首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The DM digestibility (DMD) and organic matter digestibility (OMD) of 36 tropical grass samples were determined both in vivo and in vitro. Regressions relating OMD to DMD were calculated. In vivo OMD=1·02 in vivo DMD+ 0·1, r=0·99. In vitro OMD=1·05 in vitro DMD—4·7, r=0.99. At the same DMD, the in vitro method predicted OMD 2·8 to 3·4 percentage units lower than the in vivo method. This difference was caused by the difference in mean apparent digestibility of the ash, in vitro 71%, in vivo 47%. In vivo DMD was correlated (r=0·92, P<0·01) with in vitro DMD and the regression relating these two factors had a residual standard deviation of ±1·42 digestibility units. This deviation was reduced to ±1·9 digestibility units when OMD was determined. For both DMD and OMD significant differences were found between grass species in the relation between in vivo and in vitro digestibility. To overcome biased estimates of OMD it was suggested that conversion equations should be avoided, and that the in vitro method be standardized with samples of known in vivo OMD as similar as possible to those being tested.  相似文献   

2.
Sainfoin (Onobrychis viciifolia Scop.) is a perennial legume recently reappraised for some positive characteristics leading to highly satisfactory animal performance. Sainfoin’s characteristics may be partly explained by the presence of moderate levels of condensed tannins (CTs) able to protect dietary protein from microbial degradation in the rumen. Decreased CH4 emissions have been reported for ruminants consuming CT‐containing forage. The aim of this study was to evaluate the effects of CT content on the in vitro fermentation characteristics and kinetics and methane production of four samples of O. viciifolia cut at different phenological stages. Sainfoin hays and one sample of alfalfa hay were incubated at 39°C in anaerobiosis using the in vitro gas production technique. The chemical composition, tannin content and fermentation characteristics and kinetics of sainfoin samples were significantly affected by phenological stage. After 48 h, the CH4 production in sainfoin hays showed a tendency to increase with the advancement of phenological stage [from 38·6 to 49·8 mL g−1 of degraded organic matter (OM)]. The best period to cut sainfoin for hay making is between early and late flowering, when the forage combines high OM digestibility, low CH4 production and more efficient microbial fermentation.  相似文献   

3.
Prediction of legume silage digestibility from various laboratory methods   总被引:1,自引:0,他引:1  
The potential of different laboratory methods to predict legume silage organic matter digestibility (OMD) in vivo was evaluated by using data from thirty‐three pure legume silages in seven experiments. The samples were analysed for crude protein concentration, cell wall composition, in vitro digestibility by the methods of Tilley and Terry [Journal of the British Grassland Society, 18 (1963) , 104–111; OMDT&T], pepsin‐cellulase solubility (OMS) and gas production (OMDGAS), and for indigestible neutral‐detergent fibre concentration in situ (INDF). The relationships between the results obtained by the laboratory methods and in vivo OMD, all expressed as ratios, were studied using linear univariate regression models with experiment as a random variable (mixed model). Legume silage digestibility could be estimated with acceptable accuracy by different in vitro methods, but not from the chemical composition of the samples. The highest accuracy in OMD prediction was found with OMS (RMSE 0·0113; R2 = 0·965) followed by OMDGAS (RMSE 0·0149; R2 = 0·944), OMDT& T (RMSE 0·0149; R2 = 0·940) and INDF (RMSE 0·0168; R2 = 0·925). The relationships between the in vitro methods and in vivo digestibility are not universal, and should be determined separately for each laboratory and type of forage. Part of the error in OMD prediction can be attributed to errors in in vivo OMD determination.  相似文献   

