首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A procedure that reduces diffusional limitations by periodically milling the corn to reduce particle size and stirring the ground mash in the presence of sulfur dioxide (SO2) and lactic acid was developed. The process, called intermittent milling and dynamic steeping (IMDS), includes three main stages: initial soaking (a short-time immersion in water) of whole kernels, initial cracking of the partially hydrated kernels, and dynamic steeping with interspersed milling. This study evaluated the three stages of the process separately, evaluating the effect of variables on each stage of the process. Corn fractions yield (germ, fiber, gluten, starch) were used to decide the best conditions for the soaking and steeping stages, and germ damage was used to determine the best kernel cracking method. Starch, gluten, and germ yields were not affected by soak temperatures (52–68°C) or soak time (1–3 hr). A temperature of 60°C was chosen for soaking because it increased the rate of kernel hydration without gelatinizing starch, which happens at higher temperatures. A 2-hr soak time was preferred because there was less fiber in the germ fraction and less germ damage was observed. Although there were no advantage to using SO2 or lactic acid in the soak water, the presence of these compounds during dynamic steeping enhanced starch yield. The starch yield for 3 hr of dynamic steeping was not statistically different from the starch yield for a 7.5-hr dynamic steep. The Bauer mill was preferred over the use of a roller mill or a commercial grade Waring blender for kernel cracking. The IMDS process produced, on an average, 1 percentage point more starch than the conventional 36-hr steeping process. Total steep or kernel preparation time was reduced from 24–40 hr for conventional wet-milling to 5 hr for the IMDS process.  相似文献   

2.
Effect of corn degermination mill parameters (clearance between mill plates and rpm) were assessed on the broken germ and number of whole kernels in mash so as to optimize the cracking procedure for the intermittent milling and dynamic steeping (IMDS) process. The dynamic steep time and number of intermittent milling stages for the IMDS process were also optimized for maximum starch recovery. A comparison was made between the IMDS and the conventional steeping process for fraction yields. A clearance of 0.45–0.48 cm between the plates gave the most optimum processing conditions (minimum broken germ and least amount of whole kernels in mash after cracking). Effect of rpm on germ damage and kernel cracking was not significant when optimum clearance between the degermination plates was maintained. Two stages of intermittent milling with a dynamic steep time of 30 min or higher was recommended because it produced the highest yield of starch and germ. Comparison of the IMDS process with the conventional wet‐milling process showed that starch and gluten yield increased by 1.6 and 4.26%, respectively, in the IMDS process. Germ recovered from the IMDS process was 0.54% lower than that from the conventional steeping process.  相似文献   

3.
Effect of lactic acid, SO2, temperature, and their interactions were assessed on the dynamic steeping of a Brazilian dent corn (hybrid XL 606) to determine the ideal relationship among these variables to improve the wet‐milling process for starch and corn by‐products production. A 2×2×3 factorial experimental design was used with SO2 levels of 0.05 and 0.1% (w/v), lactic acid levels of 0 and 0.5% (v/v), and temperatures of 52, 60, and 68°C. Starch yield was used as deciding factor to choose the best treatment. Lactic acid added in the steep solution improved the starch yield by an average of 5.6 percentage points. SO2 was more available to break down the structural protein network at 0.1% than at the 0.05% level. Starch‐gluten separation was difficult at 68°C. The lactic acid and SO2 concentrations and steeping temperatures for better starch recovery were 0.5, 0.1, and 52°C, respectively. The Intermittent Milling and Dynamic Steeping (IMDS) process produced, on average, 1.4% more starch than the conventional 36‐ hr steeping process. Protein in starch, oil content in germ, and germ damage were used as quality factors. Total steep time can be reduced from 36 hr for conventional wet‐milling to 8 hr for the IMDS process.  相似文献   

4.
An alkali corn wet-milling process was developed to evaluate the process as a method to produce high purity corn starch and coproducts with added value. Using a single hybrid (R1064 × LH59), the effects of alkali concentration (0.18–0.82% NaOH), time (29–61 min), and temperature (36–75°C) were investigated. Starch yield was not affected by steep time or temperature. Starch yield was optimal at 65.2% using 0.5% alkali. Increasing the concentration of alkali to 0.82% or decreasing it to 0.18% caused a decrease in starch yield of 8–10 percentage points. Other wet-milling products (fiber, germ, and gluten) also were affected. Steep conditions of 0.5% NaOH, 60 min, and 45°C gave optimal starch yield. Comparisons between alkali and sulfur dioxide wet-milling processes, using 1-kg sample size, were performed on 10 commercial yellow dent corn hybrids. The alkali process averaged 1.7 percentage points more starch than the sulfur dioxide process. Each hybrid had a higher starch yield when wet-milled with the alkali method. Alkali wet-milling produced pure corn starch with <0.30% protein (db).  相似文献   

