首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The controls of soluble Al concentration were examined in three situations of acid sulfate conditions:1) experimental acid sulfate conditions by addition of varying amounts of Al(OH)3(gibbsite) into a sequence of H2SO4 solutions;2)experimental acid sulfate conditions by addition of the same sequence of H2SO4 solutions into two non-cid sulfacte soil samples with known amounts of acid oxalate extractable Al; and 3) actual acid sulfate soil conditions.The experiment using gibbsite as an Al-bearing mineral showed that increase in the concentration of H2SO4 solution increased the soluble Al concentration,accompanied by a decrease i the solution pH, Increasing amount of gibbsite added to the H2SO4 solutions also increased soluble Al concentration,but resulted in an increase in solution pH.Within the H2SO4 concentration range of 0.0005-0.5mol L^-1 and the Al(OH)3 range of 0.01-0.5g(in 25 mL of H2SO4 solutions),the input of H2SO4 had the major control on soluble Al Concentration and pH .The availability of Al(OH)3,however,was responsible for the spread fo the various sample points,with a tendency that the samples containing more gibbsite had a higher soluble Al concentration than those containing less gibbsite at equivalent pH levels.The experimental results from treatment of soil samples with H2SO4 solutions and the analytical results of acid sulfate soils also showed the similar trend.  相似文献   

2.
The hydrous oxides of Mn, Fe, and Al avidly sorbed Sb from μM Sb(OH), solutions, with uptake levelling off as initial Sb concentration increased. Capacity values decreased along the sequence MnOOH > Al(OH)3 > FeOOH. The amount sorbed by each substrate decreased gradually at pH values > 6. Addition of 0.4M CH3COONa to the aqueous phase (to minimise retention of weakly bound Sb) had little effect on MnOOH uptake capacity (~160 mmol, kg?1 at pH < 7) but retention dropped rapidly at higher pH. With the other two substrates (pH 6–7) the calculated capacity values for specific Sb sorption were ~ 45 mmol kg?1 FeOOH and ~ 33 mmol kg? Al(OH)3; about a third of the total capacity values. On these substrates specific Sb sorption tended to peak in the pH 7 to 8 region. The pH response pattern was modified using Sb tartrate sorbate solutions. Factors influencing Sb sorption included substrate surface charge, chemical form of Sb and surface interactions. Formation of a sparingly soluble metal coating was indicated by the uptake plateaus observed when increasing amounts of solid were added to Sb solutions containing acetate.  相似文献   

3.
Predictions of changes in soil solution chemistry and exchangeable cations which occur on ash deposition after slash burning are complex and may be facilitated by the use of chemical models. Multi-ion sorption in the topsoil of an Amazonian Acrisol was studied by sequentially adding small amounts of electrolytes to soil and mixtures of soil and ash in batch experiments. A chemical equilibrium model that included inorganic complexation, multiple cation exchange and sparingly soluble salts (aluminium hydroxide and magnesian calcites) was used to interpret the results. The model predicted well the pH and sorption values in all experiments in which there was no addition of ash. The model suggested that cation exchange was the main process determining concentrations of soil solutions in all cases where neutral salt solutions were added, and that proton buffering was achieved by the dissolution of Al(OH)3 which was followed by Al3+ adsorption. Calculation of ion activity products in solutions from various batch experiments in soil + ash mixtures suggested that magnesian calcites of differing solubility may be in equilibrium with the activities of Mg2+ and Ca2+ in solution. An incongruent dissolution of Mg resulted in less soluble magnesian calcites in the ash. The model estimated satisfactorily the pH and the sorption of ions for all experiments with differing ash additions to the soil. Most of the Ca and significant amounts of Mg added in the ash are expected to remain for a long time in the soil and may determine the Ca and Mg status of the soil solution, primarily controlled by principles of solubility products.  相似文献   

