首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Annual applications of the herbicides atrazine, simazine, linuron and diuron at 45 kg/ha were made to the same plots for 9 consecutive years from 1963 to 1971 in a peach (Prunus persica (L.) Batsch.) orchard located on sandy loam soil near Harrow, Ontario. Soil samples from these plots were collected in late October for the last 3 years (1969–1971) and trees were cut down in December, 1969. Herbicide residues were determined by bioassays based on the fresh and dry weight of oats (Avena sativa L.) and in one year results were confirmed by chemical analysis. Significant accumulation of herbicides was not observed. The maximum residue levels measured in October over the 3 years of sampling were 7′3 kg/ha for diuron, 3–8 kg/ha for linuron, 1–6 kg/ha for simazine and 04 kg/ha for atrazine in the top 15 cm of the soil profile. Simazine and atrazine showed a rapid decrease in amount after treatment but diuron and linuron were degraded more slowly. Measurable residues of all herbicides were confined to the upper 15 cm of the soil profile and the majority of herbicide remained in the 0–5-cm soil layer. Oats were planted in the orchard plots from 1972 to 1974 to follow the disappearance of the herbicides. All herbicides caused highly significant yield decreases in 1972, atrazine causing the least (38%) and diuron the greatest (86%) reductions. Diuron reduced the yield of oats in 1973 and caused a highly significant decrease in the weight of young oat plants in 1974.  相似文献   

2.
Summary. Immediate and residual phytotoxicity of binary combinations of several residual soil-applied herbicides at 0·1 and 0·5 ppm was compared to the expected response calculated by Colby's formula. In one experiment diuron was combined with diphenamid, fluometuron, noruron, prometryne or simazine, and in another experiment trifluralin was combined with diuron or dichlobenil. The observed phytotoxicity of most combinations was only slightly different from the expected response. One combination, diuron 0·5 ppm + fluometuron 0·5 ppm, affected mustard significantly more than expected and this synergistic interaction remained appreciable after incubation of 2 months. Interactions entre les herbicides persistants a faible concentration  相似文献   

3.
Ten herbicides, bromacil, chlorthal-dimethyl, diphenamid, diuron, fluometuron, neburon, prometryne, pyrazon, simazine and trifluralin at two doses were repeatedly sprayed, in autumn and in spring, for 4 consecutive years on non-cultivated, sprinkler-irrigated field plots. Herbicidal effect was assessed at 1–2 month intervals on the natural weed population and after each observation a paraquat + diquat spray destroyed emerged weeds. The response of various weed species to herbicides varied markedly but a herbicide-induced shift in the composition of weed population did not occur, presumably because of the paraquat treatment. The overall phytotoxicity to weeds present was, in decreasing order: diuron, bromacil, simazine, trifluralin, prometryne, neburon, fluometuron, pyrazon, diphenamid, chlorthal-dimethyl. Persistence of herbicides was in decreasing order: diuron = bromacil, simazine, neburon (at higher rate), fluometuron, trifluralin, prometryne. Control produced by pyrazon improved with the number of applications, but that of diphenamid and chlorthal-dimethyl remained weak and short. After repeated applications, the activity of these herbicides increased or remained at similar level, but in no case decreased. Soil samples were taken 5 months after each application and bioassayed. Phytotoxic residues were detected beneath the disturbed top-soil from bromacil, diuron, fluometuron and simazine after the first application, and from neburon after the second application; residues from trifluralin were found in the top soil only after the fifth application. After the seventh spraying, residues of bromacil were found in the 45–60-cm soil layer. Ammonia content in soil samples taken from treated plots after the fourth, sixth and seventh application was generally similar to the untreated control. In these samples, nitrate content appeared to be correlated negatively with remaining weed number; the control thus contained less nitrate than efficient herbicidal treatments. Soil samples taken after the seventh application of bromacil, diuron, fluometuron, neburon and simazine, which contained appreciable residual concentrations, did not show significant differences from control, in an in vitro nitrification test.  相似文献   