5.
A corn wet-milling process in which alkali was used was studied as an alternative to the conventional corn wet-milling procedure. In the alkali wet-milling process, corn was soaked in 2% NaOH at 85°C for 5 min and then debranned mechanically to obtain pericarp as a coproduct. Debranned corn was cracked in a roller mill, and the cracked corn was steeped with agitation for 1 hr in 0.5% NaOH at 45°C. The cracked and steeped corn was then processed to separate germ, fiber, and gluten by steps similar to those in conventional wet-milling. Alkali wet-milling yielded soakwater solids, pericarp, germ, starch, gluten, and fine fiber. The protein content of the starch and the starch content of the fiber from the alkali process were lower than those from the conventional process.  相似文献   

6.
Reducing corn steep time by adding lactic acid instead of relying on in situ fermentation was studied. Corn at two initial moisture levels (15 and 20%) was steeped for 18 hr in a countercurrent steep system. The initial SO2 target concentration in steepwater was 2,000 or 3,000 ppm, while the initial lactic acid concentration in steepwater was 0, 0.28, or 0.55%. Adding lactic acid under all steeping conditions decreased steepwater pH, accelerated SO2 absorption, and increased the amount of solids released from corn. Adding lactic acid during steeping also increased the first grind slurry density and made germ skimming easier than when no lactic acid was added. Starch yields for the hybrid used in this study under all steep conditions were comparable to those from 24‐hr steeping, except when steeping corn with an initial moisture content of 15% in ≈2,000 ppm of SO2 alone. For the 20% moisture corn, adding lactic acid to fresh steepwater significantly improved the starch yield at ≈2,000 ppm of SO2 for 18‐hr steeping. At ≈3,000 ppm of SO2, adding lactic acid did not increase the starch yield for the hybrid used. The protein content in starch was significantly lower when lactic acid was added. Pasting properties of starch were not affected by adding lactic acid. The hybrid used in this study had an initial moisture content of 20% and could be wet‐milled without affecting starch yield, starch protein content, and pasting properties.  相似文献   

7.
The objective was to describe a laboratory‐scale dry‐milling procedure that used single‐stage tempering and determine the effect of hybrid on yields and fraction compositions in milled corn. Samples of 11 commercially available hybrids were processed through a laboratory dry‐milling procedure that used 1 kg samples of corn to produce milling fractions of large grits, small grits, fines, germ, and pericarp. Compositions of milling fractions (protein, neutral detergent fiber, ash, and crude fat) were determined. The procedure used a single‐stage tempering step that increased corn moisture from 15 to 23.5% wb during an 18‐min tempering period. Germ were separated from endosperm particles using a roller mill followed by screening over a sieve with 1.68‐mm openings. Coefficients of variability were small, indicating acceptable repeatability. Overall yield means were 39.2, 25.3, 13.8, 78.2, 14.3, and 6.8 g/100 g (db) for large grits, small grits, fines, total endosperm, germ, and pericarp, respectively. There were effects due to hybrid (P < 0.05) on fraction yields and compositions of milling fractions. Correlations (r) among endosperm fractions (large grits, small grits, and fines) ranged from 0.54 to |–0.92|. Correlations among endosperm fractions and germ and pericarp were <0.68. The developed dry‐milling method estimated milling yields among hybrids with low standard deviations relative to the means and should be a useful tool for research and industry in measuring dry‐milling characteristics.  相似文献   

8.
The effect of adding lactic acid and sulfur dioxide at different times from the start of batch steeping on corn starch yields was studied. Five commercial hybrids were steeped with 0.5% lactic acid or 0.2% sulfur dioxide added over the first 15 hr of steeping and wet-milled following a 100-g corn wet-milling procedure. No significant differences were observed in starch yields when lactic acid was added to the steep solution (SO2 and water) from 0 hr (start of steeping) to 15 hr. Addition of SO2 to the steep solution (lactic acid and water) resulted in significantly higher average starch yields when SO2 was added between 5 and 15 hr compared with addition at 0 hr (SO2 and lactic acid for full 24 hr of steeping). Based on the results of the first experiment, a second experiment was done in which one of five original hybrids was steeped for 24 hr, during which lactic acid or SO2 was added until 23.9 hr (i.e., 5 min before milling) after the start of steeping. Similar results were found in the second experiment. Residual protein in starch samples did not exceed 0.85%. Steepwater protein content decreased with delays (16–20 hr) in adding either chemical to the steep solution. A significant effect on starch pasting properties of chemicals and duration of chemicals in steep-water was observed. Testing these findings using a larger scale (1,000 g) corn wet-milling procedure produced results similar to those obtained with the 100-g corn wet-milling procedure.  相似文献   