4.
The substitutional solid solutions of goethite (a-FeOOH) and diaspore (α-AlOOH) have been investigated by X-ray powder diffraction and chemical analysis in order to establish the solubility limits of aluminium in the goethite structure. α-Fe1-xAIxOOH samples were obtained by ageing of coprecipitated amorphous (Fe,Al) hydroxides at pH 13 in NaOH and Na[Al(OH)4] solutions at 25°C (G25 series) and 70°C (G70 series), respectively. Chemical analysis reveals that the aluminium content of Al goethites is consistent with Al concentration in the coprecipitated hydroxides up to about 10 mol% Al. In Al goethites obtained from (Fe,Al) hydroxides with higher Al:Fe ratios, the relative Al content is considerably lower. It was found that pure ferrihydrite stored in the aluminate solution is also transformed into Al goethite. The X-ray diffraction results show a significant divergence of the unitcell parameters from Vegard's law. This points out the limited ranges of the solid solution between goethite and diaspore and suggests the formation of defect, cation-deficient structures.  相似文献   

5.
This paper presents aluminium (Al)-solubility data for two acid forest soils (Inceptisol and Spodosol), obtained in connection with lysimeter measurements (tension-cup and zero-tension lysimeters) and batch equilibrium experiments. The solubility of Al obtained in the batch experiments was used as a reference to test whether Al3+in soil solutions collected by the lysimeters was in equilibrium with secondary forms of solid-phase Al (Al(OH)3or organically bound Al). The relation between pH and Al3+activity found for the zero-tension lysimeter solutions collected from the Inceptisol agreed well with that obtained in the batch experiment. This suggests that Al3+in the lysimeter solutions were in, or close to, equilibrium with the solid phase, whether this was organically bound Al (A horizon) or an Al(OH)3phase (B horizon). For the tension-cup lysimeters, solutions obtained from the Inceptisol B and Spodosol Bs1 horizons were generally close to equilibrium with respect to secondary solid-phase Al (apparently Al(OH)3; average ion activity product was 109.3and 108.8, respectively), whereas the Inceptisol A and Spodosol Bh solutions were not. The Al solubility in Inceptisol A and Spodosol Bh horizons was consistently higher than that obtained in the batch equilibrium experiment, indicating that the sampled solution partly originated from the underlying horizons. Thus, tension-cup lysimeters should be used with care in soils (or in parts of soil profiles) having steep solute concentration gradients because the soil volume from which the sample is drawn with this lysimeter type seems to be poorly defined.  相似文献   

6.
Abstract

Precipitation of Al(OH)3 and aluminum phosphate may occur in nutrient solution if a large amount of Al and P have been added to a relatively high pH. The objective of this study was to develop and test a supernatant‐solution method for Al phytotoxicity studies with large and/or old plant seedlings. Effects of pH and additions of Al and P on ionic strength and concentrations of Al and P in supernatant nutrient solutions were investigated. Two sets of supernatant nutrient solutions at two pH levels were prepared. The pH 4.0 set and 4.5 set contained seven levels of Al (maximum Al concentration of 6355 and 378 μM) and similar P concentration about 32 and 6 μM P, respectively. The Al concentrations in supernatant solutions were dependent on preparation procedure. The pH 4.0 set was tested in the greenhouse study with 6‐month‐old citrus seedlings and found to be successful as culture solutions for Al phytotoxicity studies. These two sets are suitable for growth of large (about 0.3 m) and/or old (about 6 mon.) seedlings. This supernatant‐solution method makes it possible to study Al phytotoxicity of large and/or old seedlings, to avoid the confounding effects of P on Al with respect to plant growth, and to report the actual concentrations of Al and P in growth solutions.  相似文献   

7.
Abstract

Considerable uncertainty prevails concerning a suitable measure that can adequately describe Al phytotoxicity in nutrient and soil solutions. A study was conducted to evaluate the ability of a modified aluminon technique to discriminate between phytotoxic and non‐phytotoxic Al in solutions containing 80 μM Al with varying levels of CaSO4(625 to 10000 μM), at two pH levels (4.2 and 4.8). The concentration of Al measured by the modified aluminon technique ranged from 18.3 to 77.7 μM,thereby indicating substantial polymerization in some of the solutions. The greatest amount of polymerization occurred at pH 4.8 in the presence of 625 μM CaSO4. Increasing additions of CaSO4resulted in an increase in predicted activity of AlSO4 +at both pH levels. However, with increasing addition of CaSO4, the predicted activity of Al3+decreased at pH 4.2 or remained relatively constant at pH 4.8. The relationship between the sum of predicted activities of monomeric Al (SaAl mono.) in solution and tap root length of soybean [Glvcine max(L.) Merr.] cv. Lee was extremely poor, thereby indicating the inability of the modified aluminon technique to measure phytotoxic Al in solutions employed in the current study. This difficulty was due to failure of the modified aluminon technique to exclude lesser phytotoxic AlSO4 +species. The activity of Al3+was closely related to tap root length (R2= 0.865). The prediction of root length response to Al was further improved (R2= 0.899) by considering the solution Al index as: S[3aA13+ + 2aAl(OH)2+ + aA1(OH)+]. There was a poor relationship between tap root length and the concentration of polymeric Al, thus suggesting the lower phytotoxicity of this component under the prevailing solution conditions.  相似文献   

