首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Predator-prey interactions are of eminent importance as structuring forces for animal communities. The present study investigates if and how strongly the density of soil microarthropods is controlled by top-down forces, i.e. predation by mesostigmate mites (Mesostigmata, Acari). We set up a laboratory experiment running for ten weeks with undisturbed soil cores taken from the field using two densities of predatory mesostigmate mites: (1) ambient density (control) and (2) increased density (addition of seven Pergamasus septentrionalis and eight Lysigamasus sp. individuals). Increased predator density resulted in a decrease in the density of Oribatida, Collembola and Protura whereas the density of other taxa including Astigmata, Prostigmata and Uropodina was not significantly affected. Additionally, the species number of Oribatida was also not significantly affected. Taxa of Oribatida and Collembola were differently affected by increased predator density. Among Collembola, densities of Poduridae and Sminthuridae were reduced, whereas Entomobryidae were not affected. Among Oribatida, densities of Oppiidae and Suctobelbidae were reduced whereas Desmonomata, Poronota and Tectocepheus were not affected. Grouping of Oribatida into different size classes and into classes differing in sclerotization suggests that smaller mites (200-300 μm) and mites with less sclerotization were more heavily affected than larger mites and mites with strong sclerotization. The results indicate that predatory mesostigmate mites have the potential to control the density of certain taxa of soil microarthropods. In particular, small and little sclerotized prey is susceptible to predator control indicating that predator defense is an important component of the life history tactics of soil microarthropods, especially of Oribatida.  相似文献   

2.
A diverse assemblage of oribatid mites inhabits the canopy of coniferous trees in western North America. We tested the hypothesis that oribatid mites are microhabitat specific in old-growth Douglas fir, Western hemlock and western redcedar at the Wind River Crane Canopy Research Facility, Washington, USA. The upper 3 m of canopy of the three tree species were accessed using the canopy crane. Oribatida were extracted from 4 to 12 g dwt samples of alecterioid and foliose lichens using the twig-washing technique. Overall species richness was low, 16 species representing 11 families, with no species unique to this site. Species were absent from samples taken contemporaneously from the forest floor. All oribatid species were found in foliose lichens, whereas only nine species, in seven families, were recovered from alecterioid lichens. Oribatid species richness was lichen specific depending on the tree species. On Western hemlock both lichens supported similarly rich communities, but on Douglas fir and western redcedar foliose lichens supported the richer community.  相似文献   

3.
The effects of microhabitat diversity and geographical isolation on the structure of oribatid communities were studied in mangrove forests on the Ryukyu Islands of Japan. The study took place at three sites on two islands 470 km apart. Oribatid mites (Oribatida) were extracted from leaves, branches, bark of trunks (0-50, 50-100, and 100-150 cm high) and of knee roots, and from forest-floor soil and littoral algae, each defined as a microhabitat of oribatid mites. At the 0-50 cm height, the species composition of the oribatid communities on the knee-root bark and the bark of trunks of Bruguiera gymnorrhiza differed significantly from that on the other microhabitats. This difference was attributed to tidal flooding of the mangrove forests. Cluster analysis showed that oribatid communities in the same microhabitat at different sites tended to be more similar than those on different microhabitats at the same site. This implies that the species composition of oribatid communities in mangrove forests is more likely to be affected by factors responsible for microhabitat diversity (characterized specifically by the flooded trunks) than by geographical distance between the islands.  相似文献   

4.
Summary A comparison is made between oribatid fauna (Acari, Oribatida) in the urban regions of West Berlin and forest areas. There are characteristic species compositions living in urban soils, in epilithic moss cushions or on the bark of trees. The urban environment obviously causes a change in the species pattern in these types of habitats and minimizes the number of species in central urban regions. The most important regional factors are probably relative aridity, air pollution and habitat isolation, showing a similar increasing tendency from sub-urban to central regions of West Berlin. The effects of air pollution (SO2) on moss-inhabiting oribatid mites are analysed in 13 sites of the urban district of West Berlin. The use of moss- and bark-dwelling mites as bioindicators of air pollution is discussed.Soil oribatids might be useful bioindicators of soil pollution in further research.Dedicated to the late Prof. Dr. M.S. Ghilarov  相似文献   