9.
The effects of alternative corn wet‐milling (intermittent milling and dynamic steeping (IMDS), gaseous SO2 and alkali wet‐milling) and dry grind ethanol (quick germ and quick fiber with chemicals) production technologies were evaluated on the yield and phytosterol composition (ferulate phytosterol esters, free phytosterols, and fatty acyl phytosterol esters) of corn germ and fiber oil and compared with the conventional wet‐milling process. Small but statistically significant effects were observed on the yield and composition of corn germ and fiber oil with these alternative milling technologies. The results showed that the germ and fiber fractions from two of the alternative wet‐milling technologies (the gaseous SO2 and the IMDS) had, for almost all of the individual phytosterol compounds, either comparable or signficantly higher yields compared with the conventional wet‐milling process. Also, both of the modified dry grind ethanol processes (the quick germ and quick fiber) with chemicals (SO2 and lactic acid) can be used as a new source of corn germ and fiber and can produce oils with high yields of phytosterols. The alkali wet‐milling process showed significantly lower yields of phytosterols compounds in germ but showed significantly higher yield of free phytosterols, fatty acyl phytosterol esters and total phytosterols in the fiber fraction.  相似文献   

10.
Chemical treatments in wet milling could improve the physico‐chemical properties of starch isolated from high‐tannin sorghums. Sorghums Chirimaugute (medium‐tannin), DC‐75 (high‐tannin), and SV2 (tannin‐free) were steeped in water, dilute HCl (0.9%, v/v), formaldehyde (0.05%, v/v), and NaOH (0.3%, w/v) solutions before wet milling and starch separation. Pasting, textural, and thermal properties of starch were determined. Steeping in NaOH resulted in starches with higher peak viscosity (PV), cool paste viscosity (CPV), and setback than when water, HCl, and formaldehyde were used. The time to PV (Ptime) and PV temperature (Ptemp) were markedly reduced by treatment with NaOH. NaOH could have caused a degree of pregelatinization. HCl treatment gave starches with higher Ptemp and P time, presumably due to delayed granule swelling. Gel hardness was largely determined by the starch amylase content. The low hardness of DC‐75 starch gels was slightly improved in NaOH‐treated grains. Gelatinization temperatures of sorghum starches were generally low, regardless of steeping treatment. Starch from NaOH‐treated grain generally had slightly higher gelatinization temperatures than when water, HCl, or HCHO was used. Chemical treatments during steeping of sorghum grains greatly affected starch properties. Dilute alkali steeping during wet milling could be used to improve properties of starch isolated from tannin‐containing sorghums.  相似文献   

11.
To eliminate the diffusion barriers associated with enzyme addition during conventional steeping, we have developed a two‐stage milling procedure to evaluate the effects of enzyme addition on corn wet milling. The current study compares the effects of the addition of commercially available enzyme preparations during conventional steeping to their comparable addition in the two‐stage procedure. Results are presented in terms of yields of fiber, starch, germ, and gluten. The results demonstrate that the application of enzymes to the normal steeping step of wet milling is not an effective means of decreasing the steeping time or sulfur dioxide usage. Only when specific enzymes are added to the hydrated ground corn, using the modified two‐stage procedure, are enzymes effective in decreasing the steeping time and sulfur dioxide requirements. The overall steeping time with the two‐stage modified procedure ranges from 6 to 8 hr, representing a 67–83% reduction over the conventional process. The modified process greatly decreases, and possibly eliminates, the need for sulfur dioxide addition, while producing starch yields and quality equivalent to that from the conventional process.  相似文献   