4.
Interspecific hybrids between white clover (Trifolium repens L.) and Caucasian clover (Trifolium ambiguum M. Bieb.) have been developed to introgress the rhizomatous growth habit into white clover, to increase persistence and drought tolerance. The forage quality of T. repens, T. ambiguum and the backcross 1 (BC1) and backcross 2 (BC2) hybrids and companion grass, when grown in mixtures with an intermediate perennial ryegrass (Lolium perenne L.) under a cutting‐only management, was measured. In vitro dry‐matter digestibility (DMD), water‐soluble carbohydrate (WSC) and crude protein (CP) concentrations of the legume and grass fractions were measured throughout the growing season over three harvest years. Trifolium repens had a lower WSC but a higher CP concentration than the perennial ryegrass companion in all harvest years and at all cuts. The legume fractions from the BC1 and BC2 hybrid plots had a higher WSC and a lower CP concentration but an in vitro DMD value comparable with white clover throughout the growing season and in each harvest year. The grass fractions from the mixtures with the backcross hybrids had a higher WSC and a lower CP concentration than the grass fraction from the T. repens plots, in all harvest years and throughout the growing season. No difference in in vitro DMD between parental species and backcross hybrids was observed. The implications of these results for the development of these hybrids and animal performance are discussed.  相似文献   

5.
There is increasing interest in sustainable land use in the tropics to optimize animal production while also reducing methane (CH4) emissions, but information on nutritive value and CH4‐emission potential of tropical forage species is limited. Samples of 24 grasses and five other forages were collected during the main rainy season on randomly positioned quadrats in semi‐arid grassland in the Mid Rift Valley of Ethiopia. Samples were pooled by species, analysed for chemical composition and incubated with rumen fluid to determine total gas and CH4‐emission potentials using a fully automated in vitro gas production apparatus. Organic matter digestibility (OMD) and metabolizable energy (ME) contents were calculated from chemical composition and gas production data. Large variability was observed among forages for all nutritional variables considered. The grasses Eleusine multiflora, Pennisetum stramineum, Dactyloctenium aegyptium, Eragrostis aspera, Cenchrus ciliaris and Eragrostis cilianensis showed relatively high OMD (68–72%) and ME values (9·1–10·2 MJ kg?1 dry matter). Melinis repens, E. multiflora and the non‐legume forb Zaleya pentandra showed relatively low CH4 to total gas ratios; these species may have potential for use in low CH4‐emission forage diets. Acacia tortilis fruits had high content of crude protein and moderate ME values, and may be an ideal feed supplement for the grazing ruminant. Sodium content was below the recommended level for ruminants in all the forage species. Overall, the pasture stand during the main growing season was evaluated as having moderate nutritional quality.  相似文献   

6.
The herbage production and quality of swards of three grass species, prairie grass (Bromus willdenowii Kunth), reed canary-grass (Phalaris arundinacea L.) and phalaris (Phalaris tuberosa L.) were compared with perennial ryegrass (Lolium perenne L.) and hybrid ryegrass (L. perenne L. ×L. muitiflorum Lam.) under 6–cut (experiment 1) and 4–cut (experiment 2) regimes over 3 years at Ayr; annually, 360 kg ha-1 fertilizer N were applied. At Edinburgh prairie grass was compared with Italian ryegrass (L. multiflorum Lam.), timothy (Phleum pratense L.) and cocksfoot (Dactylis glomerata L.) under an annual 4–cut regime for 3 years (experiment 3); fertilizer N application totalled 350 kg ha-1 annually. Prairie grass gave the highest annual dry matter (DM) production at Ayr, averaging 11·99 t ha-1 in experiment 1 and 15·62 t ha-1 in experiment 2. Reed canary-grass was much less productive whilst phalaris did not persist after harvest year 1. On average, prairie grass gave 8–10% more DM than the three ryegrasses in the 6-cut system but its advantage was much less under the 4-cut regime. In experiment 3, the DM production of prairie grass and Italian ryegrass were similar in year 1, but following winter damage prairie grass gave the lowest production in subsequent harvest years. Prairie grass had digestibility (OMD) values lower than the ryegrass but higher than reed canary-grass, timothy and cocksfoot. The water soluble carbohydrate (WSC) concentrations in prairie grass were markedly higher than in timothy and cocksfoot but lower than those in Italian ryegrass. Prairie grass had relatively low P and Mg concentrations. Reed canary-grass had relatively low OMD and Ca, but high N, P, K and Mg contents. It is concluded that prairie grass may have potential in the UK as a special-purpose species for conservation management but mainly in the milder climatic areas. The Phalaris species evaluated had disappointing agronomic potential.  相似文献   

