首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 86 毫秒
1.
对土地资源及其综合生产潜力的评价,在于阐明特定时空土地资源的性质、特点、生产潜力和利用价值的水平,为合理利用土地、充分挖掘生产潜力提供科学依据;对于地形起伏大、生态环境脆弱、土地类型丰富,但总体质量偏低的北京石质山区的进一步治理、规划和建设来说,显得尤为重要,亦有着鲜明的实际意义.该文在分析土地评价概念的基础上,界定了土地综合生产潜力的内涵,利用模糊数学、统计学、系统分析等手段,采用定性和定量分析相结合的方法,结合北京石质山区特定时空上土地单元的自然及社会属性,对土地综合生产潜力评价指标选取的基本条件、构建指标体系的基本原则和方法等加以探讨,提出了土地综合生产潜力评价模型,并应用于密云水库上游黄峪口小流域,得到理想效果.  相似文献   

2.
井沟河小流域水土保持林体系设计   总被引:1,自引:0,他引:1  
本文以河北省涿鹿县井沟河小流域为例,详细探讨了永定河上游黄土丘陵区小流域水土保持林体系的设计方法和步骤,并对其经济效益、水保效益、生态效益和社会效益进行了估算。本设计可在相邻地区类似小流域水土保持林体系设计中参照应用。  相似文献   

3.
治理小流域脱贫文/范云天范学增河北省蔚县北水泉镇立足本地实际,大力治理大沟流域的水土流失,建梯田,栽果树,在荒芜的黄土丘陵区闯出了一条富路,使流域内16个行政村的5264人一举摘掉贫困帽子,有的甚至达到小康水平。大沟流域位于北水泉镇东北部黄土丘陵区。...  相似文献   

4.
豫西黄土丘陵区森林植被恢复技术研究   总被引:1,自引:0,他引:1  
分析了豫西黄土丘陵区的地形、气候和林业资源情况,将豫西黄土丘陵区的宜林地类型划分为宜林荒山荒地、冲积平原、疏林地、低质低效林地和煤矸石山地,根据不同地类的特点,提出了不同的植被恢复技术。  相似文献   

5.
左云县五路山地区土地资源生产潜力评价研究   总被引:1,自引:0,他引:1  
本文通过野外实测结合航片判读并应用地理信息系统软件——Region Manager,对左云县五路山地区土地资源整体情况做出了详细的调查,明确了五路山地区土地利用现状,完成了土地资源生产潜力的评价,为合理利用土地资源,充分发挥土地生产潜力提供了依据。  相似文献   

6.
黄土丘陵区小流域植物群落物种多样性空间分布特征   总被引:1,自引:0,他引:1  
研究黄土丘陵区植物群落物种多样性对评价本区域生态环境质量,探求恢复生态系统环境功能的途径有重要的理论价值。通过对康家圪崂沟小流域17个典型样地物种多样性的测定,得出如下结论:植物群落物种多样性在小流域空间的分布表现为:坡下>坡中>坡上;不同坡向的植物群落多样性指数差异更明显,Simpson指数阳坡>半阳坡>阴坡,Shannon-Wiener指数和Pilow均匀度指数与Simpson指数相反;多样性指数在坡度上的差异很小,没有明显的变化趋势;黄土丘陵区植物群落的多样性与受人为干扰程度密切相关。加强该地区的环境保护,减少人为干扰,能有效地保护生物多样性。  相似文献   

7.
根据河南省退耕还林各工程区的气候差异,地形、地貌、植被、土壤的特点,将其划分为太行山低山丘陵区、豫西黄土丘陵区等6个类型区,提出了不同类型区的主要造林模式。  相似文献   

8.
森林气候生产潜力研究李建国(中国林科院林业研究所,北京100091)关键词森林,气候生产潜力,估算模型中国分类号S716.3STUDIESONPRODUCTIONPOTENTIALOFFORESTCLIMATELiJianguo(Researchln...  相似文献   

9.
根据子洲县黄土丘陵区气候与土壤环境、生产条件以及有机苹果生产要求,提出了子洲县沟壑区山地标准化苹果栽培周年管理技术。  相似文献   

10.
敖汉旗位于赤峰市东南部,地处燕山山脉东段努鲁尔虎山北麓、科尔沁沙地南缘,南与辽宁省毗邻,东与内蒙古通辽市接壤,总土地面积8300平方公里,辖15个乡镇(苏木)、3个办事处,总人口60万.气候类型属大陆性季风气候,雨热同季,年降水量在340毫米左右,为典型的干旱半干旱地区.全旗地形复杂,地貌类型多样,南部为浅山丘陵区,中部为黄土丘陵区,北部为浅沙坨沼区,简称为“南山、中丘、北沙”.  相似文献   

