首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
水产养殖参数无线测量网络的长生命周期研究   总被引:3,自引:3,他引:0  
在水产养殖参数的无线测控网络中,测量节点能耗不均匀,个别节点由于能耗大过早失效,降低了网络的有效生命周期。该文对采用平面路由协议和低能量自适应分群分层路由协议(LEACH)的测控网络进行对比试验,发现采用LEACH协议网络的有效生命周期延长19%以上。在LEACH协议的水质参数测量网络中存在2个缺陷:一方面无线测控网络中每个簇的簇首功耗远远大于普通节点,LEACH协议通过等概率随机选择簇首部分改善了节点能耗的均衡性,但水产养殖参数监控中每个簇首功耗不同,为此在LEACH优化协议中依据节点剩余能量的多少选择簇首,使节点的剩余能量更趋均衡;另一方面水产养殖池中距离基站较远的节点容易提前失效,主要是因为监控面积大,簇首节点与基站采用单跳通信,远距离节点被选为簇首后向基站发送数据通信距离远,路径损耗采用多路径衰落信道模型,衰减指数为4。在优化协议中,对远距离簇首与基站通信采用双跳通信,使路径损耗采用自由空间信道模型,衰减指数为2。试验表明,无线传感网络有效生命周期延长了8%,各节点失效时间更趋接近。  相似文献   

2.
基于能量异构双簇头路由算法的水稻田无线传感器网络   总被引:3,自引:3,他引:0  
针对无线传感器网络分簇结构中簇头节点能量消耗过快而容易死亡的问题,提出了一种适合于水稻田监测的混合天线组网通信的能量异构双簇头分簇路由算法。首先估算全网平均剩余能量确定阈值,根据阈值选择主簇头;然后依据节点向主簇头节点发送应答信号强弱的原则,确定簇成员节点;最后,按照簇内成员节点剩余能量大小,选择一个副簇头。副簇头负责收集并融合簇内其他成员节点的数据,从而减轻主簇头的能量消耗,降低主簇头的死亡概率。采用能量异构网络对本算法进行仿真,网络节点初始总能量的平均值与同构网络节点初始能量相等,结果显示,该算法异构网络相对于LEACH (low-energy adaptive clustering hierarchy) 算法同构网络的稳定周期延长了12.1%。采用无线通信模块nRF905射频芯片和TDJ-0825BKM1定向天线,在水稻田进行混合天线通信试验,测试了定向天线水平覆盖范围;在此基础上的网络模拟试验结果表明,基于该算法的通信网络稳定周期比值相比于LEACH、LEACH-E (LEACH-energy adaptive and uneven cluster)、DEEC (design of energy efficient clustering)、EADC (energy aware data-gathering cluster-heads) 4种算法分别提高了46%、47%、58%、11%。该研究可为大面积水稻田无线传感器网络组网进行环境参数实时监测提供理论参考。  相似文献   

3.
基于农田无线传感网络的分簇路由算法   总被引:2,自引:2,他引:0  
由于无线传感网络节点的能量有限,如何有效地利用有限资源以及实现数据的有效传输,成为研究热点问题.针对农田区域广以及种植作物杂等环境特征,为延长农田无线传感器网络的生命周期,提高传感网的数据包投递率,构建了适用于农田信息采集的无线传感器网络架构,提出了一种混合式的分簇路由算法HCRA(hybrid clustering routing algorithm),研究了簇的形成、簇头竞选以及簇间路由过程,并对HCRA算法与低功耗自适应集簇分层型算法LEACH(low-energy adaptive clustering hierarchy),以及使用固定簇半径的混合节能分簇算法HEED(hybrid energy-efficient distributed clustering)进行了仿真试验.结果表明:在1 000次迭代周期下,采用HCRA算法的网络生存时间要比LEACH算法长约28%,比HEED算法长约12%;采用HCRA算法的数据包投递率要比LEACH算法高约34个百分点,比HEED算法高约16个百分点.该研究可为农田环境信息采集自动化监测系统提供参考.  相似文献   

