首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 204 毫秒
1.
研究大豆育成品种遗传多样性及群体结构对大豆遗传改良具有重要的指导意义.本文利用99个与大豆QTL性状相关的SSR标记,对黄淮海和南方产区的105份大豆育成品种进行遗传多样性和群体结构分析.结果表明:99个位点共检测出1142个等位标记,每个位点变异范围为5~24个,平均每个位点11.54个等位变异.按品种育成时期将群体...  相似文献   

2.
利用目标起始密码子(SCo T)标记对159份1923-2005年育成的中国黄淮海和南方大豆育成品种进行遗传多样性分析。从80条目标起始密码子(SCo T)标记引物中筛选出27条引物,27条引物共扩增出130条DNA条带,其中多态性条带110条,多态性比率为84.62%。Nei's基因多样性变化范围为0.24~0.49,平均为0.37;平均多态信息含量(PIC)为0.27。黄淮海大豆育成品种的Nei’s基因多样性指数和Shannon信息指数的平均值和变幅范围略高于南方品种,黄淮海大豆育成品种平均值多态信息含量(PIC)也略高于南方品种,但变幅范围略低于南方品种。基于SCo T标记遗传距离的聚类分析表明:I类群中99个主要是黄淮海大豆育成品种,Ⅱ类群中60个主要是南方大豆育成品种。随着时间的推移,大豆育成品种的遗传多样性呈递增趋势,至1971-1990年达到最高并保持不变,表明自70年代以来大豆育成品种遗传基础有所拓宽。结果表明SCo T可用于大豆育成品种遗传多样性研究,为拓宽大豆育成品种遗传基础提供重要参考。  相似文献   

3.
为采用新型分子标记技术有效评估与利用黄淮海和南方大豆种质资源,本研究通过目标区域扩增多态性(TRAP)功能标记对来自中国黄淮海和南方地域的158份大豆育成品种进行遗传结构及多样性分析。从随机组合的84组引物中筛选出21组多态性丰富的引物,共扩增出436条DNA条带,各引物条带数变幅为18~26个,平均20.7个。Nei′s基因多样性(H)变化范围为0.172 5~0.473 6,香农信息指数(I)变化范围为0.492 2~0.679 2,多态信息含量(PIC)变化范围为0.144 6~0.360 7。基于TRAP分子标记的聚类分析表明大豆材料共分为3类,其中I、II两小类亚群主要为黄淮海地域品种,III类大亚群黄淮海和南方地域品种分布均匀。Structure遗传结构分析将大豆育成品种划分为3个不同血缘关系。大豆材料的TRAP标记聚类分析和遗传结构分析结果表示大豆品种的分布无明显的地域相关性。  相似文献   

4.
黄淮海地区新育成大豆品系SSR标记多样性分析   总被引:1,自引:0,他引:1  
分子标记基因型分析是作物品种多样性评估、优异种质发掘与有效利用的重要手段。本研究利用覆盖大豆全基因组的60个微卫星(SSR)分子标记对以黄淮海地区新近育成品系为主的284份大豆材料进行基因型分析,以揭示我国黄淮海地区近期大豆育成品系的遗传多样性特点。结果表明:在供试群体中,60个标记共检测出363个等位变异,每个位点平均有6.05个;PIC指数变异范围为0.297~0.849,平均为0.614。黄淮海地区大豆新品系平均每个位点等位变异为5.75,PIC指数平均为0.604,表现出较高的多样性水平;不同省区中,北京、河北材料多样性最高。基于SSR数据的聚类分析,可将供试材料分为5大类,聚类结果与品系的地理来源相关。进一步选出8对SSR引物能够区分供试材料,可用于构建指纹图谱。  相似文献   

