首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
6-BA对小麦花后C/N物质运转和籽粒品质的影响   总被引:5,自引:0,他引:5  
在田间条件下,以豫麦34和扬麦9号2个蛋白质含量不同的小麦品种为材料,花后用0.01 mol.mL-16-BA分别处理穗部和旗叶,研究6-BA对小麦花后植株C/N物质积累与转运规律的影响及其与小麦籽粒蛋白质和淀粉形成的关系。结果表明,6-BA处理降低了小麦籽粒质量和总淀粉含量,但显著提高了籽粒蛋白质含量,且旗叶处理比穗部处理的效果更为显著。6-BA处理显著提高了籽粒谷蛋白含量,对清蛋白和球蛋白的影响较小;穗处理的籽粒醇溶蛋白含量低于对照和旗叶处理,使穗处理的谷蛋白/醇溶蛋白显著增加。与对照相比,6-BA处理降低了扬麦9号籽粒支链淀粉含量,豫麦34在不同处理间无显著差异。6-BA处理降低了营养器官花前贮存干物质和氮素的转运量与转运率,也降低了花后干物质积累量,但提高了花后氮素同化量及同化氮素对籽粒氮的贡献率。与穗处理相比,旗叶处理降低了花前贮藏干物质和氮素运转量对籽粒产量和氮素积累量的贡献率,但提高了花后同化干物质和氮素对籽粒产量和氮素积累量的贡献率。上述结果表明6-BA处理促进了籽粒蛋白质的合成,但降低了籽粒质量和淀粉的合成,旗叶处理较穗处理作用大。  相似文献   

2.
小麦品质与产量性状的相关和通径分析   总被引:1,自引:0,他引:1  
以16个不同类型的品种为材料研究了氮素及干物质积累,运转和分配对小麦品质和产量性状的影响。结果表明,籽粒产量主要受粒重所制约,其干物质积累主要来自开花后的光合产物,花前和花后积累量对蛋白质含量均起重要作用,高蛋白基因的氮运转分配效率并不一定高。蛋白质产量和成熟期总氮量可作为高产,优质的选育指标。  相似文献   

3.
本文以16个不同类型的品种为材料研究了氮素及干物质积累、运转和分配对小麦品质和产量性状的影响。结果表明,籽粒产量主要受粒重所制约,其干物质积累主要来自开花后的光合产物。蛋白质产量主要由籽粒产量所决定。花前和花后积氮量对蛋白含量均起重要作用,高蛋白基因型的氮运转分配效率并不一定高。蛋白质产量和成熟期总氮量可作为高产、优质的选育指标。  相似文献   

4.
以40个主栽小麦品种/品系为材料,研究了不同基因型小麦籽粒干物质与氮素的来源及累积转运过程,分析了氮素累积转运的基因型差异及其对生态环境的反应。结果表明,不同环境下小麦植株干物质与氮素的积累与转运差异明显,籽粒蛋白质含量不同的小麦基因型,植株氮素与干物质的积累与分配过程有显的差异。干物质与氮素的再分配是同步进行的,籽粒蛋白质含量与花后合成氮素的再分配量呈极显正相关(r=0.6375**),而籽粒产量的提高有赖于花后植株氮素吸收合成能力及光合能力的增强。  相似文献   