11.
From 2002 to 2003, based on the investigation of sample plots and stem analysis of remained plantation communities in the areas of returning farmland to forest in the 1980s in Datong County, Qinghai Province, this paper studies tree productivity and moisture potential productivity of six types of plantations on the land of returning farmland to forest, such as green poplar (Populus cathayana Rehd.) and shrub mixed forest, Asia white birch (Betula platyphylla) and China spruce (Picea asperata) mixed forest, Dahurian larch (Larix gmelinii) pure forest, China spruce pure forest and Asia white birch pure forest and so on. The results show that: in sub-humid region of Loess Plateau, 3 000 trees per hm2 is a proper standard of planting density. Under current condition, the productivity index of green poplar and shrub mixed forest, Asia white birch pure forest, China spruce pure forest, and Asia white birch and China spruce mixed forest with the density of 2 100–3 333 trees per hm2 can serve as potential productivity standard of actual biomass of arbor established forest. In sub-humid area, Thornthwaite Model is adopted to estimate plant climate potential productivity, which is about 8 462 kg•hm–2•a–1. The actual potential water productive efficiency of Purplecone spruce (Picea purpurea) and Asia white birch pure established forest are 17.22 and 22.14 kg•mm–1•hm–2•a–1 respectively, and that of green poplar and shrub mixed established forest, and Asia white birch and China spruce mixed established forest are 21.14 and 19.09 kg•mm–1•hm–2•a–1 respectively. The potential productivity of green poplar and shrub mixed forest, Asia white birch and China spruce mixed forest, China spruce pure forest and Asia white birch pure forest which have grown into forest with the density of 3 000 trees per hm2 have attained or been close to that of local climax community, which is local maximum tree productivity at present. These types of forestation models are the developing direction of the returning farmland to forest project.  相似文献   

12.
Biomass, carbon content, carbon storage and spatial distribution in the 32-year-old Phoebe bournei artificial forest were measured. The mean biomass of the forest stand was 174.33 t/hm2, among which the arbor layer was 166.73 t/hm2, which accounted for 95.6%. Carbon contents of stems, barks, branches, leaves, root, shrub layer, herb layer, lichen layer and litter layer were 0.5769 g C/g, 0.4654 g C/g, 0.5232 g C/g, 0.4958 g C/g, 0.4931 g C/g, 0.4989 g C/g, 0.4733 g C/g, 0.4143 g C/g, 0.3882 g C/g, respectively. The mean carbon content of soil was 0.0139 g C/g, which reduced gradually along with soil depth. Total carbon storage of the P. bournei stand ecosystem was 227.59 t/hm2, among which the arbor layer accounted for 40.13% (91.33 t/hm2), the shrub layer accounted for 0.17% (0.38 t/hm2), the herb layer accounted for 0.76% (1.71 t/hm2), the lichen layer accounted for 0.28% (0.63 t/hm2), and the litter layer accounted for 0.29% (0.66 t/hm2). Carbon content (0–80 cm) of the forest soil was 58.40% (132.88 t/hm2). Spatial distribution ranking of carbon storage was: soil layer (0–80 cm) > arbor layer > herb layer > litter layer > lichen layer > shrub layer. Net production of the forest stand was 8.5706 t/(hm2·a), in which the arbor layer was 6.6691 t/(hm2·a), and it accounted for 77.82%. Net annual carbon sequestration of the P. bournei stand was 4.2536 t/(hm2·a), and the arbor layer was 3.5736 t/(hm2·a), which accounted for 84.01%. __________ Translated from Scientia Silvae Sinicae, 2008, 44(3): 34–39 [译自: 林业科学]  相似文献   