12.
《Cereal Chemistry》2017,94(6):963-969
Single‐pass and multipass milling systems were evaluated for the quality of whole wheat durum flour (WWF) and the subsequent whole wheat (WW) spaghetti they produced. The multipass system used a roller mill with two purifiers to produce semolina and bran/germ and shorts (bran fraction). The single‐pass system used an ultracentrifugal mill with two configurations (fine grind, 15,000 rpm with 250 μm mill screen aperture; and coarse grind, 12,000 rpm with 1,000 μm mill screen aperture) to direct grind durum wheat grain into WWF or to regrind the bran fraction, which was blended with semolina to produce a reconstituted WWF. Particle size, starch damage, and pasting properties were similar for direct finely ground WWF and multipass reconstituted durum flour/fine bran blend and for direct coarsely ground WWF and multipass reconstituted semolina/coarse bran blend. The semolina/fine bran blend had low starch damage and had desirable pasting properties for pasta cooking. WW spaghetti was better when made with WWF produced using the multipass than single‐pass milling system. Mechanical strength was greatest with spaghetti made from the semolina/fine bran or durum flour/fine bran blends. The semolina/fine bran and semolina/coarse bran blends made spaghetti with high cooked firmness and low cooking loss.  相似文献   

13.
The conventional corn wet‐milling process requires a long steeping time and has environmental and health concerns from the use of SO2. A recently proposed two‐stage enzymatic milling procedure with the first stage of water soaking and coarse grinding of corn and the second stage of incubating with enzymes has been shown to reduce the soaking time and possibly eliminate the need for SO2 addition. This current work explored the applications of protease and high‐intensity ultrasound in the second stage of the two‐stage enzymatic milling for corn starch isolation to further shorten the process time without use SO2. of The starch yield from sonication alone was 55.2–67.8% (starch db) as compared with 53.4% of the water‐only control with stirring for 1 hr and 71.1% of the conventional control with SO2 and lactic acid steeping for 48 hr. Protease digestion alone for 2 hr was not effective (45.8–63.9% yield) in isolating corn starch, but the starch recovery was increased to 61.2–76.1% when protease was combined with sonication. The preferred combination was neutral protease digestion for 2 hr followed by sonication at 75% amplitude for 30 min. The results demonstrated that combinations of high‐intensity ultrasound and neutral protease could replace SO2 and shorten the steeping time in the enzymatic wet‐milling process for corn starch isolation.  相似文献   

14.
Recently, we reported the development of an enzymatic corn wet‐milling process that reduces or eliminates sulfur dioxide requirements during steeping, considerably reduces steep time, and produces starch yields comparable to that of conventional corn wet‐milling. The best results so far, using the enzymatic corn wet‐milling procedure, were achieved when a particular protease enzyme (bromelain) was used. In this study, pasting properties and surface characteristics of starch obtained from six different enzyme treatments (three glycosidases [β‐glucanase, cellulase, and xylanase] and three proteases [pepsin, acid protease, and bromelain]) using the enzymatic corn wet‐milling procedure were evaluated and compared with those from starch obtained using the conventional corn wet‐milling procedure. Significant effects from enzymatic milling were observed on all the three starch pasting properties (peak, shear thinning, and setback). The setback viscosities of starch from all enzyme treatments were significantly lower compared with those of the control sample, indicating that starch polymers from enzymatic corn wet‐milling do not reassociate to the same extent as with the control. Comparison between bromelain treatment and the control sample showed that starch samples obtained from bromelain treatment are very similar to control starch in water‐binding capacity, molecular breakdown, and time to swell when cooked in water. Significant effects from enzymatic milling were observed on the surface characteristics of starch granules. The glycosidase treatments, especially the β‐glucanase samples, showed holes in the starch granules. No visual differences were observed in starch granules between bromelain and control samples.  相似文献   

15.
The stability of vitamin E during 297 days of storage of wheat flour and whole wheat flour ground on a stone mill or a roller mill, respectively, were studied. One day after milling, the total content of vitamin E, expressed in vitamin E equivalents (α‐TE), was 18.7 α‐TE and 10.8 α‐TE for stone‐milled and roller‐milled wheat flour, respectively. The difference in total vitamin E content was primarily due to the absence of the germ and bran fractions in the roller‐milled flour. The total loss of vitamin E during storage was 24% for stone‐milled wheat flour but 50% for roller‐milled wheat flour. These results indicate that vitamin E, which is present in high amounts in wheat germ, functions as an antioxidant in the stone‐milled wheat flour. Hexanal formation showed that lipid oxidation in roller‐milled flour occurred just after milling, whereas the formation of hexanal in the germ fraction displayed a lack period of 22 days, confirming that vitamin E functions as an effective antioxidant in the wheat germ. Results showed no significant difference in total loss of vitamin E for stone‐milled and roller‐milled whole wheat flour. Total loss after 297 days of storage for both milling methods was ≈32%.  相似文献   