5.
探讨和分析不同播期条件下高产冬小麦(Triticum aestivum)品种的氮素吸收利用、转运和高效利用特征,确定不同高产小麦品种的适宜播期.采用大田试验方法,系统分析早播(10月3日)、适播(10月12日)和晚播(10月30日)3个水平对不同品种高产小麦主要生育期植株含氮率、氮素积累量、花前和花后植株营养器官氮素积累和分配、氮素再分配等特征及产量、品质和氮素利用效率等的影响.结果表明,播期影响生育期小麦植株的含氮率、氮的吸收和积累.小麦地上部营养器官氮积累量、氮再分配量、转运氮素对籽粒氮的贡献率花前高于花后.晚播条件下籽粒氮素的积累量主要依赖于花前氮吸收;适播和早播条件下花后吸收的氮素对籽粒氮素的积累占有较大比例.高产不同基因型小麦品种在不同生育期的氮素吸收强度和相对累积速率不同,花前氮素积累量、花前吸收氮素向籽粒的再分配以及转运率、花后氮素同化量以及花后吸收氮素对籽粒的贡献率等在不同小麦品种间差异显著.早播和适播条件下,不同品种小麦均获得比晚播较高的籽粒产量.氮素收获指数和籽粒吸氮量适播条件下较高,随播期的延迟籽粒吸氮量显著降低,相反,氮素利用效率晚播条件下最高.综合考虑,在农业生产中,3个高产小麦品种均适宜早播和适播;在晚播条件下应优先选择‘周麦22’.  相似文献   

6.
探讨和分析不同播期条件下高产冬小麦(Triticum aestivum)品种的氮素吸收利用、转运和高效利用特征,确定不同高产小麦品种的适宜播期。采用大田试验方法,系统分析早播(10月3日)、适播(10月12日)和晚播(10月30日)3个水平对不同品种高产小麦主要生育期植株含氮率、氮素积累量、花前和花后植株营养器官氮素积累和分配、氮素再分配等特征及产量、品质和氮素利用效率等的影响。结果表明,播期影响生育期小麦植株的含氮率、氮的吸收和积累。小麦地上部营养器官氮积累量、氮再分配量、转运氮素对籽粒氮的贡献率花前高于花后。晚播条件下籽粒氮素的积累量主要依赖于花前氮吸收;适播和早播条件下花后吸收的氮素对籽粒氮素的积累占有较大比例。高产不同基因型小麦品种在不同生育期的氮素吸收强度和相对累积速率不同,花前氮素积累量、花前吸收氮素向籽粒的再分配以及转运率、花后氮素同化量以及花后吸收氮素对籽粒的贡献率等在不同小麦品种间差异显著。早播和适播条件下,不同品种小麦均获得比晚播较高的籽粒产量。氮素收获指数和籽粒吸氮量适播条件下较高,随播期的延迟籽粒吸氮量显著降低,相反,氮素利用效率晚播条件下最高。综合考虑,在农业生产中,3个高产小麦品种均适宜早播和适播;在晚播条件下应优先选择‘周麦22’。  相似文献   

7.
以桂华占、八桂香为材料,在高氮(NH,High nitrogen)、中氮(NM,Middle nitrogen)、低氮(NL,Low nitrogen)三个施氮水平下,研究了优质稻花后碳氮物质积累、运转与籽粒生长特征及其相互的关系。结果表明:①在不同施氮水平下,干物质转运效率为53.60%~62.23%,氮素转运效率为12.33%~37.95%,茎鞘和叶片干物质转运对籽粒干物质积累的贡献率为12.33%~37.95%,茎鞘和叶片氮素转运对籽粒氮素积累贡献率为47.93%~117.2%。②施氮水平影响桂华占和八桂香花后碳氮流转及籽粒的生长。高氮条件下增加叶片碳氮同化物的转运,不利于茎鞘碳氮同化物向籽粒转运。增施氮肥在一定程度上提高了地上总氮和籽粒氮的积累量,提高了籽粒氮收获指数,蛋白质含量上升。低氮处理虽能促进茎鞘碳氮同化物的转运率,但籽粒收获指数明显变低。③不同施氮水平下,桂华占和八桂香花后碳氮流转与籽粒的生长间存在密切的相关,花后茎叶干物质运转速度和转运率都与籽粒起始灌浆势呈正相关;籽粒最大灌浆速率与叶干物质运转速度和转运率呈正相关;叶片中总氮转运率与籽粒蛋白质产量呈正相关。花后茎叶氮素积累量的减少,伴随着籽粒氮素积累量的增加和籽粒蛋白质含量的升高是同步的;茎鞘花后同化物碳氮比与籽粒蛋白质含量及产量呈正相关,与籽粒直链淀粉含量及淀粉、蛋白质比呈负相关。不同施氮水平下氮素转运效率和贡献率表现出一定差异,这种差异与水稻植株自身对氮生理利用效率密切相关。  相似文献   