7.
The chemical composition of silage consumed by cattle can influence the subsequent rumen microbial fermentation patterns and methane (CH4) emissions. The objectives of this study were to (i) evaluate the effect of ensilage on the in vitro rumen methane output of perennial ryegrass and (ii) relate the silage fermentation characteristics of grass silages with in vitro rumen methanogenesis. Three pre‐harvest herbage‐conditioning treatments and seven silage‐additive treatments were used in a laboratory‐scale silo experiment to produce a diversity of silage fermentation characteristics. Ensilage reduced (< 0·01) the in vitro rumen CH4 output (mL CHg?1 dry matter (DM) disappeared). This reflected differences in the direction of rumen fermentation (lower acetic (< 0·05) and higher propionic (< 0·001) acid proportions in volatile fatty acids) rather than major changes in the extent of in vitro rumen fermentation (i.e. mmol VFA g?1 DM). The magnitude of the decrease in CH4 output (mL g?1 DM incubated) owing to ensilage increased as the extent of silage fermentation, and in particular the lactic acid concentration, increased. In contrast, among silages with relatively similar extents of silage fermentation (i.e. total fermentation products), an increase in the proportion of lactic acid in silage fermentation products led to a more extensive in vitro rumen fermentation and thus to a greater CH4 output (mL g?1 DM).  相似文献   

8.
In some European countries, the majority of annual enteric methane (CH4) emissions by ruminants occur at pasture – a direct result of the predominance of grazing within ruminant production systems. However, there are only limited data available as to the effect of perennial ryegrass cultivar and season of harvest on CH4 production. Using the in vitro gas production technique, the effect of perennial ryegrass cultivar on fermentation characteristics and CH4 production was determined (Experiment 1) and the persistence of these traits throughout the growing season for two cultivars, identified from Experiment 1 as having either a high or low methanogenic potential, was examined (Experiment 2). In Experiment 1, organic matter (OM) digestibility and cumulative total gas production profiles were unaffected by cultivar but, with regard to the kinetics of CH4 production, the asymptote value (A), cumulative CH4 yield at 72 h, and the fractional rate (μ) of CH4 production at both time of 0·5A(T)(μCH4T) and at 48 h (μCH448h) were significantly (P < 0·05) different. The amount of digested OM, as a proportion of cumulative CH4 production (DigOM/CH4) at 24 and 72 h after commencement of inoculation, revealed that the amount of substrate required to produce 1 ml of CH4 also differed significantly between cultivars (P < 0·01). In Experiment 2, regrowth number significantly modified the majority of measured samples (P < 0·01); cultivar effects were limited to the lag phase of the cumulative CH4 production curve and DigOM/CH4 at 8 h only (P < 0·05). These results suggest that differences exist between cultivars in how OM is partitioned following microbial fermentation and that these differences demonstrate persistency throughout the growing season. In the course of time it may be possible to exploit these differences through cultivar selection and plant breeding programmes, and thereby reduce enteric CH4 emissions within pastoral production systems.  相似文献   

9.
Two additives (Silo Guard (SG) and propionic acid (PA)) were tested for their effects on the quality and aerobic security of sorghum–sudangrass hybrid silages (JC‐1 and WC‐2). Two sorghum–sudangrass hybrid varieties were harvested for ensiling without additives (CK) or after the following treatments: SG at 0·5% of fresh forage or PA at 0·5% of fresh forage, with three replicates per treatment. The addition of SG and PA both affected the fermentation quality and chemical composition of the silages by lowering pH and NH3‐N/TN and increasing lactic acid, the LA/TA ratio, WSC and CP concentrations compared with the untreated silages. In vitro DM digestibility (IVDMD), in vitro NDF digestibility (IVNDFD) and in vitro CP digestibility (IVCPD) were increased by SG in the JC‐1 silages and WC‐2 silages. Both additives improved the aerobic stability of sorghum–sudangrass hybrid silages. Furthermore, the additives reduced the mould counts and the aflatoxin and zearalenone levels compared with the untreated silages following aerobic exposure. Therefore, ensiling two sorghum–sudangrass hybrid varieties resulted in high‐quality silages. The addition of SG and PA improved silage quality, in vitro digestibility and aerobic security.  相似文献   