5.
培育灰斑病抗性品种可降低灰斑病对大豆生产的危害。本研究以202份黑龙江省近25年主栽的大豆品种构建关联群体,在人工接种条件下鉴定大豆品种对灰斑病10号生理小种抗病指数。利用187对SSR标记对遗传多样性、群体结构和连锁不平衡位点进行分析,通过GLM 和MLM两种模型对大豆品种的灰斑病抗性与标记进行关联分析,进一步分析抗性关联位点等位变异与抗性表型效应关系。结果表明:202份大豆品种对灰斑病10号生理小种抗性遗传变异系数为14.26%;187个标记在群体中共获得809个等位变异,平均等位变异为4.42个,变幅2~10个,其中17号染色体的平均PIC值最高(0.64),12号染色体的平均PIC值最低(0.26);检测到稀有等位变异146个,特有等位变异位点58个;无论共线性组合位点还是非共线性组合位点均存在不同程度LD,连锁不平衡P<0.05支持的对数占总对数的21.65%;202份大豆品种被划分为3个亚群,亚群POP1与POP3之间遗传距离最小(0.03),亚群POP2与POP3之间遗传距离最大(0.35);两种模型共同检测到11个SSR标记与灰斑病10号生理小种抗性显著关联,其中位于3号染色体上的Satt549的贡献率最大,可解释表型变异14.74%;具有增效效应的等位变异共有24个,增效效应超过10的等位变异有7个,增效效应最大为Satt703-247(19.62),典型载体材料为合丰29;其次是Satt587-185(19.58),典型载体材料为东农50;Satt549位点增效等位变异的平均效应值最高(13.87),Sat_366位点增效等位变异的平均效应值最低(0.84)。聚合优异等位变异和载体材料可为培育抗灰斑病品种的亲本选配和后代等位条带辅助选择提供依据。  相似文献   

6.
EST-SSR标记在冬小麦品种DUS测试中的应用   总被引:3,自引:0,他引:3  
为研究EST-SSR标记在应用于冬小麦品种DUS测试中的可行性,本研究利用21对小麦EST-SSR引物对45份黄淮海地区新育成冬小麦品种的遗传多样性进行了分析。在23份新育成品种中,共检测到61个位点,每个位点的等位基因数量为2~8个,平均2.90个;基因遗传多样性指数为0.08~0.79,平均为0.38。23份新育成品种的遗传距离为0.12~0.69,平均为0.40。在23份亲本品种中,共检测到63个位点,每个位点的等位基因数量为2~7个,平均3.00个;基因遗传多样性指数为0.08~0.79,平均为0.43;23份亲本品种的的遗传距离为0.09~0.81,平均为0.46。新育成品种遗传变异水平低于其亲本品种。聚类分析表明,45份品种可分为6个类群,部分申请品种和近似品种聚在一起,但其他申请品种和近似品种并未聚在一起,其中有些甚至距离较远。据此认为,EST-SSR标记用于DUS测试中近似品种的选择是可行的。  相似文献   

7.
江苏淮北地区小麦品种资源遗传多样性的SSR分析   总被引:1,自引:0,他引:1  
为明确江苏淮北地区小麦品种资源的遗传基础,选用31对SSR标记对107份近年来淮北地区所育小麦材料进行了遗传多样性分析,共检测出170个等位变异,单个引物的等位变异数为3~8个,平均为5.48个;位点多态性信息含量变幅为0.176~0.791,平均为0.543;3个基因组的平均等位变异丰富度及遗传多样性指数均为DBA;江苏淮北5个地区中以徐州小麦材料的平均遗传多样性指数最高(0.613),以淮安小麦材料与江苏淮北另外4个地区的平均遗传距离最小(0.282)。聚类结果表明,品种间遗传距离变幅为0~0.935,平均为0.586,除淮麦20与华瑞0049外,SSR标记能将其他供试材料相互区分开;所有供试材料被聚为3大类,聚类结果与品种(系)的系谱来源比较吻合。  相似文献   