8.
简析氮素营养对超高产小麦的调控   总被引:1,自引:0,他引:1  
小麦籽粒蛋白质含量与氮代谢密切相关。许多研究表明,小麦籽粒氮一方面来自开花后吸收的氮素,另一方面来自开花前营养体积累氮素的再运转。在营养体氮素的再运转中,蛋白质的降解起着重要作用,蛋白质的降解又与蛋白水解酶活性的上升相关,小麦籽粒中的氮素绝大部分来自开花前植株贮存氮素的再运转,只有少部分是开花后吸收的。因此,在小麦生产中除了强调提高植株后期吸收氮素的能力外,应十分重视叶片蛋白质的降解,即氮素的再运转分配,选择开花后氮素吸收同化和氮素再运转能力强的小麦品种,既有利于提高籽粒产量,又可提高籽粒蛋白质含量。此外,小麦籽粒也具有氮素同化能力,关于籽粒的氮素同化能力与籽粒蛋白质含量的关系,有待进一步研究。通过氮素对小麦光合能力、生理活性、群体质量、籽粒产量及粒质量的调控,以及对库源流关系的影响,达到小麦高产的目的。  相似文献   

9.
1994~1995年在江苏农学院农场春播,用4个爆裂玉米材料与普通玉米高产品种西玉3号进行对比试验,研究爆玉米的生育特性。结果表明:爆玉米的出叶进程与对照相同,籽粒灌浆结实期比对照短7~10d;爆玉米叶窄长,苗期叶面积增加慢,最大LAI小,高值LAI稳定期短,花后LAI下降快,一生尤其花后光合势小;株细高,穗位高;根数少和粒重粒叶比低的特征进而强烈影响物质生产和产量形成;籽粒产量是对照的38.66%~46.40%;植株一生的干物质积累尤以拔节前和吐丝后的生育阶段的积累量较低,不同器官的干物质积累尤以穗粒的积累能力差;提高产量的途径是增加粒数和粒重并重;培壮茎秆,促进气生根发生,提高叶系尤其是花后叶系的净同化率,扩大籽粒库容量,增加粒叶比和提高花后生育阶段的干物质积累量是提高群体干物质积累总量及籽粒产量的关键  相似文献   

10.
氮素营养对超高产小麦调控的研究进展   总被引:4,自引:3,他引:4  
小麦籽粒蛋白质含量与氮代谢密切相关。许多研究表明,小麦籽粒氮的来源一方面来自开花后吸收的氮素,另一方面来自开花前营养体积累氮素的再运转。小麦籽粒中的氮素绝大部分来自开花前植株贮存氮素的再运转,只有少部分是开花后吸收的。蛋白质的降解与蛋白水解酶活性的上升相关,它在营养体氮素的再运转中起着重要作用。因此,在小麦生产中除了强调提高植株后期吸收氮素的能力外,也应十分重视叶片蛋白质的降解,即氮素的再运转分配。选择开花后氮素吸收同化和氮素再运转能力强的小麦品种,既可提高籽粒产量,又可提高籽粒蛋白质含量。此外,小麦籽粒还具有氮素同化能力。通过氮素对小麦光合能力、生理活性、群体质量、籽粒产量及粒重的调控,以及对库源流关系的影响,来达到小麦高产的目的。  相似文献   