4.
该文基于ZigBee无线传感器网络技术,设计了一种节能型水产养殖环境监测系统,用于实时监测水的温度、pH值、溶解氧浓度和浊度等参数。系统采用CC2530为核心处理器设计无线传感器节点;运用开源的Z-stack协议栈开发了节点应用程序,提高了系统的稳定性和可靠性;使用9 V锂电池为无线传感器节点供电,实现了系统的无线化;采用C/S和B/S混合编程模式开发了简单直观的本地用户监测界面和远程监测网站,实现了系统的本地监测和远程监测;采用分时、分区供电的方式和数据融合技术延长了节点的生存时间。该文介绍了系统软硬件设计方法,并重点阐述了软件和硬件的节能策略。实验室测试表明,采用方案4(传感器不一直工作,数据全部发送),节点数据采集周期为10 min,节点能正常工作94 d,实际系统上线时,节点数据采集周期为30 min,节点预计能正常工作280 d左右;运用节能策略后,节点寿命延长了1倍。在甘肃省某虹鳟鱼养殖基地进行了实地测试,路由节点剩余能量约占总能量的47%,终端节点剩余能量约占总能量的33%,路由节点能量消耗较快,距离汇聚节点最近的16号路由节点的寿命预估只有134 d。结果表明该系统具有功耗低、运行稳定、网络寿命长等优点,能实现水产养殖环境的实时监测,具有很好的市场前景和推广价值。  相似文献   

5.
农田无线传感器网络部具有署面积大、汇聚节点位置不固定的特点,为了解决移动汇聚节点高效、低能耗地收集网络数据的问题,提出了一种基于层次型拓扑结构的移动终端数据收集方案—DCSMT_H。方案综合考虑节点位置及当前剩余能量选举簇头并形成层次型拓扑结构,根据移动终端当前位置灵活构建簇间数据汇聚路由。仿真实验结果表明,DCSMT_H方案的网络能耗低,该方案与LEACH相比能有效延长网络生存期约15%,能够较高效地应用于移动终端收集大规模农田生产信息。该研究为提高无线传感器网络在精准农业中的应用水平做出了有益探索。  相似文献   

6.
基于无线传感网络的规模化水产养殖智能监控系统   总被引:12,自引:8,他引:4  
为了解决规模化水产养殖中有线监控系统带来的不利影响,并能实现对环境因子的准确测量与控制,该文介绍了一种基于无线传感网的智能监控系统在规模化水产养殖中的应用。系统利用对协议栈进行小幅的修改,完成了人工设置每个养殖池为一个簇,并通过适当修改路由协议,将自动选择簇头的工作变为人工设置固定簇头,大幅减少节点本身的计算工作,从而实现节能目的。控制器利用模糊控制与神经网络相结合的算法对数据进行处理分析,实现闭环控制。结果表明,系统内数据通信通畅,温度误差在±0.5℃范围内,溶氧量误差在±0.3 mg/L范围内,pH值误差在±0.3范围内。各养殖关键环境因子均满足控制精度,达到了设计要求,能够满足规模水产养殖智能化的需要。  相似文献   

7.
微纳米增氧水添加对土壤中溶解氧耗散的影响   总被引:1,自引:1,他引:0  
微纳米增氧灌溉可缓解作物根区氧气限制,促进作物代谢活动和生长发育。为探究微纳米增氧水添加后土壤溶解氧耗散规律及其增氧效果,该研究以初始干旱土壤和初始湿润土壤为研究对象,使用微氧电极技术,监测不同微纳米增氧水平下淹水土壤溶解氧浓度变化规律。结果表明:1)土壤溶解氧浓度随时间呈现快速下降阶段、缓速下降阶段两段式规律,其中快速下降阶段土壤溶解氧耗散以气体扩散为主,耗散曲线符合对数函数规律;缓速下降阶段土壤溶解氧耗散以微生物消耗为主,耗散曲线符合Logistic函数或线性函数规律;2)在初始干旱土壤试验的快速下降阶段,与常规对照处理CK(O2浓度:8~9 mg/L)相比,O1(O2浓度:15 mg/L)、O2(O2浓度:20 mg/L)处理溶解氧留存时间分别延长了40.11%和189.62%;在初始湿润土壤试验的快速下降阶段,O1、O2处理溶解氧耗散时间分别延长了445.16%和2741.94%;3)在微生物活性较低的土壤(初始干旱土壤)中,氧气与底物都是溶解氧消...  相似文献   