8.
Temperature affects the solubility of Al(OH)3(s), the solubility product formed, the hydrolysis and molecular weight distribution of aqueous Al species as well as the pH of the solutions. In the present work, identical solutions of inorganic Al (400, 600, and 800 μg Al L?1) were stored for 1 mo at either 2 or 25 °C. In the solutions stored at 25 °C pH varied from 4.83 to 5.07, while in the corresponding solutions stored at 2 °C pH varied from 5.64 to 5.78. In spite of the relatively low pH at 25 °C, significant amounts of high molecular weight Al species were precipitated from the solution and the solubility product (log* K s ) of (Al(OH)3) (s) was low (9.0). Substantial amounts of high molecular weight Al species were also formed at 2 °C, but the majority was present as colloids in the solution. The solubility product (converted from 2 into 25 °C) was 10.2, reflecting a solubility product of an amorphous (Al(OH)3)(s) phase. The different physico-chemical forms of Al present at 2 and 25 °C should have relevance for water/soil chemistry modeling.  相似文献   

9.
The adsorption isotherms (20°C) of phosphate on two potassium kaolinites and two aluminium oxides have been determined at pH values from 3 to 10 and at concentrations ranging from 10?4 to 10?2M. The reversibility of the adsorption with respect to pH and concentration has also been examined. The isotherms result from at least three types of adsorption site (regions I, II, and III) of widely different reactivities. The number of adsorption sites increases to a limit with decrease in pH for regions I and II. The behaviour of region III is more complex. The different adsorbents behave in essentially the same manner and differ only in the number of adsorption sites. It is tentatively suggested that regions I and II are located on an edge –Al(OH)2 of the adsorbents, while region III results from penetration into some amorphous region of the crystal surface.  相似文献   

10.
Toxicity of aluminium for the earthworm Eisenia andrei was studied in artificial soil at different pH levels. In a range-finding test, effects of three different aluminium salts on earthworm survival were determined. AlCl3 appeared to be most toxic, with LC50 values of 316, 359 and >1000 mg Al/kg dry soil at pHKCl of 3.5, 4.4 and 6.7, respectively in the control soils. Effects of this salt interfered with a strong decrease of soil pH with increasing aluminium concentration. Al2(SO4)3 was less toxic with LC50 values of 457, >4000 and >4000 mg Al/kg dry soil at pH 3.24, 4.86 and 7.22, respectively. Al2O3 did not affect earthworm survival at concentrations of 5000 mg Al/kg and pH levels between 2.4 and 7.1.In the main test, earthworms were exposed for 6 weeks to soils treated with Al2(SO4)3. As in the range-finding test, aluminium sulfate was most toxic at a pH of 3.4 with an LC50 of 589 mg Al/kg dry soil. At this pH, growth and cocoon production of earthworms were significantly reduced at 320 mg Al/kg dry soil, while at 1000 mg Al/kg dry soil all earthworms died. Survival was not affected by 1000 mg Al/kg dry soil at pH 4.3 and 7.3. At pH 4.3, growth was significantly reduced at 1000 mg Al/kg dry soil and cocoon production at 320 and 1000 mg Al/kg dry soil. At pH 7.3, aluminium only affected cocoon production at the two highest exposure levels. At the highest two exposure levels at pH 7.3, growth was significantly increased, suggesting a trade-off between growth and reproduction. These effects of aluminium at the highest soil pH could not be explained from the concentration of extractable, monomeric (labile) aluminium in soil, which decreased with increasing soil pH.  相似文献   