5.
《Applied soil ecology》2006,33(3):293-304
Intensification of agricultural practices is leading to an increased rate of severe soil degradation in the central area of Argentina, with large areas being converted to arable lands. The application of different management practices to soil impacts edaphic mite populations by altering the organic inputs and by influencing the soil microhabitat. The objective of this paper was to evaluate the influence of three different land management practices on soil mite density in temperate agroecosystems of Córdoba, Argentina, in comparison with a natural soil. Standard abiotic soil properties were also analyzed. Six samples per plot and per sampling date were taken at bimonthly intervals from August 1999 to June 2001. A gradient of increasing soil degradation was evident in physical, chemical and physicochemical soil properties from natural to agricultural plots. Total mite density decreased as soil cultivation increased. However, different responses to land management were observed when comparing the different suborders of mites. Oribatida and Mesostigmata were more sensitive to the agricultural practices than Prostigmata and Astigmata. Densities of the last two suborders seemed to be unaffected by soil cultivation in some periods. Oribatida, Mesostigmata and pooled mite density showed a hump-backed relationship with management intensity, with a maximum in the cattle management. It is concluded that the influence of soil cultivation on soil mites as a whole was negative, with more intensively managed systems tending to reduce mite density, although different suborders were differentially affected by agricultural intensification. We suggest that the reduction of total mite, Oribatida and Mesostigmata densities in the high-input managements is mainly explained by the perturbations produced by conventional agricultural practices and by environmental soil conditions present in the intensively managed sites that were unfavorable for these groups of mites. The implication of the changes reported in mite abundances on soil processes is discussed.  相似文献   

6.
《Applied soil ecology》2007,35(1):140-153
This study explored the relationship between landscape-level factors (land use type) and the diversity of soil mites (Acari: Oribatida, Mesostigmata) at a within-site scale, using diversity measures including point diversity (local species diversity within a single sampling point), patterns of species turnover among the sampling points, and alpha diversity (total species richness in a habitat). The land use types included corn fields, intensive short-rotation forestry plantations, two types of abandoned agricultural fields, and hardwood forests.Land use type was identified as a significant factor influencing both small-scale (within individual soil cores) and site-scale diversity of Oribatida, which increased in the order “corn  willow  abandoned fields  forests”. There was no statistical relationship between land use type and abundance or diversity of Mesostigmata.Using a bootstrapping method to generate “random” communities, we found that all land use types had significantly more diverse patterns of species abundance than was expected by chance. On the other hand, the patterns of presence/absence of species were less diverse than expected by chance. Local site factors were significant in driving the patterns of diversity of soil mites at the site scale; land use type was less important. The overall structure of Oribatida and Mesostigmata assemblages was significantly related to land use type. We conclude that soil communities respond to land management on both local scales and habitat-wide scales.  相似文献   

7.
Anna Malmstrm 《Pedobiologia》2008,51(5-6):419-426
Forest fires markedly reduce the abundance of surface-dwelling soil animals; animal densities also decline in soil layers underlying the char layer. The aim of the present study was to determine lethal temperatures for different species within the more abundant microarthropod groups in boreal forests, namely Collembola, Protura, Mesostigmata and Oribatida. In the laboratory, forest soil humus containing naturally occurring microarthropods was heated in plastic bags to avoid desiccation. Each sample was heated to one of 11 different temperatures between 20 and 60 °C for 1, 4, or 12 h. At the 1-h exposure, 36 °C was the highest temperature tolerated before significant decreases in numbers were detected. The corresponding temperatures after 4- and 12-h exposures were 34 °C for Oribatida and 30–32 °C for Collembola, Protura and Mesostigmata, respectively. Individual species responded differently, and the most heat-tolerant species within Oribatida was Tectocepheus velatus (40 °C at 4-h exposure) while Friesea mirabilis and Mesaphorura sp. (36 °C at 4-h exposure) were the most tolerant within Collembola. During a forest fire, temperatures higher than those tolerated by the investigated groups and species may well be reached.  相似文献   