4.
The rates of degradation of simazine and linuron were measured in soil from plots not treated previously with these herbicides. Degradation of both compounds followed first-order kinetics and soil temperature and soil moisture content had a marked effect on the rate of loss. With linuron, half-lives increased from 36 to 106 days with a reduction in temperature from 30° to 5°C at 4% soil moisture, and from 29 to 83 days at 12% soil moisture. Similar temperature changes increased the half-life of simazine from 29 to 209 days and from 16 to 125 days at soil moisture contents of 4 and 12% respectively. A computer program which has been developed for simulation of herbicide persistence was used in conjunction with the laboratory data and the relevant meteorological records for the years 1964 to 1968 in order to test the model against previously published field persistence data for the two herbicides. The results with simazine showed a close correspondence between observed and predicted residue levels but those for linuron, particularly in uncropped plots, were satisfactory for limited periods only.  相似文献   

5.
Localized placement of prometryne, linuron and diuron in the soil at the first or second shoot internodes of dwarf broad bean (Vicia faba L.) equally reduced aerial plant growth, whereas simazine and atrazine had no effect. Growth reduction also occurred when the first shoot internode of scarlet runner bean (Phaseolus multiflorus L.) in the soil was treated with all five herbicides, especially with diuron. Localized placement of these herbicides at the first or second shoot internodes of vetch (Vicia sativa L.) in the soil equally reduced aerial plant growth. Foliar injury to vetch due to placement of these herbicides in the shoot zone of the soil was markedly reduced by simultaneous treatment with trifluraiin or nitralin which prevented adventitious root development on the shoot without otherwise affecting plant growth. This lack of root development on the shoots treated with trifluraiin was associated with a marked decrease in 14C-labelled atrazine uptake, which probably accounted for the reduction in atrazine phytotoxicity. A similar explanation may account for the reduced phytotoxicity of the other herbicides in the presence of trifluraiin or nitralin.  相似文献   

6.
In 1997 and 1998, five field studies were conducted at four Portuguese wine‐growing regions in order to evaluate the effectiveness of the chemical control of vineyard weeds under Mediterranean conditions using either reduced doses of residual herbicides or only foliar herbicides. Amitrole (3440 g a.i. ha?1), amitrole + glyphosate mono‐ammonium salt (1720 + 900 g a.i. ha?1), amitrole (3400 g a.i. ha?1), amitrole + diuron (2580 + 1500 g a.i. ha?1), amitrole + simazine (2580 + 1500 g a.i. ha?1), amitrole + terbuthylazine (2580 + 1500 g a.i. ha?1) and amitrole + diuron + simazine (2580 + 1300 + 1400 g a.i. ha?1) were assayed and compared with the following reference herbicides: glyphosate isopropylamine salt (1800 g a.i. ha?1), amitrole + diuron (2520 + 1680 g a.i. ha?1), diuron + glyphosate + terbuthylazine (1275 + 900 + 1425 g a.i. ha?1), amitrole + simazine (1900 + 3900 g a.i. ha?1) and glyphosate + simazine (800 + 2200 g a.i. ha?1). The herbicides were applied during late winter. The results indicated that good control was achieved by the application of foliar herbicides alone or of reduced rates of a mixture of residual herbicides with foliar herbicides for at least 2 months. Three months after application, the efficacy of post‐emergence herbicides and lower rates of residual herbicides decreased significantly in clay soils and under heavy rainfall conditions. Convolvulus arvensis– a weed that is becoming increasingly significant in Portuguese vineyards – was poorly controlled, even when glyphosate was used. Despite this, it can be assumed that in those regions in which the trials were conducted, it is possible to employ weed control strategies that entail the elimination or a reduction in the rate of residual herbicides.  相似文献   

7.
Fenuron, monuron, diuron, siduron, linuron and neburon were tested for their inhibition of soil urease activity in order to investigate relationships between fertilizers and herbicides. The inhibition of urea hydrolysis in the selected soils was 10–33% for fenuron, 10–39% for monuron, 10–35% for diuron, 8–38% for siduron, 9–36% for linuron and 12–30% for neburon. In the field greater effects might be expected since the fertilizer/herbicide ratio would be lower than the one considered here. Some agronomic aspects of the relationship between fertilizers and herbicides are discussed.  相似文献   

8.
Transgenic potato and rice plants were generated by the introduction of human P450 species, CYP1A1, CYP2B6, CYP2C9 and CYP2C19, which metabolized a number of herbicides, insecticides and industrial chemicals. The transgenic potato plant T1977 co-expressing CYP1A1, CYP2B6 and CYP2C19 genes showed remarkable cross-resistance to several herbicides with different structures and modes of action due to metabolism of these herbicides by the P450 species expressed. The transgenic rice plant 2C9-57R2 expressing CYP2C9 gene showed resistance to sulfonylureas, and the transgenic rice plant 2C19-12R1 expressing CYP2C19 gene showed cross-resistance to certain herbicides with different structures and modes of action. These transgenic plants appear to be useful for herbicide resistance as well as phytoremediation of environmental contaminants.  相似文献   