11.
Abstract

Vermicompost extract (VCE) demonstrated the ability to raise the measured pH level of an acid soil thus showing a potential to limit aluminium toxicity. The relatively high proportion of humic substances (60% of VCE solid matter) suggested the possibility of formation of stable chelates with aluminium ions. A rate‐based colorimetric method was utilised measuring at 585 nm the aluminium‐pyrocatechol violet complex (Al‐PCV3) after 60 seconds ("toxic”; Al index) and 2 hours ("total”; Al). By artificially altering the pH levels of various VCE:Al solutions, in the absence of soil, the relative and combined effects of pH and chelation on Al level reduction were observed. Inferences were drawn to predict the efficacy of VCE applied to acid soils displaying Al phytotoxicity. These are to be tested in subsequent work. In solutions above pH 6, a 98% reduction of total Al was obtained due to pH effects, whereas at pH 4, a 90% reduction was obtained due to chelation. The trends were similar for “toxic”; Al indices.  相似文献   

12.
Complexation with organic matter controls the activity of dissolved Al3+ in many soils. The buffering intensity of these soils is largely dependent on the H+/Al3+ exchange ratio, i.e. the number of protons consumed by the solid phase when one Al3+ is released. Here, the H+/Al3+ exchange ratio was determined from batch titrations using solutions of fulvic acid (FA) as a model for soil organic matter. Aluminium was added, from 1.04 to 6.29 mmol Al per g FA, which is within the range of humus‐bound Al found in the upper B horizon of podzolized soils. Furthermore, pH was varied with NaOH to give values between 3.5 and 5.0. The H+/Al3+ exchange ratio ranged between 1.49 and 2.23 with a mean of 1.94. It correlated positively with pH and the total concentration of Al present. Theoretically, this can be explained with a partial hydrolysis of bound Al. The slope of logAl (log10 of Al3+ activity) against pH generally underestimated the actual exchange ratio, which can partly be attributed to the systems being diluted (100 mg FA l?1). However, where 4 mmol Al or more had been added per g FA, the logAl slope gradually approached ?3 between pH 4.5 and 5.0. This might be the result of a shift from Al3+ activity control by humus complexation to control by Al(OH)3(s).  相似文献   

13.
Trivalent aluminium (Al) in solutions extracted Centrifugally from soils with pH ranging from 3.3 to 5.8 in 0.01 M CaCl2 was estimated from: (i) iterative computation using total Al (pyrocatechol violet), pH, major ions and Al ligands (PCV + GEOCHEM); (ii) 15-s reaction with 8-quinolinol (8Q); and (iii) electrode measurements of free and Al-complexed fluoride. Fluoride and hydroxyl complexes were major Al-components. With decreasing pH, complexed and total F increased along with Al, but free F decreased. Results from PCV + GEOCHEM and 8Q were consistent with each other and with solubilities of the clay minerals in the soils. Relative to these, the F-electrode method increasingly overestimated Al as pH increased and Al decreased; its evident failure was not attributable to La interference, OH interference, or the uncertainty of electrode calibration at F activities below 10?6 M.  相似文献   

14.
The pH buffering and aluminium solubility characteristics of acid soil are important in determining the soil's response to changes in precipitation acidity. The chemistry of soil organic matter (humic substances) plays a key role in both processes, yet is complex and still poorly understood. Nevertheless, models of humic substance chemistry have been developed, one of which is WHAM–S, which contains a model (Model V) of proton and metal binding at discrete sites on humic substances and considers electrostatic effects on the binding strength. Here we have tested the ability of WHAM–S to model solution pH and Al using batch titration studies on organic and mineral soil horizons from forested sites in Norway, Germany and Spain, with ambient pH values from 3.73 to 5.73. We optimized the model predictions by adjusting the amounts of soil aluminium and humic substances within defined limits, taking the contents of copper chloride‐extractable Al and the base‐extractable organic matter as starting values. The model simulated both pH and dissolved Al well with optimized amounts of aluminium and humic substances within the defined limits (root mean squared error for pH from 0.01 to 0.22, for p[Al]aq (total dissolved Al) from 0.03 to 0.49, five data points). Control of dissolved Al by dissolved organic matter was important particularly at above‐ambient pH. In two mineral horizons we improved the fits by assuming that Al could precipitate as Al(OH)3. The optimized model also gave reasonable predictions of pH and dissolved Al in supernatants obtained by repeated leaching of the soil horizons. The results show that humic substances dominate the control of pH and dissolved Al in most of the horizons studied. Control by Al(OH)3 occurs but is the exception.  相似文献   

