首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 281 毫秒
1.
利用热解活化法制备高吸附性能的椰壳活性炭并对其热解活化机理进行研究。结果表明,在热解活化温度为900℃,保温5 h,升温速率为10℃/min时,可以制备比表面积为1 047.65 m~2/g的椰壳活性炭,其中总孔容为0.51 cm~3/g,微孔孔容为0.44 cm~3/g。该活性炭的碘吸附值为1 302 mg/g,亚甲基蓝吸附值为195 mg/g。结果表明:在不添加任何活化气体或化学试剂的情况下,热解活化制备高吸附性能椰壳活性炭的机理可能是由于热解活化过程中,热解释放气体,造成一部分孔隙;高温下未炭化物芳构化形成石墨微晶,键断裂时释放部分气体;这些气体作为活化剂对椰壳原料进行了自活化,生成一定孔隙;在密闭的情况下,热解产生气体,使得反应器内产生微压力,对孔隙的形成有一定作用。  相似文献   

2.
[目的]研究无患子活性炭制备的最佳工艺及其对苯酚的吸附。[方法]以H3PO4为活化剂制备无患子残渣活性炭,通过正交试验对制备工艺进行优化,探讨浸渍比、活化温度、活化时间对活性炭亚甲基蓝和碘吸附值的影响。利用N2吸脱附试验、SEM,对活性炭的结构与性能进行表征。选取了投炭量、苯酚溶液pH、苯酚初始浓度、吸附温度为单因素,探讨其对苯酚吸附的影响。[结果]浸渍比为1∶1、活化温度为500℃、活化时间为60 min时,制备的活性炭对亚基蓝的吸附值为82 mg/g、碘吸附值为773 mg/g、BET比表面为738m2/g、总孔容达0.669 2 cm3/g、平均孔径为3.625 7 nm。活性炭在中性条件下对苯酚吸附效果最佳;低温有利于吸附,但温度的影响不大。[结论]所制备的活性炭具有良好的苯酚吸附效果。  相似文献   

3.
以稻壳为原料,采用磷酸活化法制备活性炭,考察了原材料与活化剂的配比、活化温度和活化时间等因素对活性炭吸附性能的影响,确立了调控活性炭性能的工艺方法和工艺条件.利用扫描电镜观察了活性炭的形貌特征,利用X射线衍射分析了稻壳活性炭中微晶的晶体结构.研究结果表明,以稻壳为原料、磷酸为活化剂在实验室的马弗炉中制备活性炭的适宜工艺条件为:活化剂/炭为3,活化温度为400℃,活化时间为2h,所制得的活性炭的碘吸附值为809 mg/g.  相似文献   

4.
[目的]探索糠醛渣炭化学法制备活性炭的最佳工艺条件,同时找到有效的灰分去除方法。[方法]以糠醛渣炭为原料,采用磷酸活化的方法制备活性炭,并采用合适的方法去除活性炭的灰分。[结果]通过正交试验确定了磷酸活化的最佳条件为:浸渍比1∶4,活化液质量分数60%,活化温度500℃,活化时间60 min。用12%的氢氟酸溶液除灰分,80℃环境下搅拌12 h(在通风橱中反应),测得的灰分含量为9.53%,亚甲蓝吸附值178.3 mg/g,碘吸附值899.1 mg/g。[结论]糠醛渣炭是制备活性炭的优良原料,用其制备活性炭可解决糠醛渣炭的堆积污染问题,还可避免资源浪费。  相似文献   

5.
磷酸活化棉秆制备活性炭的研究   总被引:1,自引:0,他引:1  
[目的]磷酸活化棉秆制备活性炭.[方法]以棉秆为原料,磷酸为活化剂,采用一步法制备活性炭,考察了浸渍比、活化温度、活化时间对活性炭吸附性能和活化得率的影响.[结果]棉秆制备活性炭的最佳工艺条件:浸渍比为1.5,活化温度450℃,活化时间60 min.此时,活性炭的碘吸附值为1 376 mg/g,亚甲基蓝吸附值为163.5 mg/g,活化得率为35.67%.制得的活性炭比表面积为1 462 m2/g,总孔体积为1.178 cm3/g,中孔体积为0.792 cm3/g,平均孔径为4.4nm,最可几孔径为3.9nm.[结论]该研究对于扩大制备活性炭的原料,带动产棉区的农业经济发展具有重要的意义.  相似文献   

6.
运用响应面法优化芦苇基生物炭活化工艺   总被引:1,自引:1,他引:0  
为优化芦苇基生物炭制备工艺,在单因素试验考察热解温度、氨水质量分数和浸渍比(生物质原料与氨水质量之比)等3种参数对芦苇基生物炭吸附性能影响的基础上,利用Box-Benhnken中心组合设计实验,运用响应面法对其活化工艺参数进行优化。结果表明,3个因素均对生物质炭的比表面积产生影响,其影响显著性大小为热解温度氨水质量分数浸渍比。通过模型优化确定了最佳活化工艺参数为热解温度620℃、氨水质量分数8%、浸渍比1∶5;该工艺条件下制备的生物炭比表面积和碘吸附值分别为334.49 m~2/g、585.52 mg/g,均优于未进行优化改性的样品。该值与理论值(335.2 m~2/g、582.288 mg/g)基本相符,表明响应面模型与实际情况拟合良好,验证了模型的有效可行性。  相似文献   