8.
增氧微咸水对小白菜光响应特征及产量的影响   总被引:2,自引:2,他引:0  
为了探讨水培条件下微咸水溶解氧浓度对小白菜光响应特征及产量的影响,测定了5种增氧水平下小白菜的光合响应过程,并采用直角双曲线模型、非直角双曲线模型、直角双曲线修正模型和指数模型分别对小白菜光响应曲线进行拟合比较,筛选出最优模型并利用最优模型对小白菜的光合特征参数进行了计算。试验结果表明,经误差分析,不同增氧水平下4种模型的光响应曲线拟合结果存在差异,非直角双曲线模型对所有处理的模拟精度均最高,是分析增氧微咸水水培条件下小白菜光响应曲线的最优模型。光响应曲线参数显示,18.5 mg/L的微咸水溶解氧浓度处理下小白菜的暗呼吸速率、表观量子效率、最大净光合速率均显著高于其他微咸水增氧处理。此外,18.5 mg/L的微咸水溶解氧浓度处理下小白菜的净光合速率和地上部鲜质量也显著高于其他微咸水增氧处理。因此,利用微咸水培养小白菜较为适宜的溶解氧浓度约为18.5 mg/L,该增氧处理有利于增强小白菜的耐荫性和忍受高光强的能力,增大小白菜叶片的可利用光强范围,提高叶片的生理活性,并促进小白菜叶片光合作用的高效运行,进而实现小白菜高产。  相似文献   

9.
基于水质监测技术的水产养殖安全保障系统及应用   总被引:7,自引:4,他引:3  
为解决水产养殖中的风险问题,设计了基于水质监测技术的水产养殖安全保障系统。系统由水质监测与信息处理系统、电路控制系统、增氧和投饲设备组成,系统根据养殖水体的溶氧变化调控增氧、水层交换和投饲。常规淡水鱼池塘养殖情况下,安全增氧时间不低于6.2 h/W·d·kg,机械增氧下限为3 mg/L,上限为5 mg/L,上限运行时滞为0.5~1 h,水层交换时滞为1~2 h。应用表明,系统比传统增氧方式节约运行时间33.4%,平均降低饲料系数21.6%,系统具有节能、节饲和保障养殖安全的效果。  相似文献   

10.
自适应Tree-Mesh结构的大棚无线监测网络设计   总被引:1,自引:1,他引:0  
针对大棚基地作物状态及环境信息的无线采集的需求,设计了改进的分簇Tree-Mesh混合拓扑结构无线传感器网络,并利用ZigBee实现了组网和多跳通信,以CC2530为核心设计了多传感器无线节点硬件系统,基于Z-Stack协议栈设计了有限状态机节点程序。同时,针对无线节点低功耗和网络信息低冗余的要求,设计了基于接收信号强度指示的最佳发射功率自适应机制,和基于感知数据差值的最小传输数据冗余自适应机制。试验结果表明,节点单跳和多跳通信速率典型值分别为20与0.3kb/s,采用干电池供电和直流供电的节点通信距离分别可达30和90m。仿真结果证明采用低功耗自适应机制的节点功耗降低了38.44%,可用作大棚基地的环境监测。  相似文献   