15.
The processes controlling the retention and release of aluminium in acid forest soils are still subject to controversy, and therefore a universal hypothesis as to what mechanisms are operating has not been firmly established. By studying the Bs horizons of Swedish and Swiss podzolized soils, and by analysing data in the literature, we have found that aluminium hydroxide, and in some cases also poorly ordered imogolite, may control Al solubility in moderately acid (pH > 4.2–4.3) Bs horizons. The strongest evidence in support of the presence of a quickly reacting Al(OH)3 pool came from the temperature dependence of Al solubility in a Bs horizon, which was consistent with the reaction enthalpy of an Al(OH)3 phase such as gibbsite, and from the observation that the ion activity product for Al(OH)3 was the same regardless of whether equilibrium was reached from over‐ or undersaturation. The pool of Al(OH)3 is commonly small and may be completely dissolved after large additions of acid. This may be explained by the continuing redissolution of reactive Al(OH)3 to form less soluble imogolite‐type phases. By using the same methods it was found that soil suspensions did not reach equilibrium with poorly ordered imogolite even after 17 days. Thus, imogolite probably does not control Al solubility in the short term in many soils despite the common occurrence of this mineral. This is due to the relatively slow kinetics of imogolite formation and dissolution, especially at low temperatures and at small solution H4SiO4 concentrations.  相似文献   

16.
Soil chemical properties are affected significantly by surface charge characteristics of the soil. Interaction between oppositely charged particles in variable‐charge soils plays an important role in variation of soil electrochemical properties. In this study, the effects of Al oxides on surface charge and acidity properties of kaolinite and an Alfisol during electrodialysis were investigated. The results indicated that Al oxides, when mixed into kaolinite or the Alfisol, decreased the effective cation exchange capacity (ECEC) and exchangeable acidity and inhibited the decrease in pH. Gibbsite had less effect than γ‐Al2O3 and amorphous Al(OH)3 in reducing the ECEC and acidity of kaolinite and the Alfisol; γ‐Al2O3 and amorphous Al(OH)3 displayed comparable effects. However, this effect is inconsistent with the order of the surface positive charge per unit mass that the Al oxides carried. Their effect on the ECEC of kaolinite and Alfisol varied irreversibly with ionic strength of the bathing solutions. X‐ray diffraction spectra indicated that amorphous Al(OH)3 and γ‐Al2O3 were more effective than gibbsite in decreasing peak intensity of electro‐dialyzed kaolinite when mixed with these Al oxides at the same rate. The results demonstrated that Al oxides could decrease the effective negative charge and inhibit acidification of kaolinite and an Alfisol through diffuse‐double‐layer overlapping between oppositely charged particles and coating of Al oxides on these materials. Both mechanisms intensified with increasing rate of added Al oxides, which can therefore act as anti‐acidification agents in variable‐charge soils.  相似文献   

17.
We experimentally determined the adsorption characteristics of natural, freshly precipitated Al(OH)3 for SO4 and PO4. The fresh Al precipitate occurred in stream sediment of Jachymov Stream (Czech Republic). The Al-rich sediment strongly adsorbed added PO4 prior to acidification experiment; this sorbed PO4 was released only after substantial dissolution of the sediment, at pH?<?3.67. Sorption of P by Al(OH)3 appears to be an important control on dissolved PO4 concentration in surface waters, unless there is a large excess of PO4. Acidification of the sediment-solution system caused protonation of the sediment surface, thereby increasing the adsorption capacity for SO4. Maximum SO4 adsorption occurred at pH 4.2, below which dissolution of the sediment offset the increasing anion adsorption capacity, and formation of AISO4 + inhibited the increasing SO4 adsorption capacity. This research demonstrates that there are important pH thresholds for anion adsorption in freshwaters below which dissolution of the Al(OH)3 substrate reduces total capacity for anion adsorption. In freshwaters, with sufficient concentrations of suspended Al(OH)3, or in Al(OH)3-rich sediment, PO4 mobility will be severely restricted. Suspended Al(OH)3 in acidified surface waters cannot strongly influence SO4 concentrations because of the considerably higher total SO4 concentrations compared to the available surface area.  相似文献   