10.
Six annual legumes were evaluated as components of cereal-grass-legume intercrops in two experiments at two sites differing in elevation by 789 m. Barley (Hordeum vulgare L.) and Westerwolds rye-grass (Lolium multiflorum Lam.) were seeded on all intercrop plots. Dry-matter (DM) yield, crude protein (CP) and organic matter digestibility (OMD) were measured. DM yield and N content were used to estimate legume N fixation. Experiment 1 was conducted at both sites. At the lower site, Persian clover (Trifolium resupinatum L.) and annual alfalfa (Medicago sativa L.) accounted for 70% of the DM yield in harvest 1 (July), increased CP and OMD, but did not affect intercrop yield. They increased harvest 2 (August/September) intercrop yield by 263% and CP concentration by 65 g kg?1 DM. They increased harvest 3 (October) yield by 275% and CP concentration by 78 g kg?1 DM. Inclusion of striate lespedeza (Lespedeza striata) did not affect intercrop yield or quality. Annual legumes failed to establish at the higher elevation site and therefore had no effect on DM yield or forage quality. In Experiment 2, in which the performance of Westerwolds ryegrass was also compared with that of Italian ryegrass, and conducted at the lower site only, Persian clover and berseem clover (T. alexandrinum L.) increased CP of all three of the year's harvests. These two species contributed 29% of the DM yield in the first harvest (July) but did not affect total intercrop yield. They increased harvest 2 (August) yield by 313%. Persian clover increased harvest 3 (October) yield by 318% and berseem clover increased harvest 3 yield by 405%. Barrel medic (Medicago truncatula) and snail medic (M. scutellata) contributed 29% of harvest 1 yield, and increased both DM yield and CP content. Medics did not regrow. Aubade Westerwolds ryegrass contributed a greater percentage of the DM yield than did Maris Ledger Italian ryegrass at harvests 1 and 2. Ryegrass type did not affect total DM yield but did affect forage quality; intercrops containing the Italian ryegrass had higher CP at harvest 2 and higher OMD at harvest 3 than those containing the Westerwolds ryegrass. Over both experiments, at the lower elevation site, stands with Persian clover, berseem clover or alfalfa produced 80% of the yield of barley-ryegrass receiving 250 kg N ha?1, and 165% of the yield of unfertilized barley-ryegrass. Berseem and Persian clover fixed about the same amount of N over the growing season; 188 kg N ha?1 in Experiment 1 and 134 kg N ha?1 in Experiment 2.  相似文献   

11.
The selection and feeding of perennial ryegrass (Lolium perenne L.) varieties (PRV) or perennial grass species (PGS) may affect enteric methane (CH4) output because of changes in the fermentation dynamics in the rumen as a result of differences in herbage chemical composition. The objective of this study was to determine the effects of PRV and PGS harvested throughout the growing season on herbage chemical composition, and in vitro rumen fermentation variables and CH4 output per unit of feed using a batch culture technique. Seven PRV (Experiment 1: Alto, Arrow, Bealey, Dunluce, Greengold, Malone, Tyrella) and six perennial grasses [Experiment 2: perennial ryegrass (Navan), perennial ryegrass (Portstewart), cocksfoot, meadow fescue, tall fescue, timothy; defined as PGS], managed under a simulated grazing regime, were incubated for 24 h with buffered rumen fluid in two separate experiments. The CH4 output per unit of feed dry‐matter (DM) incubated was not affected (P > 0·05) by PRV (range of mean values across PRV of 23·9–25·3 (SEM 0·41) mL g?1 DM) or by PGS (25·6–26·6 (SEM 0·37) mL g?1 DM). The CH4 output per unit feed DM disappearing during the in vitro rumen incubation was not affected by PRV (33·9–35·1 (SEM 0·70) mL g?1 DM), and although there was an overall PGS effect (P < 0·05; 37·2–40·3 (SEM 0·71) mL g?1 DM), none of the paired contrasts between PGS were significant when analysed using Tukey adjusted comparisons. This outcome reflected either small‐scale or a lack of treatment effects on individual herbage chemical composition (e.g. 454–483 g NDF kg?1 DM, 215–224 g CP kg?1 DM and 94–122 g water‐soluble carbohydrate (WSC) kg?1 DM across PRV; 452–506 g NDF kg?1 DM, 208–243 g CP kg?1 DM and 73–131 g WSC kg?1 DM across PGS) and in vitro rumen fermentation variables. Hence, these results provide no encouragement that choices among the grasses examined, produced within the management regimes operated, would reduce enteric CH4 output per unit of feed in vivo. However, the technique utilized did not take account of animal × PRV or PGS interactions, such as potential differences in intake between animals, that may occur under farm conditions.  相似文献   