9.
BACKGROUND: Linuron is a globally used phenylurea herbicide, and a large number of studies have been made on the microbial degradation of the herbicide. However, to date, the few bacteria able individually to mineralise linuron have been isolated only from European agricultural soils. An attempt was made to isolate linuron‐mineralising bacteria from Japanese river sediment using a uniquely designed river ecosystem model (microcosm) treated with 14C‐ring‐labelled linuron (approximately 1 mg L?1). RESULTS: A linuron‐mineralising bacterium that inhabits river sediment was successfully isolated. The isolate belongs to the genera Variovorax and was designated as strain RA8. Strain RA8 gradually used linuron in basal salt medium (5.2 mg L?1) with slight growth. In 15 days, approximately 25% of 14C‐linuron was mineralised to 14CO2, with 3,4‐dichloroaniline as an intermediate. Conversely, in 100‐fold diluted R2A broth, strain RA8 rapidly mineralised 14C‐linuron (5.5 mg L?1) and more than 70% of the applied radioactivity was released as 14CO2 within 3 days, and a trace amount of 3,4‐dichloroaniline was detected. Additionally, the isolate also degraded monolinuron, metobromuron and chlorobromuron, but not diuron, monuron or isoproturon. CONCLUSION: Although strain RA8 can grow on linuron, some elements in the R2A broth seemed significantly to stimulate its growth and ability to degrade. The isolate strictly recognised the structural difference between N‐methoxy‐N‐methyl and N,N‐dimethyl substitution of various phenylurea herbicides. Copyright © 2010 Society of Chemical Industry  相似文献   

10.
A stable mixed bacterial culture which degrades the herbicide linuron was isolated from soil by enrichment with linuron in a liquid mineral medium. Radio-respirometry studies showed that the culture mineralised linuron completely. No intermediate degradation products were detected in the medium. The culture was able to utilise linuron as a source of both nitrogen and carbon and was also able to degrade the related herbicides monolinuron and chlorbromuron and the possible intermediate degradation products of linuron: 3,4-dichlorophenyl-l-methylurea, 3,4-dichlorophenylurea and 3,4-dichloroaniline. The culture was unable to degrade the 1,1-dimethyl substituted ureas monuron, diuron or metoxuron. The culture contained Gram-negative aerobic rods, and Gram-positive aerobic non-spore-forming rods and cocco-bacilli. Of 124 isolates from the mixed culture, none degraded linuron in pure culture, indicating that a consortium of organisms is involved. Further investigation suggested that Pseudomonas spp. were important components of the population responsible for degradation.  相似文献   

11.
Linuron (0.21 and 0.28 kg/ha) and linuron + MCPA (0.21+0.56 kg/ha) in a tank mixture with field rates of barban, difenzoquat and flamprop-methyl reduced the phytotoxicity of these herbicides to Avena fatua. When linuron was applied immediately following or 6 days after the A. fatua herbicides no reduction in phytotoxicity to A. fatua occurred, suggesting that the antagonism may be occurring as a result of physical or chemical incompatability when the herbicides are mixed together. The possibility of obtaining broad-spectrum weed control with one trip over the field by applying linuron and one of these wild oat herbicides separately but at the same time using a double-boom, double-tank system deserves evaluation. When linuron was applied in a tank mixture (0.21 and 0.28 kg/ha), immediately after, or 6 days after diclofop-methyl (0.70 kg/ha), there was no reduction of A. fatua control, and wheat tolerance to the tank mixture was good. This tank mixture offers potential for control under field conditions of A. fatua and some broad-leaved weeds in one spray operation. Linuron + MCPA (0.21+0.56 kg/ha) in a tank mixture severely reduced A. fatua control with diclofop-methyl. No loss of phytotoxicity to Fagopyrum tataricum occurred when the A. fatua herbicides tested were tank mixed with linuron or linuron + MCPA. Lutte contre Avena fatua et Fagopyrum tataricum avec des mélanges extemporanés de linuron ou de linuron + MCPA et des applications successives de linuron et d'herbicides de postlevée actifs contre A. fatua  相似文献   