8.
We examined morphological modifications among oribatid species in five microhabitats in mangrove forests in the Ryukyu Islands of Japan. A total of 89 oribatid species were recorded from canopy (leaves and branches), bark of flooded trunks (trunks of 0–50 cm high and knee roots), bark of other trunks higher than 50 cm, and littoral algae in mangrove forests, and the forest-floor soil in an adjacent bank forest. There were no significant differences in the body length, body width, and notogastral length among oribatid species from the five microhabitats. The mean sensillus length of the oribatid species from the forest-floor soil was about twice as long as that from the other microhabitats. Claw morphology was characterized by two attributes: number (monodactyly and tridactyly) and length. In the canopy and trunks, the proportion of tridactyl species was higher than that of monodactyl species. On the other hand, the proportion of tridactyl species in the forest-floor soil accounted for only about 20%, and that in the flooded trunks and littoral algae approximated to zero. The mean claw length was larger in the oribatid species from the flooded trunks and littoral algae than in both monodactyl and tridactyl species from every other microhabitat. Trydactyl species with short claws in the arboreal environments might have been selected by a compromise between grip and mobility for unpredictable environmental changes such as wind and rain. The dominance of monodactyl species with a longer claw in the littoral environments implies a consequence of selection for regular tidal flooding, which requires oribatids to grip tighter on the substrate. The modifications in claw morphology of oribatid mites in mangrove forest might be interpreted as adaptations to a difference in the predictability of the environmental conditions of microhabitats.  相似文献   

9.
The effect of heavy metals and nitrogen air pollution on the vertical distribution of mites in soils in about 20 year old Scots pine forests was investigated. A high concentration of heavy metals greatly reduced the density and species richness of mites, especially in the Of/h and AEes horizons, whereas a low concentration increased the density in all soil horizons, compared with the control plots. A high concentration of nitrogen pollution reduced slightly the density of mites in all soil horizons, while lower concentrations increased their density: a medium concentration in the Ol and Of/h horizons, and a low concentration in the Ol horizon.  相似文献   

10.
Little effect of forest age on oribatid mites on the bark of trees   总被引:1,自引:0,他引:1  
This study investigates the effect of forest age (20-, 50-, 160-year-old, and primeval forest) on oribatid mite communities on the bark of oak trees in the National Park Pusza Białowieża in eastern Poland. We hypothesized that oribatid mite diversity on bark peaks at forests of intermediate age and that the number of parthenogenetic species of oribatid mites is highest in young stands. In contrast to these hypotheses, the diversity, density, number of juveniles, community structure and the mode of reproduction of oribatid mite species were not significantly affected by forest age. None of the oribatid mite species occurred exclusively on trees of a specific age. The results suggest that oribatid mite communities on the bark of trees are minimally affected by tree harvesting regimes. In contrast to oribatid mites in soil, communities on bark appear to be less sensitive to disturbances.  相似文献   

11.
Extensive afforestation took place in Ireland during the twentieth century and the forest cover currently represents about 10% of the land area. However, approximately 50% of this forest is Sitka spruce, a non-native species introduced from the North Western United States of America. Little is known about the microarthopods of these forests and the current study examined the mites (Oribatida and Gamasina) occurring in the canopy, moss (both on the soil surface and in the canopy) and soil of oak, ash, Scots pine and Sitka spruce forests in Ireland to compare the mite assemblages in each and to determine the associations between forest type and the form of constituent microhabitats in determining the structure of this fauna. There were significant differences between the diversity and species composition of the assemblages in the different forest types with the largest species richness occurring in oak forest and the smallest in first rotation Sitka spruce forest. Analysis of our data, together with the results from other studies, suggest that the differences arise because the variation between the architecture of the tree species is reflected in the structure of microhabitats such as the form of the bark and the extent of moss cover. Thus while the ultimate factors affecting the variation in the mite fauna may be the form of the microhabitats, these are intrinsic properties of the forests associated directly with the species of tree. Finally, our results do not support the view that exotic species will necessarily have low biodiversity of mites than native forests.  相似文献   

12.
We investigated changes in density, proportion of parthenogenetic species and individuals, and community structure of oribatid mites (Oribatida, Acari) along an altitudinal gradient in tropical montane rain forests in southern Ecuador. We hypothesized that the proportion of parthenogenetic species and individuals increases whereas density decreases with increasing altitude due to increased harshness of abiotic conditions known to favor parthenogenetic reproduction. In contrast to our hypothesis, the number of parthenogenetic species and individuals decreased toward higher altitudes indicating that changes in environmental conditions with altitude favor sexual rather than parthenogenetic reproduction. Low density of oribatid mites at high altitudes suggest that high frequency and density of sexual species is favored by the availability of resources and not by factors related to harsh abiotic conditions, finding mating partners or tight coupling with parasites or pathogens. Cosmopolitan decomposer taxa tended to be more frequent at higher altitudes indicating that these species are euryoecious. Overall, our data support the view that the reproductive mode of soil animals is predominantly controlled by the availability and accessibility of resources.  相似文献   