12.
The aim of the work was to study changes in the yield and nutritional characteristics of whole crop semi-leafless field pea over two growing seasons in the Po plain, Italy. Samples of two cultivars (Baccara and Sidney) were collected from flowering to grain maturity. The developmental stage, yield, dry matter (DM) content, crude protein (CP), neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent lignin (ADL), starch, water soluble carbohydrates (WSC), gross energy (GE), organic matter digestibility (OMD) and the net energy for lactation (NEL) were determined at each harvest. The forage characteristics were regressed on the growing degree days (GDD) with 4.4 °C as the base temperature. The DM yield increased with advancing maturity from 0.5 to 8.91 Mg ha−1, while the CP decreased from 261 to 159 g kg−1 DM. During the whole growth cycle the GE, OMD, NEL and milk forage units (milk FU) were almost steady. No differences were observed between the cultivars for any of the measured parameters. At grain maturity, the crop produced over 4.0 Mg ha−1 DM of grain. The CP, starch and WSC of the grain did not show any differences between the cultivars or years. The data showed that the nutritive quality of the forage of the semi-leafless grain pea harvested as a whole crop for ensiling purposes did not diminish with maturity and could help improve the self-sufficiency of dairy farms, in terms of home-grown protein forages.  相似文献   

13.
Interspecific hybridization with the close relative Trifolium nigrescens Viv. (Ball clover) is a possible strategy to increase the seed yield potential of white clover (T. repens L.). Fertile F1 plants have been used as the basis for several generations of backcrossing using T. repens as the recurrent parent. Forage quality of the parental species and backcross hybrids when grown in mixtures with perennial ryegrass (Lolium perenne L.) was compared in field plots over three harvest years. The dry‐matter digestibility (DMD) and crude protein (CP) concentration of the legume fraction was greater than that of perennial ryegrass, but the water‐soluble carbohydrate (WSC) concentration of the legume components was lower than that of perennial ryegrass. Differences in forage quality between T. repens and the backcross hybrids were relatively small. The WSC concentration of the backcrosses was less than T. repens but the CP concentration was greater. Significant differences in the forage quality of the companion grass were observed when grown with the parental species and the hybrids; however, these differences were attributed to the plots with T. nigrescens and the F1 plants, where the clover content was low. Few differences in the forage quality of the grass were measured when grown with T. repens and the backcross hybrids. The impact of these results on the use of these hybrids in cultivar development programmes is discussed.  相似文献   

14.
The addition of protein supplementation in a silvopastoral system can contribute to improved forage intake and digestibility. Our objective was to evaluate in vitro ruminal parameters, digestibility and gas production of Marandu palisadegrass [Urochloa brizantha (Hochst. ex A. Rich.) R. D. Webster] in a silvopastoral system and compare this to parameters obtained from diets with protein supplementation. Forage was sampled during the growing season (November to April) in 2016/17 and 2017/18. In vitro incubation treatments consisted of four levels of protein supplement (20% of crude protein; CP) in the diet (0.1, 0.2, 0.3 and 0.4 g/kg of body weight). The neutral detergent fibre, acid detergent fibre and indigestible neutral detergent fibre concentrations were highest in the first year. In the second year, CP concentration was 21% greater than in the first year. There was a linear increase for digestion rate, a quadratic effect for lag time and a linear decrease for average digestion time as supplementation levels were increased. The least lag time and digestion time occurred in the second year. There was no supplementation effect on ruminal pH, acetate and butyrate concentrations. Second-year in vitro dry matter digestibility (IVDMD) was greater than in the first year. Increases in supplementation levels linearly enhanced IVDMD and reduced methane (CH4) production. The inclusion of a protein supplement contributed to reduced CH4 and increased volatile fatty acids production; therefore, we recommended the supplement inclusion of >0.28 g/kg of BW for animals grazing in well-managed palisadegrass pastures.  相似文献   