12.
A modified leaf disc buoyancy procedure for the detection of photosynthesis-inhibiting residues in water is described. The modifications proposed, mainly the presence of sodium hydrogen carbonate in the infiltration solution, increased the sensitivity of the method and reduced the time required. The substituted urea and 1,3,5-triazine herbicides diuron, linuron, monuron, atrazine, ametryn and atraton were detected below 0.7 mg litre?1 using cucumber (Cucumis sativus L., cv. ‘Dalia’) leaf discs. A concentration as low as 0.09 mg diuron litre?1 could be detected. Although bean (Phaseolus vulgaris L., cv. ‘Bulgarian’) leaf tissue was less sensitive in this bioassay than cucumber, 0.3 mg diuron litre?1 could still be detected. The test, being very rapid (less than 30 min per determination) and relatively sensitive, could be used for the detection of photosynthesis inhibitors in recycled water used for irrigation.  相似文献   

13.
The following herbicides were applied annually from 1963 to experimental plots of appropriate crops grown in monoculture: MCPA 1.7 kg ha?1, triallate 1.7 kg ha?1, simazine 1.7 kg ha?1 and linuron 0.84 kg ha?1 (applied twice per year). Before the eighth treatment in 1970, nutrient status, pH and growth in greenhouse tests of a range of plants were similar in soils from treated and control plots. There were no significant differences in yield when several test crops were grown in the field plots in 1977. In a similar experiment which ran for 6 years, the same herbicides were applied twice per year at twice the above rates on each occasion (three times a year at 1.7 kg ha?1 in the case of linuron) to uncropped plots. Three years after the last treatment, there were no differences in extractable nutrients, pH, soil structure and crop yield on treated or control plots. These results support the conclusion from the main monitoring of the experiments reported elsewhere that annual treatments with these herbicides have had no adverse affect on the soil.  相似文献   

14.
In a field trial, different doses of five herbicides applied in autumn and late winder were compared for the control of barley grass (Hordeum leporium Link) in dryland Lucerne. Diuron at 1·1, 2·2, and 4·5 kg/ha and atrazine at 1·1 kg/ha were more effective in increasing Lucerne production than linuron at 4·5 kg/ha and various rates of dalapon and paraquat. Autumn application generally resulted in greater Lucerne production than late winter application. Most treatments reduced the amount of barley grass in the Lucerne. Diuron and atrazine also eliminated reduced the amount of barley grass in the Lucerne. Atrazine, diuron and linuron had a strong residual effect and reduced the density of subterranean clover and barley grass in the autumn following treatment.  相似文献   

15.
E. GROSSBARD 《Weed Research》1971,11(4):263-275
The effect of repeated annual applications over 7-8 years of MCPA, triallate, simazine and linuron to field plots on the evolution of CO2 and mineralization of nitrogen in soil samples incubated in the laboratory is described. The plots were either cropped and treated with standard doses, or uncropped and sprayed with doses 3-4 times above the level used in agricultural practice. While the applications of MCPA and tri-allate did not exert any inhibitory effects in soils from the uncropped plots those of simazine and linuron led to a lowering in CO2 output in several instances and in mineral N on infrequent occasions. These effects are assumed to be the result of a difference in the content of easily-degradable organic matter between the treated plots and the controls. A direct anti-microbial action of the two herbicides is not very probable because in laboratory experiments with simazine up to 512 ppm the output of CO2 and the mineralization of N was not affected while linuron at 500 ppm gave only a minor depression in CO2 evolution. Effects on soil fertility are unknown but seem unlikely in view of the small extent and infrequency of the reductions observed. On the cropped plots the MCPA and tri-allate treatment showed no effects. With linuron and simazine a significant lowering in respiration and mineralization of N occurred on single occasions only, during a 5-year period.  相似文献   

16.
In Italy suitable standard scenarios for pesticide risk assessment based on computer models are lacking. In this paper we examine the use of the VARLEACH model to assess the potential danger of ground‐water pollution by six herbicides (alachlor, atrazine, cyanazine, linuron, simazine and terbuthylazine) which are used to protect irrigated (maize) and non‐irrigated (sorghum) crops in the Po Plain, one of the most important agricultural lands in Italy. Two extreme scenarios are taken: real worst case (sandy soil) and real best case (clay loam soil). The simulation suggests that cyanazine, linuron and terbuthylazine can be safely used in clay loam soil in both non‐irrigated and irrigated crops, while alachlor, atrazine and simazine can be safely used only in non‐irrigated crops. On the other hand, the application of all the herbicides tested should be avoided in sandy soil, with the exception of linuron in non‐irrigated crops. © 2000 Society of Chemical Industry  相似文献   