18.
Abstract

Growing evidence of positive crop responses to gypsum or phosphogypsum (PG) application in acid soils strongly support the use of these amendments as an ameliorant of subsoil acidity. Although gypsum improves Ca availability in subsoils, its role in alleviation of Al toxicity needs careful attention. In the current study, either PG, CaSO4.2H2O or CaCl2.2H2O was added (to supply 12 mM Ca) to solutions containing 40 μM Al at pH 4.1 + 0.1. Solution pH was gradually raised to 4.5, 4.8 and then to 5.3 at various time intervals during 25 d aging of the solutions at 25 + 1OC.

Concentration of Al measured by aluminon method without preacidification and preheating, referred to as “reactive Al”; in this paper, was 16 μM in 2 g L‐1PG solution without added Al. This accounted 38% of total soluble Al in PG solution. Addition of 2 g L‐1PG to solution containing 40 μM Al, resulted in only 42% of total Al in solution present in forms reactive with aluminon. According to MINTEQ speciation model, Al in solution was present as an entirely complexed form with F. An increase in solution pH up to 5.3 had no effect on measured concentration of reactive Al or predicted distribution of Al species.

Addition of CaSO4.2H2O to 40 μMAl solutions had no effect on the concentration of reactive Al within pH 4.1 ‐4.8, however, up to 62% of total Al was in a form complexed with SO4 2‐, as predicted by MINTEQ model. The concentration of reactive Al decreased by 60% at pH 5.3. Addition of CaCl2.2H2O also had no effect on the concentration of reactive Al within pH 4.1 ‐ 4.8. Nearly 73 ‐ 94% of total Al was present in Al3+form. An increase in pH to 5.3, decreased the concentration of reactive Al by 27%. The results suggest that ion‐pairing of Al with Fwould appear to be a possible mechanism for alleviation of Al toxicity by PG at pH range 4.1 ‐ 5.3. With regard to CaSO4.2H2O, at pH 4.1 ‐ 4.8 ion‐pairing with SO.4 2‐appears to be possible mechanism for the alleviation of Al toxicity. In addition, at pH 5.3 a considerable decrease in reactive Al was evident which would further alleviate Al toxicity.  相似文献   

19.
Areas a few square metres in size, devoid of higher vegetation other than moss, have been mapped at 600–700 m above sea level in the mountains of the western part of central Norway. The moss is covered by a grey precipitate during dry summer periods. The precipitate has been identified by ICP-AES analysis of HNO3-extract, X-ray diffraction (XRD) and by scanning electron microscopy (SEM) as an aluminium(Al)-hydroxide, probably amorphous Al-hydroxide and diaspore (Al(OH)3), containing 21–25% Al by weight. In comparison, the underlying moraine deposits contain 1.5–3.5% Al by weight. A small spring, where groundwater discharges, is located uphill of each contaminated area. The Al content of the water which emerges from these springs decreases downhill away from the spring and is inversely proportional to the pH. The runoff waters originating at the springs have been modelled using the computer-codes MINTEQA2 and ALCHEMI and are found to be saturated with respect to amorphous Al(OH)3. This study raises the very important question as to what extent a lower pH in the influent meltwater may leach out more aluminium and possibly lead to the formation of larger amounts of precipitate.  相似文献   

20.
The amount of aluminium sorbed by calcium bentonite from basic aluminium chloride solutions depends on the ratio of OH to A1 in the original solution. Except when OH/A1 = 0, only part of the sorbed A1 is exchanged by dilute solutions of barium or calcium chlorides and the exchange capacity of the clay decreases in proportion to the amount of aluminium retained by the clay. Al-bentonite appears to contain a mixture of A13+ and a basic cation in which OH/Al is 2.5. Neutralizing Al-bentonite with calcium acetate of pH 7.2 restores only part of the exchange capacity and some charged interlayer aluminium is thought to remain in the clay at this pH. It seems possible, therefore, that charged interlayer aluminium may be found even in soils with a neutral reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号