15.
The effect of exit temperature of a rotary-drum-drier and of the length of pre-drying storage time on chemical composition and digestibility of dried grass cobs was investigated in two experiments. Increasing exit temperature from 77 to 166°C reduced WSC, NFE and available lysine content and increased CF content of dried grass. In vitro and in vivo DM digestibility was reduced by 16.4 and 24.5 percentage units respectively. Increasing length of pre-drying storage time also reduced WSC and available lysine content and reduced in vitro and in vivo DM digestibility by 2.4 and 5.1 percentage units respectively. The greatest reduction in in vivo digestibility in both experiments occurred in the CP fraction.  相似文献   

16.
Dorycnium hirsutum and D. rectum are perennial legumes which may have potential for use as pastures for the control of groundwater recharge in southern Australia. Little is known about the quality of the forage of Dorycnium species for grazing livestock or how these species respond to cutting. The effect of cutting height on plant survival, production of dry matter (DM), the proportion of leaf, edible stem (approximately <5 mm diameter) and woody stem in the DM and the nutritive value of the edible components was investigated. Biomass above five cutting‐height treatments (uncut, ground level, 5–8 cm, 10–15 cm and 15–30 cm above ground level) was removed at 8‐week intervals from plots of D. hirsutum and D. rectum from September 2002 to July 2003. In both species, plants subjected to lower cutting height treatments produced less DM above the height of the cut than those cut at higher heights. DM production declined over time in all treatments. Plants cut to ground level failed to regrow after the second harvest in D. hirsutum and the fourth harvest in D. rectum. Thus, these Dorycnium species were susceptible to high severity defoliations at 8‐week intervals. Negligible inedible woody stem was present in regrowth of both species after 8 weeks but D. hirsutum regrowth had a higher proportion of leaf (0·72) than D. rectum (0·56). Plants left uncut accumulated a large proportion of inedible woody stem in the DM (0·69 in both species) by July 2003, particularly at the base of the plant. Edible DM from regrowth of D. hirsutum and D. rectum had crude protein (CP) concentrations of 120 and 150 g kg?1 DM; dry matter digestibility (DMD) values of 0·45 and 0·58; organic matter digestibility (OMD) values of 0·50 and 0·64; neutral‐detergent fibre (NDF) concentrations of 370 and 290 g kg?1 DM; and acid‐detergent fibre (ADF) concentrations of 260 and 210 g kg?1 DM, respectively. Medicago sativa, grown under similar conditions, had higher digestibility values (0·63 DMD and 0·66 OMD) and similar CP concentrations to D. rectum (140 g kg?1 DM), but higher concentrations of NDF and ADF (410 and 290 g kg?1 DM). Leaf material from both Dorycnium species had a higher nutritive value than edible stems, with DMD and OMD values of leaf of D. rectum being 0·68 and 0·74 respectively. Uncut plants had a much lower nutritive value of edible DM than the regrowth from cut treatments; older material was also of a lower nutritive value. The relatively low nutritive value of even the young regrowth of Dorycnium species suggests that forage quality is a major limitation to its use. Forage of Dorycnium species could be used during periods when other sources of forage are in short supply but infrequent grazing it is likely to produce forage of a low nutritive value.  相似文献   