17.
Atrazine, simazine, diuron, and linuron applied to soil increased the percentage moisture of oat (Avena sativa L.) shoots in bioassays at the lowest dose tested of 0·25 ppm. Further increases occurred up to 2 ppm but at higher concentrations the percentage moisture decreased. At all doses of each herbicide, shoot dry weight was decreased. In oats grown on soil collected from a peach orchard which had received repeated annual applications of these herbicides, the percentage moisture of the oat shoots was higher than the control value whenever the oat dry weight was decreased and provided a method of residue detection as sensitive as dry weight measurements. Treatment of oats by soil application of the above herbicides in bioassays also caused increases in the electrical conductivity of an aqueous extract of the oat shoots per mg of dry weight and this characteristic was slightly more sensitive than dry weight in detecting herbicides in orchard soil. The conductivity of the extract per mg of water in the shoots, however, only increased as percentage moisture decreased. The weight of neutral water-soluble material in oat shoots decreased much more rapidly than dry weight in bioassays with standard herbicide concentrations. Determination of the weight of neutral water-soluble material in oat plants grown on orchard soil samples indicated the presence of herbicide residues in 50% of the cases in which residues were not detectable by dry weight. The weight of neutral material as a percentage of dry weight was almost as sensitive. Chemical analysis of soil in which oat plants had a decreased level of neutral water-soluble compounds indicated that this characteristic had a lower limit of detection for herbicide residues of approximately 0.10 ppm.  相似文献   

18.
A soybean cytochrome P450 monooxygenase, designated CYP71A10, catalyzes the oxidative N-demethylation or ring methyl hydroxylation of a variety of phenylurea herbicides. The ectopic expression of CYP71A10 in tobacco was previously shown to be an effective means of enhancing whole plant tolerance to the compounds linuron and chlortoluron. Because P450 enzymes require ancillary proteins to catalyze the transfer of electrons from NADPH to the functional heme group of the P450, it is possible that the endogenous levels of these companion proteins may be insufficient to support the optimal activation of a highly expressed recombinant P450. In the present report, we have generated transgenic tobacco that simultaneously express CYP71A10 and a soybean P450 reductase. Transformed plants that express both CYP71A10 and the P450 reductase demonstrated 20-23% higher metabolic activity against phenylurea herbicides than control plants expressing CYP71A10 alone. These results suggest that herbicide tolerance strategies based on the expression of P450 genes may require concomitant expression of a cognate electron transport partner to fully exploit the herbicide metabolic capacity of the P450.  相似文献   

19.
Summary. The effects of localized herbicide placement at different internodes of pea ( Pisum sativum L. cv. Alaska) shoots below the soil surface after plant emergence were studied by removing the soil from around the shoots and replacing with herbicide-treated soil. The first internode proved insensitive to linuron, diuron, atrazine and simazine at 4·5 kg/ha, while treatment of the second and third internodes markedly reduced plant growth 4–6 days after treatment. Separate exposure of the first internode alone, and the second and part of the third together to 14C-labelled atrazine indicated no difference in herbicide metabolism. However, a two- to threefold increase in 14C uptake and movement to the foliar parts occurred when the second and part of the third internode was treated, as compared to first internode treatment. Thus the differential sensitivity of the internodes to atrazine, and possibly to the other herbicides, may be because the more mature first internode allows less uptake and subsequent movement to the foliar parts.
Absorption dans la zone des tiges des herbicides appliqués dans le sol chez Pisum sativum L.  相似文献   

20.
Simazine, linuron and propyzamide were incubated in 18 different soils at 25°C and field capacity soil moisture content. The degradation of each herbicide followed first-order kinetics. The half-life of simazine varied from 20 to 44 days, that of linuron from 22 to 86 days and that of propyzamide from 10 to 32 days. The rate of linuron degradation was highly significantly correlated with soil organic matter content, clay content, soil respiration and the extent of herbicide adsorption by the soil. The rate of simazine degradation was significantly and negatively correlated with soil pH, but the rate of propyzamide degradation was not related with any of the soil factors examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号