7.
以氢氧化钾与氯化锌为活化剂,分别活化城市污水处理厂的污泥与生物质竹屑,并分别热解制备了2种吸附性能良好的生物炭.结果表明,2种活化剂均有其适宜的热解终温和热解时间范围,制得的生物炭均具有良好的碘吸附值特征.采用扫描电镜、比表面积和孔隙率分析仪对生物炭的理化性质和多级孔结构进行了表征.浸渍预处理后,KOH提供了更多的功能组分,并与C反应,扩大了生物炭的孔结构.在600℃共热解后,比表面积达到1698.32m2/g,微孔面积为1052.90m2/g.  相似文献   

8.
以木质纤维素为原料,采用限氧热解法制备木质纤维素生物炭,以亚甲基蓝和四环素为目标污染物,通过批试验方法考察了生物炭热解温度和溶液初始pH值条件等对吸附的影响,以及吸附的动力学和热力学.研究结果发现,热解温度为300℃时木质纤维素生物炭对2种污染物的吸附能力最强.酸化和未酸化处理木质纤维素生物炭对2种污染物的吸附能力有明显的差异,溶液初始pH值条件对吸附过程有较大影响.吸附动力学研究表明,2种污染物在木质纤维素生物炭上的吸附可能以化学吸附为主.由Langmuir吸附等温方程知,298 K时木质纤维素生物炭对亚甲基蓝和四环素的最大吸附量分别达到437.6 mg/g和1090.1 mg/g.热力学分析证明生物炭对2种污染物的吸附过程均为自发和吸热过程.  相似文献   

9.
以烟草秸秆为原料,经氢氧化钠活化,制备烟草秸秆基活性炭吸附剂。结果表明,氢氧化钠活化法制备烟草秸秆活性炭的最佳工艺条件如下:炭化温度450℃、碱炭比1∶2、活化温度700℃、活化时间60 min。该工艺制备的烟草秸秆基活性炭吸附剂,其亚甲基蓝和碘吸附值分别为16.2 m L/0.1 g和1 140.13 mg/g。烟草秸秆基活性炭吸附剂对重金属镍离子(Ni~(2+))、锰离子(Mn~(2+))、铅离子(Pb~(2+))具有较好的吸附能力,其饱和吸附量分别为37.83、26.45、44.67 mg/g。利用扫描电镜对样品表面形态进行分析,发现其具有发达的孔隙结构。该试验为烟草秸秆的综合利用开辟了一条新的途径,具有一定的应用价值。  相似文献   

10.
曹伟  王晓雪  贾斌  陈龙  钟成华 《安徽农业科学》2014,(27):9495-9498,9634
[目的]探讨鸭粪作为活性炭制备原料的资源化利用可行性.[方法]以鸭粪为原料,采用氢氧化钾为活化剂制备活性炭,以碘吸附值和亚甲基蓝吸附值为评价指标,研究鸭粪活性炭制备过程中固液比、活化剂浓度、活化时间、活化温度等因素对活性炭产率和吸附性能的影响.[结果]鸭粪活性炭最佳制备工艺条件:固液比为1∶2.5、KOH浓度为40%、活化时间为45 min、活化温度为800℃,其活性炭产率、碘吸附值和亚甲基蓝吸附值分别为32.3%、388 mg/g和53 ml/g.在最佳制备工艺条件下添加25%的锯木屑,能明显提高活性炭的吸附性能.[结论]该研究结果为鸭粪的资源化利用提供了一种新型环保的技术.  相似文献   

11.
[目的]制备油茶壳活性炭,并对其吸附性能进行研究。[方法]以油茶壳为原料,通过磷酸活化法制备油茶壳活性炭,考察磷酸浓度、浸渍比、活化温度、活化时间对活性炭的得率和吸附性能的影响;并对制得的活性炭结构进行表征。[结果]当磷酸浓度为70%,浸渍比为1∶3,活化温度为600℃,活化时间为90 min时,活性炭得率可达34%以上;碘吸附值、亚甲基蓝吸附值分别大于1 000、150mg/g;所得活性炭结构以微孔为主,且富含一定比例的中孔,孔径分布相对集中在1.4~5.0 nm。[结论]该研究为油茶壳的综合利用提供了新的途径。  相似文献   