11.
为促进中国淡水珍珠养殖业由传统粗放模式向高效生态智能化改造升级,该研究针对珍珠蚌工厂化循环水养殖模式下的水质监控需求,开发了基于无线传感网络的分布式水质监控系统。系统采用感知层、传输层和应用层相结合的体系架构,由水质监测节点、气象监测节点、设备控制节点和监控中心组成。现场采用多参数传感器、ZigBee无线模块、可编程逻辑控制器(Programmable Logic Controller,PLC)和MCGS触控屏组合的方式,实现对多地点监测数据的实时采集、图形化显示和报警功能,对循环水处理设备的启停控制及藻类供饵自动控制功能;上位机采用MCGS网络版和SQL Server数据库构建监控数据中心。系统采用无线组网分布式架构,组网灵活且操作简单,简化了设备的安装和维护工作。经实际使用测试,系统工作稳定性和检测准确性均在98%以上,能够满足淡水珍珠蚌循环水养殖的监控需求,可以为珍珠蚌传统养殖模式的转变和产业生产方式的转型升级提供有利保障。  相似文献   

12.
NaCl及生物降解活性剂对曝气灌溉水氧传输特性的影响   总被引:1,自引:1,他引:0  
曝气灌溉可有效调节植物根区环境、改善土壤通气性。微咸水中NaCl的存在及活性剂添加对提高曝气灌溉的氧传质效率,实现节能高效的灌溉有重要作用。为研究NaCl介质及生物降解活性剂对纯氧曝气灌溉水氧传输特性的影响,该文采用变压分离制氧技术-氧气扩散系统-空气注射技术耦合系统,分析NaCl介质(未添加和添加)及生物降解活性剂BS1000(醇烷氧基化物质量浓度0、1、2、4 mg/L)2个因素对氧总传质系数、溶氧饱和度、流量均匀系数和溶氧均匀系数的影响。结果表明:BS1000的添加促进氧传质过程的发生,提高了曝气水中的溶氧饱和度;随着BS1000浓度增加,氧总传质系数逐渐增加,而溶氧饱和度呈现下降的趋势;BS1000质量浓度在2 mg/L及以上时,NaCl介质对氧总传质系数的增幅显著;NaCl介质对曝气水中的溶氧饱和度起到抑制作用。各组合条件下,曝气滴灌中流量均匀系数均在95%以上,溶氧均匀系数均在97%以上。添加活性剂BS1000可使氧总传质系数平均提高18.85%以上(P0.05)。无论添加NaCl与否,添加1 mg/L BS1000的溶氧饱和度均最大,故1 mg/L BS1000是适宜的活性剂添加浓度。  相似文献   

13.
涌浪机在对虾养殖中的增氧作用   总被引:5,自引:4,他引:1  
溶解氧是对虾正常代谢和生长中所必需的,为了探索对虾养殖增氧方式的新途径,该文进行了涌浪机在高位池凡纳滨对虾高密度养殖条件下增氧情况的研究,并进行了不同天气状况下与水车增氧机增氧效果的对比。试验表明:涌浪机在晴好天气下增氧能力远超同功率水车增氧机。在试验养殖密度约为10000kg/hm2时,0.75kW涌浪机在晴好天气白天时与同功率水车增氧机相比,使池中溶解氧质量浓度平均提高1.24mg/L,但在阴雨天和夜间涌浪机的增氧效果较差,增氧能力与同功率水车增氧机相近。因此,涌浪机在实际应用中需与其他增氧模式相结合使用,将会取得较好的增氧效果。  相似文献   

14.
对虾工程化循环水养殖系统构建技术   总被引:9,自引:4,他引:5  
讨论了一种高效经济保持藻类生长的对虾工程化循环水养殖系统构建技术。并利用此系统开展室内凡纳滨对虾生产试验。养殖用水采用经室外池塘充分氧化后的咸井水(盐度14‰~26‰),放苗密度:500尾/m2,排放水经系统处理后循环使用。并且在试验期间,探索了一种低耗高效运行模式。90 d养殖期,系统溶解氧均值5.1 mg/L,氨氮0.002~0.15 mg/L,pH值7.62~8.29,获良好水生态环境调控效果。系统产量4.6 kg/m2,饲料系数1.14,每生产1 kg虾耗水 1 000 L、耗电2.16 kWh,取得高产量、高效率养殖生产结果。  相似文献   