8.
为了解山东省近年来育成品种(系)的遗传多样性,并筛选出与产量性状相关的分子标记及其等位变异,选用58对分布于小麦21条染色体上的SSR标记,对109个山东省近年来育成的品种(系)进行遗传多样性和关联分析。SSR标记多态性分析表明,本研究共检测到176个等位位点,各标记等位位点变化范围为2~6个,平均为3.034个;SSR标记多态性信息量(PIC)变化范围为0.111~0.829,平均为0.552。聚类分析显示,同一育种单位育成的或具有共同亲本的品种往往聚为一类。关联分析表明,与产量性状显著关联(P0.01)的标记有18对。对相对稳定的等位变异作进一步分析,发掘了一批与产量性状相关的优异等位变异,如增加产量的等位变异barc187-A240和cfd11-A270,降低株高的等位变异barc21-A110、cfd53-A240和Xwmc765-A190,增加穗粒数的等位变异barc181-A190,增加总茎数的等位变异cfd27-A220和swes247-A200,提高越冬率的等位变异barc177-A110。  相似文献   

9.
基于SSR标记的花生品种遗传多样性分析   总被引:2,自引:0,他引:2  
本研究从212对SSR标记引物中筛选出48对引物对63份花生品种进行遗传多样性分析,共得到251个等位变异,变异范围为2~13个,平均每个标记位点有5.23个变异;48个SSR标记的多态性信息含量为0.252~0.873,平均为0.647;63份材料的遗传多样性指数为0.508~2.243,平均值为1.272;品种间的遗传相似系数在0.657~0.960之间,不同类型的花生品种间的遗传相似性较小,不同来源花生品种间的亲缘关系也较远;聚类分析结果表明,63个花生品种在遗传相似系数为0.74处分为4大类,聚类分析结果与传统的花生分类结果吻合。  相似文献   

10.
喻俊杰  金艳  张勇  徐辰武 《麦类作物学报》2015,35(10):1372-1377
为了从分子水平上明确江苏省小麦品种资源的遗传多样性水平,选用138对微卫星分子标记(SSR)对江苏省近40年来的90份主栽小麦品种的遗传多样性进行研究。结果表明,在90份主栽品种中,138个SSR位点共检测到542个等位变异,平均每个位点有3.93个等位变异,变化范围2~11;多态性信息含量(PIC值)变化范围为0.032 6~0.824 5,平均为0.415 1;基因组的平均等位变异及PIC值均为BAD;对90个品种按照所应用的麦区可分为淮北麦区品种(45个)和淮南麦区品种(45个),淮北麦区品种平均PIC值为0.428 7,淮南麦区品种平均PIC值为0.356 6,淮南麦区品种基因多样性和PIC值显著低于淮北麦区,并且不同时期淮北和淮南麦区品种的遗传多样性也存在不同的变化趋势。  相似文献   

11.
用EST-SSR标记分析巴西橡胶树的遗传多样性   总被引:1,自引:1,他引:0  
利用19对EST-SSRs引物对41份巴西橡胶树材料(6个野生材料和35个栽培种)进行遗传多样性分析.结果表明:19对引物均获得了预期的扩增结果,得到92个多态性位点,每对引物检测到的等位基因数为2~7个,平均为4.84个.在相似系数为0.64的水平上,野生材料和栽培种区分开来,在相似系数0.75的水平上,又可将栽培种材料分为四个类群;栽培种和野生材料间的遗传距离在0.11~1.16之间,栽培种间遗传距离较小,野生材料间遗传距离相对较大.在栽培种和野生材料之间,遗传距离最大的是AC/T/15/114与PR261(1.16),最小的是保亭155与热研7-20-59(0.11).  相似文献   

