首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
A new isolate of Tomato yellow leaf curl virus (TYLCV) has been identified from tomato plants in Kochi Prefecture in Japan and designated TYLCV-[Tosa]. The complete nucleotide sequence of the isolate was determined and found to consist of 2781 nt. In phylogenetic analyses of entire nucleotide sequences, TYLCV-[Tosa] was delineated as a single branch and was more closely related to TYLCV-[Almeria] than TYLCV isolates Ng, Sz, or Ai reported in Japan, which had spread since 1996. Isolate TYLCV-[Tosa] is suggested to be a newly introduced, novel isolate of TYLCV that dispersed into Kochi Prefecture. In addition, a rapid method using the polymerase chain reaction to separate TYLCV isolates into four genetic groups was established. This method would be useful for reliable diagnosis based on genetic differences among isolates of TYLCV.The nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under accession numbers AB192965 and AB192966  相似文献   

2.
南疆温室番茄黄化曲叶病病毒种类的分子鉴定   总被引:1,自引:1,他引:0  
为明确南疆温室番茄黄化曲叶病的病毒种类,利用双生病毒的兼并引物通过PCR扩增,对采集的20个番茄病株进行了分子检测.从20个病株中均扩增到约500 bp的目标片段,对其中4株进行克隆和测序,其相互间序列同源性为97.1% ~99.3%,与番茄黄化曲叶病毒(Tomato yellow leaf curl virus,TYLCV)的同源性较高,为98.6% ~ 99.5%.随机选取莎车分离物KS2-5进行全基因组的克隆和测序,KS2-5 DNA全长为2781 nt(序列号:JQ807735),具有典型的双生病毒基因组特征,与TYLCV其它分离物同源性达到98.9%~99.5%,而与其它粉虱传双生病毒的序列同源性较低,为68.3% ~75.5%,表明危害南疆温室番茄的病毒种类为番茄黄化曲叶病毒TYLCV.  相似文献   

3.
为明确烟粉虱传播的番茄褪绿病毒(Tomato chlorosis virus,ToCV)与番茄黄化曲叶病毒(Tomato yellow leaf curl virus,TYLCV)对不同番茄品种的复合侵染情况,于2015年11月在山东省寿光市温室内采集13个番茄品种共390份疑似发病植株叶片,对不同番茄品种的TYLCV抗性和2种病毒的复合侵染以及温室内发病番茄植株上烟粉虱成虫的带毒率进行检测。结果表明,采集的13个番茄品种经分子标记检测鉴定均为TYLCV杂合抗性;不同番茄品种ToCV与TYLCV的复合侵染率存在明显差异,大果番茄粉宴和贝瑞上复合侵染率最高可达73.3%,而樱桃番茄八喜上未检测到这2种病毒的复合侵染。此外,在发病番茄植株上采集的烟粉虱成虫体内可检测到2种病毒,其中烟粉虱ToCV带毒率为90.7%,TYLCV带毒率为80.0%,同时检测到ToCV与TYLCV的概率为71.3%。表明ToCV和TYLCV的复合侵染在山东省番茄生产中普遍发生,烟粉虱可同时携带这2种病毒并广泛传播。  相似文献   

4.
Nucleotide sequences of the three distinct Tomato yellow leaf curl Thailand virus (TYLCTHV) strains (CM, NK, SK) were analyzed for recombination events. Recombination detection program analyses and a sequence alignment survey provided evidence of recombination between AC1 sequences of TYLCV, TYLCTHV-[MM], and TYLCTHV-[NK] as major parents and of ToLCLV, ToLCTWV, and TYLCTHV-[SK] as minor parents of TYLCTHV-[NK], -[SK], -[CM], respectively. The results further support the notion that interspecies recombination may play a significant role in geminivirus diversity and their emergence as important pathogens.  相似文献   

5.
为了明确关中地区越冬茬番茄黄化曲叶病毒病发生和流行规律,通过分析该病发生与番茄品种、定植期及传播介体烟粉虱之间的关系,并采用PCR技术对田间病原进行分子鉴定。结果表明,番茄黄化曲叶病毒病在8月中下旬至11月上中旬开始侵染,翌年3月中下旬发生再侵染,秋季病情减轻;烟粉虱种群数量与病害发生程度呈线性正相关;不同番茄品种对番茄黄化曲叶病毒(Tomato yellow leaf curl virus,TYLCV)的抗性差异显著,其中大番茄品种布鲁尼1288和DRW7728,小番茄品种千禧和美红对该病表现为免疫;分子检测结果表明,4个样品中均扩增出543 bp的特异片段,与NCBI数据库Gen Bank的TYLCV序列(登录号为GU084381、KC138544.1、KC138543.1和JX456642.1)的相似性达99%。研究表明,关中地区番茄病毒病为番茄黄化曲叶病毒病,番茄品种、定植期及烟粉虱发生动态是影响该病发生的主要因素。  相似文献   