17.
Increasing the residual water‐soluble carbohydrate (WSC) concentration in silage may improve the nutritional value but impair aerobic stability. Our aim was to determine whether the residual WSC concentration and aerobic stability of low dry‐matter (<135 g kg?1) perennial ryegrass silage could be manipulated through the judicious use of additive and cultivar. Seven additive treatments, including three innovative treatments, were compared across four consecutive harvests of the cultivars AberDart (bred to accumulate high concentrations of herbage WSC) and Fennema (control). The standard of fermentation of silage ensiled without additive (untreated) ranged from very bad to excellent. Application of ammonium tetraformate, at 3 and 6 L t?1, or homofermentative lactic acid bacteria (LAB) alone had an inconsistent effect on the fermentation and aerobic stability, and negligible effect on residual WSC concentration. A mixture of Lactobacillus buchneri and homofermentative LAB was not an effective silage additive, producing generally poorly fermented silage. An antimicrobial mixture of sodium benzoate, sodium propionate, sodium nitrite and hexamethylenetetramine, applied at 2·5 and 5 L t?1, frequently improved the standard of fermentation, but the effects were subject to the application rate. The high application rate was the most effective additive evaluated at improving the fermentation and increasing residual WSC concentration and consistently produced silage of excellent standard of fermentation. However, the antimicrobial mixture was not effective at protecting against aerobic instability. The effects of additive treatment were largely inconsistent across cultivars. Overall, AberDart had a negligible effect on the silage fermentation, residual WSC concentration and aerobic stability compared with Fennema.  相似文献   

18.
The aim of this study was to evaluate the possible effect of pre‐fermented juice (PFJ) on the fermentation quality and nutritive value of first‐cut lucerne (Medicago sativa L.) silage. The PFJs were prepared using barley (B), wheat (W) and grass herbages (G). Both fresh (PFJ‐B, PFJ‐W and PFJ‐G) and frozen (PFJ‐BF, PFJ‐WF and PFJ‐GF) PFJs were examined. Frozen PFJs were prepared by freezing fresh PFJs at ?22°C with 20% glycerol (v/v). Treatments of lucerne silage included (1) control; (2) silage treated with PFJ‐B; (3) silage treated with PFJ‐W; (4) silage treated with PFJ‐G; (5) silage treated with PFJ‐BF; (6) silage treated with PFJ‐WF; and (7) silage treated with PFJ‐GF. All the treatments consisted of five replicate silos, and they were prepared in 1·0‐L glass jar silos. Results showed that silages treated with fresh and frozen PFJs, regardless of plant material, had better fermentation quality than the control silage in terms of lower pH, butyric acid (BA) and ammonia nitrogen (NH3‐N) concentrations, as well as higher lactic acid (LA) concentration (P < 0·05) and in vitro organic matter digestibility (IVOMD), metabolizable energy (ME) content, and gas production values (P < 0·05). Results indicated that PFJ treatments enhanced the nutritive value, fermentation quality and IVOMD, ME content and gas production values of first‐cut lucerne silages.  相似文献   

19.
20.
The objective of this study was to evaluate the effects of defoliation frequency (either at two‐ or three‐leaf stage) and nitrogen (N) application rate (0, 75, 150, 300, 450 kg N ha?1 year?1) on herbage carbohydrate and crude protein (CP) fractions, and the water‐soluble carbohydrate‐to‐protein ratio (WSC:CP) in perennial ryegrass swards. Crude protein fractions were analysed according to the Cornell carbohydrate and protein system. Carbohydrate fractions were analysed by ultra‐high‐performance liquid chromatography. Sward defoliation at two‐leaf stage increased the total CP, reduced the buffer‐soluble CP fractions and decreased carbohydrate fractions of herbage (P < 0·001). The effect of defoliation frequency was less marked during early spring and autumn (P < 0·001) than for the rest of the seasons. An increase in N application rate was negatively associated with WSC, fructans and neutral detergent fibre (P < 0·001), and positively associated with CP and nitrate (N‐NO3) contents of herbage. Nitrogen application rate did not affect CP fractions of herbage (P > 0·05). The fluctuations in CP and WSC contents of herbage resulted in lower WSC:CP ratios during early spring and autumn (0·45:1 and 0·75:1 respectively) than in late spring (1·11:1). The herbage WSC:CP ratio was greater (P < 0·001) at the three‐leaf than the two‐leaf defoliation stage and declined as the N application increased in all seasons (P < 0·001). The results of this study indicate that CP and carbohydrate fractions of herbage can be manipulated by sward defoliation frequency and N application rate. The magnitude of these effects, however, may vary with the season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号