12.
辽宁省野生大豆种质资源的SSR遗传多样性分析   总被引:2,自引:2,他引:0  
以30份2007年辽宁省的野生大豆种质资源为材料,利用40对SSR引物进行遗传多样性分析。结果表明:18对SSR引物扩增出129个等位变异,平均每个位点等位变异7.22个,Shannon-Weaver指数变化范围为1.1753~2.1234,平均为1.7285。中部平原半湿润区内的种质数、平均等位变异数和遗传多样性指数最高,其次为东部山地湿润区,西部丘陵半干旱区内分布种质数最少,其平均等位变异数和遗传多样性指数均最低。中部平原半湿润区和东部山地湿润区之间的遗传相似性最高(0.6496),遗传距离最近(0.4314),而西北部平原低丘半湿润区和西部丘陵半干旱区之间的遗传相似性最低(0.4326),遗传距离最远(0.8379)。聚类结果看到SSR分子标记的结果与品种的地理来源没有明显的相关性。  相似文献   

13.
小麦育种亲本材料遗传多样性的SSR分析   总被引:1,自引:0,他引:1  
为了明确目前中国小麦育种亲本材料间的遗传关系,为育种工作提供有益信息,利用74对SSR引物对103份小麦主要亲本材料进行了遗传多样性分析,共检测出298个等位位点,每对引物等位位点数在2~14之间,平均为4.03个.位点多态信息含量(PIC)变幅为0.020~0.899,平均为0.429.品种(系)间遗传相似系数(GS)变幅为0.369~0.948,平均值为0.636.74对SSR标记能将103份小麦品种(系)分为五大类.聚类分析结果与品种系谱来源及地域比较吻合.  相似文献   

14.
我国部分蓖麻品种遗传资源SSR分析及DNA指纹图谱   总被引:1,自引:0,他引:1  
为了解蓖麻品种间的遗传多样性、构建指纹图谱,利用171对SSR及EST-SSR引物对30份国内蓖麻品种和1份法国品种进行遗传多样性和亲缘关系分析。结果表明蓖麻品种间呈中度多态性,平均每位点有2.267个等位基因数,香农指数、期望杂合度和多态性信息含量(PIC)分别为0.553、0.347和0.289。聚类分析显示在相似系数0.730处将31份蓖麻品种分为7个类群,来源于相同育种单位或相同省区的大部分品种聚在一起。另外,利用10对扩增清晰、多态性好的引物构建了31份蓖麻品种的指纹图谱,可用于品种鉴别。  相似文献   

15.
河南省同名小麦地方品种SSR遗传多样性分析   总被引:2,自引:0,他引:2  
为了给河南省小麦地方品种的开发利用提供依据,利用SSR标记对白和尚头、白麦、白芒糙、出山豹等15组名称相同的小麦地方品种共计155份材料进行了组间和组内遗传多样性分析。结果发现,同名品种组内,15组材料的等位变异变化范围为47~79个,平均遗传相似系数变化范围为0.66~0.93,多态性信息含量分布范围为0.856~0.936;同名品种组间,155份材料共产生143个等位变异,遗传相似系数分布范围为0.75~1.00,平均遗传相似系数为0.90,多态性信息含量为0.981。分别对同名品种组内和组间进行聚类分析,结果发现,同名品种组内3组共7份材料遗传相似系数为1.00,而同名品种组间未出现遗传相似系数为1.00的材料。由此可见,河南省小麦地方品种具有丰富的遗传多样性,同名小麦地方品种间存在同名同质和同名异质的现象。  相似文献   

16.
对从国内收集的16个姬松茸菌株的基因组DNA进行SRAP分析,4对引物共获得31条明显的多态性扩增条带,其中多态性位点数为30,多态性位点百分比为96.77%;平均等位基因位点数为1.967 7,平均有效等位基因位点数为1.408 6,物种水平上Nei's基因多样度指数为0.246 8,Shannon遗传多样性指数为0.384 0。采用UPGMA方法进行聚类分析,结果显示不同姬松茸菌株间的遗传背景呈现一定的差异性,产地差异性大,种内差异性小;在相似系数约为0.7的水平上,16个菌株可以分为4大类。SRAP分子标记适合姬松茸的DNA遗传多样性分析,可以作为姬松茸菌种鉴定的依据之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号