15.
微孔扩散器形状对曝气增氧性能影响的试验   总被引:2,自引:1,他引:1  
为了探究不同形状(直线型、C型、S型和圆盘型)的微孔曝气扩散器对增氧性能的影响,在3个水深和5个曝气流量下进行了一系列的室内曝气增氧试验.结果表明:相同水深和流量下,直线型的氧体积传质系数、充氧能力、动力效率和氧利用率均最大,例如在0.7 rn水深时4个技术指标的范围值分别为0.853~1.762 h-1、8.701~17.432 g/h、4.146~6.869 kg/(kW·h)、3.257%~4.912%;而S型是最低的,其范围值分别为0.798~1.504 h-1、6.850~12.627 g/h、2.630~4.444 kg/(kW·h)、3.823%~2.339%;其次是C型和圆盘型微孔曝气扩散器,其他水深试验条件下也得到了类似的规律.由此说明直线型的增氧效果最好.为了仅探究扩散器形状对增氧性能的影响,在试验水池表面铺设薄膜阻隔了空气-自由水表面氧传质后,4种扩散器的氧体积传质系数均下降,最大的下降率分别为12.29%、8.73%、12.26%和6.74%,空气-自由水表面氧传质对不同形状的扩散器的影响程度不同.但下降后的氧体积传质系数值最高的仍是直线型,其次是C型和圆盘型,S型仍然最低;直线型、C型、圆盘型、S型在0.7 m水深下分别为1.693、1.470、1.438和1.227 h-1,在其他工况下也得到了类似的规律.因此,增氧性能最好的是直线型微孔曝气扩散器.此研究结果可为微孔曝气技术的绿色环保应用以及实际工程中对微孔扩散器形状的选取提供一定的参考价值.  相似文献   

16.
基于无线传感器网络的水产养殖水质监测系统开发与试验   总被引:17,自引:9,他引:8  
为解决目前水产养殖水质自动监测系统存在布线困难、灵活性差和成本高等问题,该文构建了基于无线传感器网络的水产养殖水质监测系统。该系统的传感器节点负责水质数据采集功能,并通过无线传感器网络将数据发送给汇聚节点,汇聚节点通过RS232串口将数据传送给监测中心。传感器节点的处理器模块采用MSP430F149单片机,无线通信模块由nRF905射频芯片及其外围电路组成,传感器模块以PHG-96FS型pH复合电极和DOG-96DS型溶解氧电极为感知元件,电源模块以LT1129-3.3、LT1129-5和Max660组成的电路提供3.3和±5V。设计了传感器输出信号的调理电路,将测量电极输出的微弱信号放大,满足A/D转换的要求。节点软件以IAR Embedded Workbench为开发环境,采用单片机C语言开发,实现节点数据采集与处理、无线传输和串口通信等功能。监测中心软件采用VB6.0开发,为用户提供形象直观的实时数据监测平台。对系统的性能进行了测试,网络平均丢包率为0.77%,pH值、温度和溶解氧的平均相对误差分别为1.40%、0.27%和1.69%,满足水产养殖水质监测的应用要求,并可对大范围水域实现水质环境参数的实时监测。  相似文献   

17.
循环曝气压力与活性剂浓度对滴灌带水气传输的影响   总被引:10,自引:9,他引:1  
适宜的工作压力及表面活性剂浓度对循环曝气效率的提高及地下滴灌水气传输优化具有重要意义。利用循环曝气系统,设置工作压力和活性剂浓度2因素3水平共9个曝气组合,每组均进行非曝气对照试验,分析曝气组合条件对掺气比例、氧传质效率、滴灌带水气传输均匀性的影响。结果表明:循环曝气条件下,不添加活性剂时,压力提高有利于掺气比例增加,添加后,趋势相反;压力一定时,掺气比例随活性剂浓度升高而增加;滴灌带出水均匀性和出气均匀度分别在95%和70%以上;活性剂浓度及压力对氧传质系数分别起到了促进和抑制作用,活性剂的添加大大缩短了曝气时间;掺气比例计算方法能够准确反映曝气滴灌系统中水气传输特性。研究结果对循环曝气滴灌系统水气传输效率的提高及运行成本的降低有重要指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号