13.
根据1973—2008年间7次全国森林资源清查数据及中国森林植被分布特征,从不同森林类型和不同气候带定量分析中国森林植被净生产量及平均生产力动态变化规律。研究结果表明:中国森林植被净生产量和平均生产力总体呈增加趋势,植被净生产量由1973—1976年间的803.359×106t·a-1增加到2004—2008年间的1 478.425×106t·a-1,增加了84.03%;相应的森林植被平均生产力由7.302 t·hm-2·a-1增加到9.502 t·hm-2·a-1,增加了30.13%。不同森林类型中,阔叶混交林、杨桦林、落叶阔叶林和常绿阔叶林对中国森林植被净生产量贡献较大;热带林、阔叶混交林、常绿阔叶林平均生产力较高,油松林和马尾松林平均生产力相对较低。不同气候带中,热带地区森林植被净生产量呈波动中减少趋势,其它气候带呈增加趋势;1973—2008年间各气候带森林植被平均生产力为:热带(18.625 t·hm-2·a-1)寒温带温带(9.610 t·hm-2·a-1)亚热带(8.499 t·hm-2·a-1)暖温带(7.800 t·hm-2·a-1)。  相似文献   

14.
Multipurpose tree species (MPTs) were studied in an agroforestry arboretum under subtropical humid climate in Northeast India. Out of 12 MPTs planted under agroforestry systems, Acacia auriculiformis in spacing of 2 m × 2 m (2500 stems·hm^-2) could have the potentiality to meet the timber/fuelwood requirement due to its high wood production of 635 m^3·hm^-2 with mean annual increment (MAI) of 2.54×10^-2 m^3.treel.a^-1 in a short rotation period of 10 years. Thus, A. auriculiformis is a short rotation forest tree species suitable to grow in subtropical humid climate. On the other hand, at 16 years of age, Eucalyptus hybrid and Michelia champaca in spacing of 3 m × 3 m (1111 stems.hm^2) produced appreciably high timber volume of 315 m^3.hm^-2 and 165 m^3.hm^-2 with MAI of 1.77×10^-2 m^3.tree^-1·a^-1 and 0.92×10.2 m^3.tree^-1.a^-1, respectively. At 16 years of age, Gmelina arborea produced a timber volume of 147 m^3.hm^-2 with MAI of 1.47×10^-2 m^3.tree^-1.a^-1 followed by Samania saman (140 m^3.hm^-2), Albizziaprocera (113 m^3·hm^-2) and Tectona grandis (79 m3.hm^-2) with MAI of 1.40, 1.13 and 0.78 × 10^-2 m^3 .tree^-1a^-1, respectively in 4 m × 4 m spacing (625 stems.hm^-2). Gliricidia maculata and Leucaena leucocephala could be used as live fences around the farm boundary to supply their N-rich leaves for mulch as well as manure to crops. In agroforestry arboretum, direct seeded upland rice (Oryza sativa - variety, AR-11), groundnut (Arachis hypogaea - variety, JL-24) and sesamum (Sesamum indicum - variety, B-67) were grown during the initial period upto 8 years of tree establishment. Under other MPTs, there was a reduction in crop productivity as compared to open space. After 8 years of tree establishment, horti-silvi and silvi-pastoral systems were developed and pineapple (Ananas comosus - variety Queen), turmeric (Curcuma longa -variety RCT -1) and cowpea (Vigna sinensis - variety Pusa Barsati) as forage crop were raised. The productivity of p  相似文献   

15.
This study investigated root biomass and productivity in dominant populations in western Sichuan, China. A total of 4 plots (Picea balfouriana plantation for 22 age in Maerkang, 9 trees, mean DBH of population for 10.4 cm and height for 10.5 m; Larix maxteriana plantation for 22 age in Wolong, 9 trees, mean DBH of population for 17.0 cm and height for 13.8 m; Abies fabri plantation for 35 age in Ebian, 18 trees, mean DBH of population for 14.1 cm and height for 11.9 m; Larix kaempferi plantation for 23 age in Miyaluo, 8 trees, mean DBH of population for 17.4 cm and height for 14.5 m; a 20 m×25 m plot located on each of the 4 types in western Sichuan, China) were randomly selected and excavated to a depth of 60 cm for each of the 4 plantation types. To estimate the root biomass of an individual tree using D 2 H, an exponential model was selected with the highest coefficient ranging from 0.94 to 0.99. The total root biomass per hm2 varied among plantation population types following the order: L. kaempferi (37.832 t/hm2) > A. fabri (24.907 t/hm2) > L. maxteriana (18.320 t/hm2) > P. balfouriana (15.982 t/hm2). The biomass fractions of a given root size class compared to the total root biomass differed among plantation population types. For all 4 studied plantation types, the majority of the roots were distributed in the top 40 cm of soil, e.g., 97.88% for P. balfouriana population, 96.78% for L. maxteriana, 95.65% for A. fabri, and 99.72 for L. kaempferi population. The root biomass fractions distributed in the top 20 cm of soil were 77.13% for P. balfouriana, 77.13% for L. maxteriana, 65.02% for A. fabri and 80.66% for L. kaempferi, respectively. The root allocation in the 0–20, 20–40, and 40–60 cm soil layers gave ratios of 34:12:1 for P. balfouriana, 24:6:1 for L. maxteriana, 15:7:1 for A. fabri, and 64:4:1 for L. kaempferi populations. The root biomass density of dominant plantation population was 10.782 t/(hm2·m) for P. balfouriana, 8.230 t/hm2·m) for L. maxteriana, 24.546 t/(hm2·m) for A. fabri, and 13.211 t/(hm2·m) for L. kaempferi population, respectively. The root biomass productivity was found to be 0.57 t/(hm2·year) for P. balfouriana, 0.83 t/(hm2·year) for L. maxteriana, 0.71 t/(hm2·year) for A. fabri and 1.64 t/(hm2·year) for L. kaempferi population, respectively. __________ Translated from Acta Ecologica Sinica, 2006, 26(2): 542–551 [译自: 生态学报, 2006, 26(2): 542–551]  相似文献   