6.
A new approach for the simultaneous identification of the viruses and vectors responsible for tomato yellow leaf curl disease (TYLCD) epidemics is presented. A panel of quantitative multiplexed real‐time PCR assays was developed for the sensitive and reliable detection of Tomato yellow leaf curl virus‐Israel (TYLCV‐IL), Tomato leaf curl virus (ToLCV), Bemisia tabaci Middle East Asia Minor 1 species (MEAM1, B biotype) and B. tabaci Mediterranean species (MED, Q biotype) from either plant or whitefly samples. For quality‐assurance purposes, two internal control assays were included in the assay panel for the co‐amplification of solanaceous plant DNA or B. tabaci DNA. All assays were shown to be specific and reproducible. The multiplexed assays were able to reliably detect as few as 10 plasmid copies of TYLCV‐IL, 100 plasmid copies of ToLCV, 500 fg B. tabaci MEAM1 and 300 fg B. tabaci MED DNA. Evaluated methods for routine testing of field‐collected whiteflies are presented, including protocols for processing B. tabaci captured on yellow sticky traps and for bulking of multiple B. tabaci individuals prior to DNA extraction. This work assembles all of the essential features of a validated and quality‐assured diagnostic method for the identification and discrimination of tomato‐infecting begomovirus and B. tabaci vector species in Australia. This flexible panel of assays will facilitate improved quarantine, biosecurity and disease‐management programmes both in Australia and worldwide.  相似文献   

7.
北京地区番茄黄化曲叶病毒病的鉴定及防治对策   总被引:14,自引:2,他引:12  
番茄黄化曲叶病毒病是一种由烟粉虱传播的病毒病,给番茄生产造成严重威胁。2009年在北京郊区调查时发现部分保护地种植的番茄植株表现典型黄化曲叶症状。通过提取典型症状样品总DNA利用粉虱传双生病毒检测简并引物PA/PB,进行PCR扩增到541bp的特异条带。通过测序和核苷酸序列比对表明该序列与番茄黄化曲叶病毒序列相似性最高为99%。分子检测结果表明北京郊区部分保护地种植的番茄已被烟粉虱传播的番茄黄化曲叶病毒侵染危害。  相似文献   

8.
Virus transmission studies were conducted under glasshouse conditions using the vector Bemisia tabaci biotype B to determine how effectively isolates of the begomoviruses Tomato yellow leaf curl virus (TYLCV) and Tomato leaf curl Bangalore virus (ToLCBV) could be transmitted to phaseolus bean, capsicum and tomato test plants, the latter host used as a positive control for transmission. Diagnostic detection of viruses in these host crops and vector was also evaluated. Polymerase chain reaction (PCR) detection of TYLCV in bean cv. Wade and capsicum cv. Bellboy was achieved 4 weeks after fumigation in asymptomatic plants. Detection of TYLCV in tomato controls was achieved 2 weeks after fumigation with improved frequency of detection at 4 weeks. PCR was found to be a more sensitive method than triple‐antibody sandwich enzyme‐linked immunosorbent assay (TAS‐ELISA) for the detection of TYLCV isolates in all hosts. ToLCBV was detected by PCR and TAS‐ELISA in bean. TYLCV was also detected by PCR in the vector, with a novel internal positive control. This work was carried out to facilitate the development of a diagnostic protocol for the begomoviruses causing tomato yellow leaf curl under the EU SMT programme project –‘Diagnostic protocols for organisms harmful to plants’ (DIAGPRO).  相似文献   

9.
Tomato yellow leaf curl disease is one of the most devastating viral diseases affecting tomato crops worldwide. This disease is caused by several begomoviruses (genus Begomovirus, family Geminiviridae), such as Tomato yellow leaf curl virus (TYLCV), that are transmitted in nature by the whitefly vector Bemisia tabaci. An efficient control of this vector‐transmitted disease requires a thorough knowledge of the plant–virus–vector triple interaction. The possibility of using Arabidopsis thaliana as an experimental host would provide the opportunity to use a wide variety of genetic resources and tools to understand interactions that are not feasible in agronomically important hosts. In this study, it is demonstrated that isolates of two strains (Israel, IL and Mild, Mld) of TYLCV can replicate and systemically infect A. thaliana ecotype Columbia plants either by Agrobacterium tumefaciens‐mediated inoculation or through the natural vector Bemisia tabaci. The virus can also be acquired from A. thaliana‐infected plants by B. tabaci and transmitted to either A. thaliana or tomato plants. Therefore, A. thaliana is a suitable host for TYLCV–insect vector–plant host interaction studies. Interestingly, an isolate of the Spain (ES) strain of a related begomovirus, Tomato yellow leaf curl Sardinia virus (TYLCSV‐ES), is unable to infect this ecotype of A. thaliana efficiently. Using infectious chimeric viral clones between TYLCV‐Mld and TYLCSV‐ES, candidate viral factors involved in an efficient infection of A. thaliana were identified.  相似文献   

10.
番茄黄化曲叶病毒病是世界番茄生产上一种毁灭性病害,番茄黄化曲叶病毒Tomato yellow leaf curl virus(TYLCV)是引起该病害的主要病原病毒之一。本文采用滚环扩增及基因克隆方法,获得了侵染广东佛山和肇庆番茄的TYLCV 4个分离物全基因组;它们均为2 781 nt,编码6个ORF,其中病毒链上编码AV1和AV2,互补链上编码AC1、AC2、AC3和AC4。同源性比较结果表明,4个广东分离物基因组序列两两间同源性为99%以上;与已报道的TYLCV各分离物同源性在90%以上,而与来自中国不同地区的TYLCV分离物的同源率均在98%以上。系统进化分析显示,广东分离物与来自中国不同地区的TYLCV分离物亲缘关系较近,并聚类在一个分支。因此,侵染引起广东佛山和肇庆番茄黄化曲叶病的病毒应来自国内其他地区。本研究是对TYLCV广东分离物分子特征的首次报道。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号