16.
The effect of sodium hydroxide, calcium hydroxide, and potassium hydroxide, and processing conditions (alkali concentration and soaking time) on corn debranning was studied at a temperature of 55°C. Fiber yield, soluble dry matter loss, and total dry matter removed were determined for different alkalies and processing conditions. Sodium hydroxide and potassium hydroxide resulted in maximum fiber yields of 3.38 and 3.48%; maximum soluble dry matter loss of 7.63 and 10.96%; and maximum total dry matter removed of 10.52 and 13.26%. Calcium hydroxide at 6% concentration level resulted in negligible fiber yield, soluble dry matter loss, and total dry matter removed with soak times up to 16 hr. Sodium hydroxide has higher debranning action than potassium hydroxide at 3 and 6% concentration levels; whereas, at 9% concentration level, potassium hydroxide has higher debranning action.  相似文献   

17.
Forty‐three yellow dent corn samples of five different hybrids varying in test weight and moisture content were obtained from 14 different locations in 1993. The locations for acquired samples were selected randomly to cover a wide range of test weights based on preliminary data from eight states of the corn belt where 94% of the U.S. corn crop was produced in 1993. Samples were wet‐milled using a 100‐g standard laboratory‐scale wet‐milling procedure. Protein content in starch and starch viscosity were determined. Starch yield, protein content in starch, and starch viscosity were not affected significantly by test weight.  相似文献   

18.
A very small scale laboratory procedure (≈10 g) is needed to test wet‐milling characteristics of corn when amounts of corn available for testing are quite limited. The objective of this study was to downscale 100‐g laboratory wet‐milling methods already widely used to measure wet‐milling properties of 10 g of corn. A Standard 100‐g procedure, a Modified 100‐g procedure, and an Experimental 10‐g procedure were compared using three corn hybrids with known differences in wet‐milling properties. All three procedures ranked most fraction yields (all except for germ) of the three hybrids the same. Germ separation was conducted differently for each procedure and probably accounts for these differences. Flotation and screening methods were likely affected by germ density and germ size, and hand‐picking the germ was efficient in recovering a pure germ fraction. The two 100‐g procedures were performed very similarly except for fiber recovery. The Modified 100‐g procedure was more efficient in recovering fiber because of intensive washing. Hybrid effects on the starch/gluten separation were more pronounced when the Experimental 10‐g procedure was used, which may allow for more discrimination among hybrids. Although most fraction yields are too small to run replicates for analytical tests, the Experimental 10‐g procedure will be useful in measuring milling efficiency of early generations of corn hybrids where limited samples are available, such as when valuable recombinant proteins are expressed for therapeutics and industrial enzymes.  相似文献   

19.
Two corn hybrids (3394 and 33R87) were steeped with three sulfite salts and five acids to test the effect of sulfur dioxide (SO2) source and acid sources on wet‐milling yields and starch properties. Milling yields from each treatment were compared with a control sample that was steeped with 2,000 ppm of SO2 (using sodium metabisulfite) and 0.55% lactic acid. Sulfur dioxide sources were potassium sulfite, sodium sulfite, and ammonium sulfite; acids were acetic, hydrochloric, oxalic, phosphoric, and sulfuric. Starch yields were affected by the SO2 source and steep acids but the effects were hybrid‐dependent. Different steep acids gave different starch yields when wet milled at the same pH. Among the acids tested, weak acids (lactic and acetic) tended to give higher starch yields compared with strong acids (hydrochloric, sulfuric, phosphoric, and oxalic). Some differences were observed with different sulfite salts and acids on starch pasting properties; however, there were no clear trends.  相似文献   

20.
To identify high-valued coproducts from commercially processed corn germ, it was necessary to determine the effect of processing conditions on corn germ proteins. We found that significantly less protein was extracted from commercial wet-milled as compared to dry-milled corn germ using Tris, sodium dodecyl sulfate (SDS) buffer containing 14 mM 2-mercaptoethanol at 100 degrees C for 10 min. SDS-polyacrylamide gel electrophoresis (PAGE) revealed a number of proteins with molecular masses ranging from approximately 10 to 66 kDa for the dry-milled corn germ as compared to only a few significant protein bands centered around 23 kDa in the wet-milled corn germ. The protein content of the wet- and dry-milled corn germ was approximately the same; however, nonprotein nitrogen values were significantly greater for the wet-milled than for the dry-milled germ. The distribution of fractionated germ protein freshly excised from the embryo of yellow dent corn kernels was more similar to that of dry-milled than wet-milled corn. SDS-PAGE of laboratory preparations of wet-milled corn germ more closely resembled commercial dry- than wet-milled corn germ, which could be attributed to limited microbial growth during steeping in the laboratory preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号