16.
In recent years, the relationship between biodiversity and ecosystem stability, productivity, and other ecosystem functions has been extensively studied by using theoretical approaches, experimental investigations, and observations in natural ecosystems; however, results are controversial. For example, simple systems were more stable than complex systems in theoretical studies, and higher productivity was observed in human-made ecosystems with poorer species composition, etc. The role of biodiversity in the ecosystem, such as its influence on sustainability, stability, and productivity, is still not understood. Because accelerated soil-erosion in various ecosystems has caused a decrease of primary productivity, a logical way used in the study of the relationship between biodiversity and ecosystem function can be used to study the relationship between plant species diversity and soil conservation. In addition, biodiversity is a product of evolutionary history, and soil erosion is a key factor controlling the evolution of modern environment on the surface of the Earth. A study on the relationship between biodiversity and soil-erosion processes could help us understand the environmental evolution of Earth. Fifteen 10 m × 40 m standard runoff plots were established to measure surface runoff, soil erosion, and total P loss in different secondary communities of semi-humid evergreen broad-leaved forests that varied in composition, diversity, and level of disturbance and soil erosion. The following five communities were studied: AEI (Ass. Elsholtzia fruticosa + Imperata cylindrical), APMO (Ass. Pinus yunnanensis + Myrsine africana + Oplismenus compsitus), APLO (Ass. Pinus yunnanensis + Lithocarpus confines + Oplismenus compsitus), AEME (Ass. Eucalyptus smith + Myrsine africana + Eupatorium adenophorum), and ACKV (Ass. Cyclobalanopsis glaucoides + Keteleeria evelyniana + Viola duelouxii). Tree density, the diameter of the tree at breast height, and the hygroscopic volume of plant leaves were determined in each plot. Results indicated that surface runoff, soil erosion, and total P loss decreased as a power function with increase in plant species diversity. Their average values for three years were 960.20 m3/(hm2 · year), 11.4 t/(hm2 · year), and 127.69 kg/(hm2 · year) in the plot with the lowest species diversity, and 75.55 m3/(hm2 · year), 0.28 t/(hm2 · year), and 4.71 kg/(hm2 · year) in the plot with the highest species diversity, 12, 50, and 25 times respectively lower compared with the lowest species diversity plots. The coefficients of variation of surface runoff, soil erosion, and total P loss also followed a power function with the increase of plant species diversity, and were 287.6, 534.21, and 315.47 respectively in the lowest species diversity plot and 57.93, 187.94, and 59.2 in the highest species diversity plot. Enhanced soil conservation maintained greater stability with increased plant species diversity. Plant individual density increased linearly and the canopy density and cross section at breast height increased logarithmically with the increase of plant species diversity. The hydrological function enhanced as the plant species diversity increased. There were obviously relationships between plant species diversity and rainfall interception, coverage, and plant individual density, which was related to soil conservation functions in the five forest communities. The complex relationships between plant species diversity and the above-mentioned ecological processes indicated that plant species diversity was an important factor influencing the interception of rainfall, reducing soil erosion and enhancing the stability of soil conservation, but its mechanism is not known. This experiment showed that plant species diversity promoted soil and nutrient conservation and ultimately lead to the increase of the primary productivity of the ecosystem, and was thus a good way to study the relationship between biodiversity and ecosystem stability. Rainfall interception could be assessed easily using the hygroscopic volume of plant leaves. Because there were strong correlations between plant species diversity and soil conservation functions, the patterns of plant species diversity will show a certain level of predictability on the interactions of life systems with surface processes of the Earth. __________ Translated from Journal of Plant Ecology, 2006, 30(3): 392–403 [译自: 植物生态学报  相似文献   