11.
高产麦田开花后干物质积累、运转、分配与产量形成   总被引:8,自引:0,他引:8  
高产麦田开花后的干物质积累、运转和分配是提高经济系数、提高粒重形成高产的关键。据对四个冬小麦品种的四年试验,开花后群体干物质积累与经济产量呈极显著正相关,其积累量约相当于籽粒产量;营养器官贮藏物质对产量的贡献约占粒重的35.5%,其中开花前的输出量约占粒重的4%。开花后天气条件的变化,对高产麦田的物质积累、运转和分配有显著的影响,即使在良好的栽培管理和群体结构比较合理的条件下,也可导致粒重和产量在年际间相差甚殊。而灌浆盛期的持续高温天气是高产麦田产量不稳的主要可变气象因素。  相似文献   

12.
小麦品种改良过程中物质积累转运特性与产量的关系   总被引:17,自引:0,他引:17  
【目的】探明小麦品种改良过程中物质积累与转运特性及其与产量形成的关系,为选育高产品种、制定育种目标提供理论依据。【方法】选用32个20世纪不同年代代表性小麦品种于2007-2009年进行大田试验,分析小麦不同生育时期干物质生产与积累转运特性的演进特征及其与产量的关系。【结果】随着品种改良进程,籽粒产量和收获指数逐步提高,而20世纪60年代品种生物产量显著降低随后保持稳定;开花期叶面积、叶面积指数及旗叶光合速率逐步提高,为花后物质积累提供了物质和能量来源。品种改良显著提高了小麦拔节前和开花后物质积累量及群体生长速率,但降低了拔节至开花期积累量和生长速率;提高了花前干物质转运量、转运率及贡献率,但降低了花后干物质贡献率。小麦籽粒产量与拔节前及开花后干物质积累量、生长速率及花前干物质贡献率显著正相关,与拔节开花阶段物质积累量和生长速率及花后干物质贡献率显著负相关。【结论】品种改良提高了小麦物质生产能力和生产效率,协调了不同生育阶段物质积累,平衡了花前和花后干物质对籽粒的贡献。因此,提高拔节前营养生长、增加花后干物质积累和花前物质转运是小麦产量改良的重要物质基础,也是今后小麦高产育种的重要目标。  相似文献   

13.
于2004~2005年在大田条件下,研究了不同播期对冬小麦植株C-N的积累、运转规律及籽粒产量和蛋白质含量的影响.结果表明,适当晚播(10月22日播种)可以提高冬小麦成熟期单茎籽粒重和籽粒氮素积累量,提高开花前营养器官贮存干物质和氮素的转运量以及转运干物质和氮素对籽粒重和籽粒氮素积累的贡献率.适当晚播的小麦穗粒数、千粒重和蛋白质含量有所增加,籽粒产量和蛋白质产量显著提高.由此可见,高产小麦适当晚播有利于籽粒产量和蛋白质产量的提高.  相似文献   

14.
Tissue Nitrogen and Fructan Translocation in Bread Wheat   总被引:5,自引:0,他引:5  
Translocation of previously accumulated nitrogen and carbohydrates from vegetative tissue of the wheat plant is a major assimilate source for grain filling. This study was conducted to examine genotype differences in nitrogen and fructan translocation and their relationships to grain yield and protein content. Effects indicated that significant genotype differences existed for nitrogen accumulation at anthesis and fructan at milk stage and their translocation. Two high protein genotypes, Cunningham and PST90-19, accumulated more nitrogen before anthesis and had greater nitrogen translocation, but lower post-anthesis nitrogen uptake,than two low protein genotypes, SUN109A and TM56. Among plant parts, leaves were the major storage for tissue nitrogen and provided the overwhelming proportion of the total nitrogen translocation, whereas for fructan accumulation and translocation it was the stems. The two high protein genotypes had a higher percentage of their grain nitrogen derived from nitrogen translocation, while for the two low protein ones, it was from postanthesis nitrogen uptake and assimilation. Increasing nitrogen application increased nitrogen accumulation and translocation, but decreased fructan accumulation and translocation. High grain protein content was associated with high nitrogen translocation from leaves, stems and the total plant, while high grain yield was related to high fructan translocation from stems and the total plant. Fructan translocation was negatively correlated to grain protein content. Nitrogen and fructan translocation were not correlated with each other.  相似文献   