13.
Oribatid mites are important colonizers of young soils, but little is known about their immigration pathways. In this study, one often-stated hypothesis was tested quantitatively: that wind is an important dispersal pathway. The aim was (1) to detect wind dispersal in oribatid mites (using sticky traps at different heights above ground level) and to determine factors influencing wind dispersal, (2) to investigate whether oribatids can survive wind dispersal and immigrate by wind into young soils (using mini-pitfall traps in test plots with oribatid-free substrate, active immigration being prohibited) and (3) to find out whether those oribatids are able to colonize young soils (using soil cores from the test plots). The results demonstrate (1) that mainly arboreal oribatid species were dispersed by wind - even at 160 m height - and can therefore be spread over large distances. Nevertheless, about 10% of the wind-dispersed oribatid mites belonged to species able to live in the soil and may therefore be potential colonizers of young soils. The number of specimen and species transported by wind was the highest close to the soil surface and the number of dispersed individuals was mainly influenced by seasonality and humidity. The results also suggest that the probability of a soil oribatid being dispersed by wind depends on its original microhabitat (tree habitats > soil surface > deeper soil layers) and its body weight. It was also shown that soil-dwelling oribatid mites survived wind dispersal and immigrated by wind into the test plots and that colonization of the test plots took at least 2 months longer than immigration. However, colonization success was low during the first 2 years of investigation and only Trichoribates incisellus was found several times in the nutrient-poor substrate. Therefore, wind dispersal is an important migration pathway, especially for arboreal oribatids. We suggest that immigration into young soils most likely occurs by repeated short-distance dispersal. Only some species are able to survive the hostile conditions of wind dispersal as well as of pioneer soils, but those that do are potentially the founders of new populations.  相似文献   

14.
The influence of cadmium (Cd) on a tropical, parthenogenetic oribatid species Archegozetes longisetosus Aoki, 1965 was investigated. Mites were fed on green algae (Protococcus sp.) collected from the bark of bird cherry trees and contaminated in the laboratory with Cd(NO3)2. The control group was fed on uncontaminated algae. A low concentration of Cd (121 μg·g–1) evidently did not affect the mites, but a concentration of 247 μgCd·g–1 was harmful to them. It reduced fertility, increased mortality and prolonged the time of development of their offspring, and reduced their growth, compared to the control group. The concentration of 340 μgCd·g–1 and higher was lethal to the mites, as almost all of them died at the larval or protonymphal stage.  相似文献   

15.
This article is based on materials of original complex dynamic surveys carried out during 1986–2012 in natural ecosystems of the Russian Federation and Ukraine that were contaminated due to the Chernobyl disaster. A number of statements were formulated regarding the bioindication of basic components of the ecosystem (arboreal and herbaceous vegetation, mosses, lichens, and higher fungi), and some temporal changes were shown in ranks of the bioindicators.  相似文献   

16.
Ulrich Irmler 《Pedobiologia》2004,48(4):349-363
Collembola and oribatid mites were investigated at four sites along a cross section in an alder wood at a lake margin (northern Germany) over a period of 7 years. Monthly samples of the litter and the mineral layer were taken. Additionally, fluctuations of groundwater level, soil moisture, precipitation and soil temperature at 2 cm depth were measured. The alder wood was characterised by a depression between the lake margin and the foot of a hill slope, where waterlogged periods occurred. Groundwater level was the main environmental factor influencing the composition of collembolan and oribatid mite assemblages. Climatic factors, e.g. July temperature and July precipitation were also found to be significant factors, but with a much lower influence. Collembola predominantly showed higher variation in time than in space indicating that more collembolan species migrate within the investigated cross section or react with higher abundance fluctuations on the groundwater level changes, while Oribatida had a higher part of space variation, indicating that migration potential is lower and the environmental gradient is of higher influence on the distribution. Reaction time of soil fauna species on the groundwater fluctuation varies between 1 and 12 months. Retreat of Collembola from the waterlogged situation was between 4 and 6 months in the litter layer and 3 months in the mineral layer. Recolonisation of the waterlogged site lasted approximately 12 months. A positive reaction by precipitation was observed in four collembolan species that was 1 month in the edaphic species and between 9–10 months in the larger litter dwelling species. Only few oribatid mites reacted on the waterlogged situation.  相似文献   