17.
在晋西黄土区,研究了荒草地、锦鸡儿灌木林地和刺槐乔木林地3种典型植被不同土层的土壤密度、含水量、贮水能力和入渗性能的差异及其相关性,结果显示:3种植被类型都能有效减小表层(0 20 cm)土壤密度;3种植被类型表层(0 20 cm)的土壤滞留贮水量较大,锦鸡儿林地(198.80 t·m-3)刺槐林地(166.10 t·m-3)荒草地(87.37 t·m-3),20 40 cm土层的土壤滞留贮水量也是锦鸡儿林地(127.30 t·m-3)刺槐林地(55.60 t·m-3)荒草地(47.30 t·m-3),表明在3种植被类型中,锦鸡儿林地对晋西黄土丘陵区土壤水分的涵养作用最强;锦鸡儿林地的土壤稳渗速率最大,为1.80 mm·min-1,刺槐林地次之,为1.46 mm·min-1,荒草地依然最小,且锦鸡儿林地土壤的均渗速率最大,为4.81 mm·min-1,其次是刺槐林地,为4.51 mm·min-1,荒草地最小。土壤密度与滞留贮水量呈极显著负相关关系,与土壤初渗速率和均渗速率呈极显著负相关关系,与稳渗速率呈显著负相关关系,非毛管孔隙度与稳渗速率和均渗速率存在极显著相关关系。Kostiakov模型和Horton模型对晋西黄土区3种植被类型土壤入渗过程模拟的拟合系数高达0.97和0.95,明显优于Philip模型(0.43)。  相似文献   

18.
内蒙古磴口河套地区4a灌溉试验表明:(1)采用目前生产上的15000-22500m^3/(hm^2.a)灌溉量,使土壤表层的含盐量由灌溉前的0.5g/kg上升到1.0g/kg以上。(2)按合理灌水定额公式计算,年灌溉量以7500m^3/hm^2为宜;最佳含水率下限19.99%;在灌水期地下水位为1.97-3.02m,变幅1m左右(3)年灌水次数应控制在8-12次。  相似文献   

19.
山西太岳山典型灌木林生物量及生产力研究   总被引:32,自引:1,他引:32       下载免费PDF全文
本文采用收获法研究了山西太岳林区榛子,虎榛子,黄刺玫3种有代表性的灌木林类型的生物量和生产力。3种灌木群落的总生物量分别为:54.3.43.3,35.7t.hm^-2,其中木本层,草本层,枯落物层的生物量占落总生物量比例为:榛子群落75.67%,9.9%,14.4%;虎榛子群落80.3%,8.7%,11.0%,黄刺玫群落76.7%,11.0%,12.3%,在活生物量的构成中,3种妙落的地上部分生物量分别占32.7%,30.6%,34.7%;地下部分生物量分别占67.3%,69.5%,65.3%;这种生物量结构与同一地区的乔木林生物量的结构正好相反,对灌木树种生物量的相对生长研究结果表明,灌木树种的总生物量,枝干生物量及叶生物量与基径平方乘高(D2H)之间存在极为显著的相关关系,表现出与乔木树种类似的相对生长规律,关系式W=a(D^2H)^b可较好地描述这种规律。  相似文献   

20.
热带山地雨林生态系统水文化学循环规律的研究   总被引:7,自引:1,他引:7       下载免费PDF全文
根据5a定位观测,对尖峰岭热带山地雨林更新林生态系统的水文化学循环规律的数据分析表明,年均降雨量为2668.3mm,其中总径流量占46.7%,蒸散量53.3%,冠层截留量14.0%。N、P、K、Ca、Mg的年均降雨输入量为78.4kg/(hm2·a),总径流输出56.7kg/(hm2·a),净积累21.6kg/(hm2·a);Si、有机C、Al、Mn的年均降雨输入量为25.0kg/(hm2·a),总径流输出为112.3kg/(hm2·a),净损失87.3kg/(hm2·a),更新林系统仅处于更新进展过程中,同时证实了冠层对降水化学的淋溶效应,净淋溶系数达4.11;提出了降雨、林内净降雨、总径流的各水化学物含量与其相应水量的回归模式  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号