for all fractions and the bulk soil. Significant earthworm influences were restricted to the low-input and conventional systems on the final sampling date. In the low-input system, earthworms increased the incorporation of new C into microaggregates within macroaggregates by 35% (2.8 g m−2 increase; P=0.03), compared to the no-earthworm treatment. Within this same cropping system, earthworms increased new N in the cPOM and the silt and clay fractions within macroaggregates, by 49% (0.21 g m−2; P<0.01) and 38% (0.19 g m−2; P=0.02), respectively. In the conventional system, earthworms appeared to decrease the incorporation of new N into free microaggregates and macroaggregates by 49% (1.38 g m−2; P=0.04) and 41% (0.51 g m−2; P=0.057), respectively. These results indicate that earthworms can play an important role in C and N dynamics and that agroecosystem management greatly influences the magnitude and direction of their effect.  相似文献   

19.
This study was aimed at detecting mycelial compatibility groups and variations in oxalic acid production in Sclerotinia sclerotiorum. For this purpose, 121 isolates of this plant pathogen recovered from lettuce, soybean and sunflower field crops, and grouped in 46 MCGs were tested for their ability to release oxalic acid and other organic acids to the medium. Oxalic acid production on liquid media was measured spectrophotometrically and release of organic acids was estimated by isolate abilities to discolour solid media amended with bromophenol blue. There were significant differences among MCGs in both oxalic acid and organic acids releasing, ranging the mean production of oxalic acid between 18 and 110 μg oxalic acid mg−1 dry wt. When isolates were grouped by their hosts, those obtained from soybean presented the highest release of oxalic acid (71 μg oxalic acid mg−1 dry wt), while those from sunflower showed the highest release of other acids to the medium. Solid medium discoloration was not correlated with oxalic acid concentration in liquid medium (Spearman R=−0.085; P=0.126).  相似文献   

20.
White-tailed deer (Odocoileus virginianus) overbrowsing has altered plant species diversity throughout deciduous forest understories in eastern North America. Here we report on a landscape-level (306 km2) project in Pennsylvania, USA that tracked the herbaceous community response to deer herd reductions. From 2001 to 2007, we estimated deer densities, browse impact on woody seedlings, and censused the herbaceous flora in permanent plots throughout the area. We assessed herb layer species richness, abundance, and dominance and measured three known phytoindicators of deer impact: Trillium spp., Maianthemum canadense, and Medeola virginiana. We predicted that browse-sensitive taxa would increase in abundance, size, and flowering as would overall species diversity following deer culls and browse impact that declined by an order of magnitude by 2007. Following intensified deer harvests, we observed a limited recovery of the herbaceous community. Trillium spp. abundance, height, and flowering; M. canadense cover; and M. virginiana height all increased following herd reductions. Similarly, forb and shrub cover increased by 130% and 300%, respectively. Nevertheless, species diversity (i.e., richness and dominance) did not vary. Our work demonstrates that reducing deer densities can provide rapid morphological and population-level benefits to palatable species without a concomitant recovery in diversity. We suggest that decreasing deer populations alone may not promote plant diversity in overbrowsed, depauperate forests without additional restoration strategies to mitigate a browse-legacy layer dominated by browse-resistant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号