12.
林琳  王英刚  刘皙皙  刘贺永  杜盼 《安徽农业科学》2013,41(5):2179-2180,2210
[目的]研究农业秸秆活性炭的最佳制备工艺及吸附性能。[方法]以秸秆为原料,在不同的操作条件下制备活性炭产品,并测定相应的活性炭产率及亚甲基蓝吸附值,分析研究了化学活化法制备秸秆活性炭工艺过程中的活化温度、活化时间、固液比、炭化时间等因素对活性炭的产率、亚甲基蓝吸附值的影响。[结果]用化学法制备秸秆活性炭的较佳工艺参数:以KOH/ZnCl2为活化剂,ZnCl2浓度为5 mol/L,KOH浓度为5 mol/L,KOH∶ZnCl2为1∶1,活化时间为1 h,固液比为1 g/4 ml,活化温度为20℃,热解温度为550℃,90℃为洗涤最佳温度。脱色率和亚基蓝吸附值均随活性炭投加时间的延长而增加。[结论]秸秆活性炭制备工艺经济、可行,具有广阔的应用前景。  相似文献   

13.
以山竹壳作为原料,KOH、K_2CO_3、NaOH和Na_2CO_3为活化剂,采用化学活化法制备山竹壳基活性炭。用傅里叶变换红外光谱(FTIR)和扫描电子显微镜(SEM)表征山竹壳基活性炭。按照国标方法测定不同活化剂制备的活性炭吸附值,通过循环伏安法、恒流充放电和电化学阻抗谱考察其电化学性能。结果表明,以KOH为活化剂制备的活性炭性能最好,其碘吸附值为1 657 mg/g;在3 mol/L KOH电解液中,电流密度为10 A/g时,比电容为198 F/g;在电流密度为5 A/g时进行2 000 s恒流充放电测试,比电容保持达到90%以上。说明活化剂有助于改善所制备的活性炭的性能,且碱性越强,活化效果越好。  相似文献   

14.
蒋卉 《安徽农业科学》2010,38(35):20239-20240
[目的]研究棉杆活性炭制备的最佳试验条件及其孔隙结构特征。[方法]以农业废弃物棉杆为原料、ZnCl2为活化剂,马弗炉加热制备活性炭,用正交试验方法得出活性炭制备的最佳试验条件。同时,用扫描电镜对其结构进行观察。[结果]在活化剂浓度为50%、浸泡时间16 h、反应温度600℃、反应时间70 min的工艺条件下,可得产率13%、碘吸附值1 008.1 mg/g、亚甲基蓝吸附值489.6mg/g的活性炭,亚甲基蓝吸附值达到国家木质净水一级活性炭标准的3.62倍,并且棉杆活性炭具有丰富和发达的蜂窝状孔隙结构。[结论]该研究为拓宽活性炭生产的原料来源提供了一定的理论依据。  相似文献   

15.
氢氧化钾活化法制备杨木刨花板活性炭的研究   总被引:1,自引:0,他引:1  
为探索废弃刨花板的再利用方式,以杨木刨花板为原料,采用氢氧化钾活化法制备活性炭。以活化温度、活 化时间、浸渍比和施胶量为参数研究活化工艺对所得活性炭吸附性能和活化得率的影响,并对试验范围内较优试 验条件下制备的活性炭的微观结构和表面吸附性能进行元素分析、扫描电镜分析和N2 吸附测试。结果表明:浸渍 比是氢氧化钾活化法制备木质活性炭最重要的影响因素;在活化温度1 000 益、活化时间40 min、浸渍比1颐3、施胶 量6%的条件下,活性炭样品的BET 比表面积为2 459.708 m2 / g、碘吸附值为2.047 g/ g、活化得率为58.30%。   相似文献   

16.
目的与普通活性炭比较,介孔活性炭具有疏水性好、孔体积大、导电性能好等优势,然而传统制备方法繁杂,原料成本较高。因此,探究新型介孔活性炭制备工艺尤为重要。方法以木糖渣为原料,采用NaOH预处理、低温硫酸辅助炭化与磷酸活化相结合的方法制备了高介孔率活性炭。通过单因素实验,分析NaOH预处理时间、浸渍比以及活化温度对活性炭的亚甲基蓝(MB)吸附性能的影响。结果研究表明:NaOH预处理脱除木质素促使原料形成孔隙通道,同时使木糖渣纤维发生润胀,有利于活化剂与原料接触,从而获得高介孔率、高比表面积活性炭。当NaOH预处理时间为4h,磷酸与原料浸渍比4:1,活化温度500℃,活化时间为1h所制备的活性炭具有较高的MB吸附值436mg/g。扫描电镜分析结果表明:样品表面含有丰富的大孔及中孔结构,整体活化充分均匀。氮气物理吸附-脱附分析结果表明:活性炭具有发达的孔隙结构,其比表面积和总孔体积分别高达2038m2/g和2.13cm3/g,其中介孔孔容1.56cm3/g,介孔率达到73.2%,平均孔径为4.18nm。结论采用适当的NaOH预处理有利于制备孔隙结构优越的活性炭,在重金属离子吸附、有机大分子废水处理以及电子元器件等领域有广泛的应用前景。本研究将为高比表面积介孔活性炭的制备奠定理论基础,并为工业木糖渣的高值化利用提供了一条新途径。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号