15.
小麦组织氮的积累与分配及其相关性研究   总被引:1,自引:0,他引:1  
对17 个澳大利亚小麦品种的组织氮研究表明:品种间组织氮含量存在不同程度差异。叶片、茎秆和植株氮积累峰值分别出现在抽穗初期、灌浆初期和灌浆末期;花期前氮素主要积累在叶片中,花期后籽粒成为氮素最主要的贮藏器官。植株氮积累(g/m 2)与干物质积累呈极显著正相关,而与其果糖积累、籽粒产量、籽粒蛋白质产量及含量无显著相关关系;植株氮含量(g·kg- 1)与其干物质积累、果糖含量和籽粒产量均呈显著负相关,与籽粒蛋白质含量显著正相关。  相似文献   

16.
水稻植株氮素吸收与籽粒蛋白质积累模型   总被引:3,自引:2,他引:1  
陈洁  汤亮  刘小军  曹卫星  朱艳 《中国农业科学》2011,44(10):1997-2004
 【目的】建立基于生理生态过程的水稻籽粒蛋白质积累模拟模型。【方法】基于不同地点、品种及施氮水平的田间试验资料,通过解析花前植株氮素吸收与积累、花后氮素吸收与转运的动态特征及定量关系,构建水稻植株氮素吸收与籽粒蛋白质积累的模拟模型。【结果】水稻籽粒中氮素积累速率取决于源限制下的可获取氮源和库限制下的氮素积累速率;源限制下的可获取氮源取决于营养器官向籽粒转运的氮素和花后植株吸收的氮素,库限制下的氮素积累速率由潜在氮素积累速率及温度、水分和氮素因子效应来综合决定。营养器官中的氮素转运又分为叶片和茎中积累氮素的转运;花前叶片和茎中的相对氮含量随播后生长度日线性增加;花后叶片和茎中的相对氮含量随花后生长度日线性递减;花后吸收的氮素随籽粒重的增加对数递增。利用独立的田间试验资料对所建模型进行了检验,结果显示模拟值与观测值之间具有较好的一致性,其中花前叶片与茎秆氮素吸收量、花后籽粒氮素吸收量、花后叶片与茎秆中氮素转运量的决定系数分别为0.968、0.980、0.974、0.970和0.976,根均方差分别为16.55%、13.24%、9.53%、10.93%和9.29%;籽粒蛋白质含量的决定系数分别为0.930,根均方差分别为7.82%。【结论】模型对不同栽培条件下水稻植株氮素吸收与转运以及籽粒蛋白质积累具有较好的预测性,为水稻生产中籽粒蛋白质指标的动态预测提供了量化工具。  相似文献   

17.
为揭示春玉米高产栽培下产量形成的生理机制,以郑单958为供试品种,设高产栽培(HY)和常规栽培(CK),于2009-2011年进行试验,分析高产栽培下春玉米的光合特性和干物质积累与运转规律。结果表明,3年春玉米高产栽培产量稳定达到15 000kg/hm2,平均单产16 086.8kg/hm2,较对照增产52.8%。高产春玉米叶面积指数(LAI)大,衰退慢,最大LAI达到6.62,成熟期仍保持在3.2以上;从大喇叭口期开始,SPAD值、单位土地面积净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)明显提高,在吐丝期时达到最大且持续保持较高水平;与对照相比,开花期营养器官干物质积累量、花后营养器官(茎、叶和鞘)干物质转运量、转运率及其对籽粒贡献率平均值分别提高22.44%、114.1%、46.56%和42.68%,均达到显著水平。可见,要实现高产再高产,需保证春玉米生育中后期具有光合效率高、功能期较长的高产群体,且在增加开花期营养器官干物质积累量和花后营养器官干物质转运量的同时,进一步促进花后营养器官干物质向籽粒的转移。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号