17.
An urgent need exists for indicators of soil health and patch functionality in extensive rangelands that can be measured efficiently and at low cost. Soil mites are candidate indicators, but their identification and handling is so specialised and time-consuming that their inclusion in routine monitoring is unlikely. The aim of this study was to measure the relationship between patch type and mite assemblages using a conventional approach. An additional aim was to determine if a molecular approach traditionally used for soil microbes could be adapted for soil mites to overcome some of the bottlenecks associated with soil fauna diversity assessment. Soil mite species abundance and diversity were measured using conventional ecological methods in soil from patches with perennial grass and litter cover (PGL), and compared to soil from bare patches with annual grasses and/or litter cover (BAL). Soil mite assemblages were also assessed using a molecular method called terminal-restriction fragment length polymorphism (T-RFLP) analysis. The conventional data showed a relationship between patch type and mite assemblage. The Prostigmata and Oribatida were well represented in the PGL sites, particularly the Aphelacaridae (Oribatida). For T-RFLP analysis, the mite community was represented by a series of DNA fragment lengths that reflected mite sequence diversity. The T-RFLP data showed a distinct difference in the mite assemblage between the patch types. Where possible, T-RFLP peaks were matched to mite families using a reference 18S rDNA database, and the Aphelacaridae prevalent in the conventional samples at PGL sites were identified, as were prostigmatids and oribatids. We identified limits to the T-RFLP approach and this included an inability to distinguish some species whose DNA sequences were similar. Despite these limitations, the data still showed a clear difference between sites, and the molecular taxonomic inferences also compared well with the conventional ecological data. The results from this study indicated that the T-RFLP approach was effective in measuring mite assemblages in this system. The power of this technique lies in the fact that species diversity and abundance data can be obtained quickly because of the time taken to process hundreds of samples, from soil DNA extraction to data output on the gene analyser, can be as little as 4 days.  相似文献   

18.
苯磺隆除草剂对农田土壤动物影响的研究   总被引:6,自引:0,他引:6  
通过苯磺隆除草剂的模拟实验,研究了除草剂对土壤动物的影响。本实验共获得土壤动物1031个,隶属3门、5纲、9目。其中弹尾目和甲螨亚目为优势类群,其余为常见类群。本实验结果表明,随着苯磺隆除草剂处理浓度的提高,土壤动物种类和数量呈递减趋势。弹尾目和甲螨亚目可作为农药污染的重要指示生物。  相似文献   

19.
The patterns of oribatid communities were investigated in relation to elevations (700, 1700, 2700 and 3100 m a.s.l.) and geological substrates (i.e. non-ultrabasic and ultrabasic rocks) on the slopes of Mt. Kinabalu, Sabah, Malaysia. The density and morphospecies richness of oribatid mites were greater in the non-ultrabasic plot than in the ultrabasic plot at each of the same elevations. The density and richness of Oribatid mites decreased with elevation on both substrates, but the effects of elevation on the density on non-ultrabasic were less significant than on the ultrabasic substrate. Oribatid mite density correlated positively with the concentration of soil organic phosphorus and negatively with that of exchangeable Ca in soil. The richness of morphospecies of oribatid mites positively correlated with phosphorus concentration in litter, above-ground biomass, tree diversity and litterfall amount, and negatively correlated with elevation and Ca in soil. Morphospecies from families Galumnidae, Otocepheidae, Haplozetidae and Scheloribatidae were dominant in each plot. Canonical correspondence analysis (CCA) showed the importance of elevation for the community structure of oribatid mite. In conclusion, total density or morphospecies richness of oribatid communities was influenced by both geology and elevation, and morphospecies composition was strongly influenced by elevation.  相似文献   

20.
The potential as indicators of species richness were investigated for 178 species belonging to six ecologically defined species groups (epiphytic bryophytes on nutrient-rich bark, epiphytic macrolichens on nutrient rich bark, pendant lichens on conifer trees, bryophytes on siliceous rocks, bryophytes on dead conifer wood, and polypore fungi on dead conifer wood), using species data from 0.25 ha plots from three different coniferous forest areas (ca. 200 ha each). A species was defined as a potential indicator species for a species group within a study area if its distribution was statistically significantly nested within the species-plot matrix ranked according to species richness, and if the plot frequency of the species was less than 25%.Only two species were identified as potential indicators within all three areas and on average ≈80% of the potential indicator species were lost from one area to another. The results indicate that inconsistency between areas in the species’ frequency distributions and their position in nested hierarchies may strongly reduce the general predictive power of indicator species of species richness, even if significantly nested patterns are found at the community level. We suggest that indicators related to amount and quality of habitats may be an alternative to lists of indicator species of species richness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号