首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Starch was isolated from three different barleys with normal, highamylose, or high‐amylopectin (waxy) starch. The laboratory‐scale starch isolation procedure included crushing of grains, steeping, wet milling, and sequential filtration and washing with water and alkali, respectively. Yield and content of starch, protein, and dietary fiber, including β‐glucan, were analyzed in isolated starch and in the by‐products obtained. Starch yield was 25–34%, and this fraction contained 96% starch, 0.2–0.3% protein, and 0.1% ash. Most of the remaining starch was found in the coarse material removed by filtration after wet milling, especially for the high‐amylose barley, and in the starch tailings. Microscopy studies showed that isolated starch contained mostly A‐granules and the starch tailings contained mostly B‐granules. Protein concentration was highest in the alkali‐soluble fraction (54%), whereas dietary fiber concentration was highest in the material removed by filtration after alkali treatment for the normal and waxy barleys (55%). The β‐glucan content was especially high for the waxy barley in this fraction (26%). The study thus showed that it was possible to enrich chemical constituents in the by‐products but that there were large differences between barleys. This result indicates a need for modifications in the isolation procedures for different barleys to obtain high yields of starch and different by‐products. Valuable by‐products enriched in β‐glucan or protein, for example, may render starch production more profitable.  相似文献   

2.
Pearling by‐products and the pearled products of two commercial stocks of hulled barley, pearled according to an industrial process consisting of five consecutive pearling steps, were analyzed for β‐glucans, dietary fiber (total, soluble, and insoluble), protein, lipid, ash, and digestible carbohydrate. The data showed that the pearling flour fractions, abraded in the fourth and fifth hullers, contained interesting amounts of β‐glucans (3.9–5.1% db) from a nutritional point of view. These fractions were subsequently enriched in β‐glucans using a milling‐sieving process to double β‐glucan content (9.1–10.5% db). Functional pastas, enriched with β‐glucans and dietary fiber, were produced by substituting 50% of standard durum wheat semolina with β‐glucan‐enriched barley flour fractions. Although darker than durum wheat pasta, these pastas had good cooking qualities with regard to stickiness, bulkiness, firmness, and total organic matter released in rinsing water. The dietary fiber (13.1–16.1% wb) and β‐glucan (4.3–5.0% wb) contents in the barley pastas were much higher than in the control (4.0 and 0.3% wb, respectively). These values amply meet the FDA requirements of 5 g of dietary fiber and 0.75 g of β‐glucans per serving (56 g in the United States and 80 g in Italy). At present, the FDA has authorized the health claim “may reduce the risk of heart disease” for food containing β‐glucans from oat and psyllium only.  相似文献   

3.
Recovering starch from barley is problematic typically due to interference from β‐glucan (the soluble fiber component), which becomes highly viscous in aqueous solution. Dry fractionation techniques tend to be inefficient and often result in low yields. Recently, a protocol was developed in our laboratory for recovering β‐glucan from barley in which sieving whole barley flour in a semiaqueous (50% ethanol) medium allowed separation of the starch and fiber fractions without activating the viscosity of the β‐glucan. In this report, we investigate an aqueous method which further purifies the crude starch component recovered from this process. Six hulless barley (HB) cultivars representing two each of waxy, regular, and high‐amylose cultivars were fractionated into primarily starch, fiber, and protein components. Starch isolates primarily had large granules with high purity (>98%) and yield range was 22–39% (flour dry weight basis). More importantly, the β‐glucan extraction efficiency was 77–90%, meaning that it was well separated from the starch component during processing. Physicochemical evaluation of the starch isolates, which were mainly composed of large granules, showed properties that are typical of the barley genotypes.  相似文献   

4.
Nine hull‐less barley (HB) containing waxy (0–7% amylose), normal (≈25% amylose), or high amylose (≈42% amylose) starch with normal or fractured granule make‐up and 4–9% (1→3)(1→4)‐β‐d ‐glucans (β‐glucan) were pearled to remove 70% of the original grain weight in 10% intervals. The pearled fractions were analyzed for β‐glucan distribution within HB grain. Protein content of the pearled fractions indicated that the three outermost fractions contained pericarp and testa, aleurone, and subaleurone tissues, respectively. For all HB, β‐glucan and acid‐extract viscosity were very low in the outermost 20% of the kernel. For low β‐glucan HB, β‐glucan content was the greatest in the subaleurone region and declined slightly toward inner layers. For high β‐glucan HB, however, more than 80% of grain β‐glucan was distributed more evenly throughout the endosperm. Acid extract viscosity was significantly (P < 0.01) correlated with total (r = 0.75) and soluble (r = 0.87) β‐glucan content throughout the kernel of all HB. Growing conditions, location and year, had significant effects on the concentration of protein, starch and β‐glucan. However, protein, starch, and β‐glucan distribution patterns were not affected by growing conditions. The difference in β‐glucan distribution between low and high β‐glucan HB may explain the difference in milling performance of HB with low or high β‐glucan.  相似文献   

5.
Three hull‐less barley genotypes containing starches with variable amylose content (23.8% normal, 4.3% waxy, 41.8% high‐amylose barley) were pearled to 10% and then roller‐milled to produce pearling by‐products (PBP), flour, and fiber‐rich fractions (FRF). PBP were enriched in arabinoxylans, protein, and ash and contained small amounts of starch and β‐glucans. FRF were considerably enriched in β‐glucans and arabinoxylans. The solubility of β‐glucans was higher in PBP than in FRF. The solubility of arabinoxylans was higher in FRF than in PBP. Small amounts of arabinogalactans detected in barley were concentrated in the outer portion of the barley kernel. The content and solubility of nonstarch polysaccharides (NSP) in various milling fractions was also dependent on the type of barley. To obtain more detailed information about the content and molecular structure of NSP, each milling fraction was sequentially extracted with water, alkaline [Ba(OH)2], again with water, and finally with NaOH. These extractions resulted in four sub‐fractions: WE, Ba(OH)2, Ba(OH)2/H2O, and NaOH. β‐Glucans and arabinoxylans exhibited structural heterogeneity derived from differences in their location within the kernel as well as from the genetic origin of barley. The WE arabinoxylans from FRF and flour had a substantially lower degree of branching than those from PBP. The WE arabinoxylans from FRF of high‐amylose and normal barley contained more unsubstituted Xylp residues but fewer doubly‐substituted and singly‐substituted Xylp at O‐2 than their counterparts from PBP. The WE arabinoxylans from FRF of waxy barley had a relatively high content of doubly‐substituted, but very few singly‐substituted Xylp residues. In all three barley genotypes, the ratio of tri‐ to tetrasaccharides in β‐glucans from PBP was higher than from flour and FRF. Substantial differences in the molecular weight of NSP in different milling fractions were also observed.  相似文献   

6.
Water‐soluble β‐glucan from native and extrusion‐cooked barley flours of two barley cultivars, Candle (a waxy starch barley) and Phoenix (a regular starch barley), was isolated and purified. The purity of β‐glucan samples was 85–93% (w/w, dry weight basis) for Candle and 77–86% (w/w, dry weight basis) for Phoenix. The water solubility of β‐glucan (at room temperature, 25°C) in the native and extruded flours (primary solubility) was different from that of the purified β‐glucan samples (secondary solubility). The solubility of β‐glucan in the native and extruded Candle flour was substantially higher than that of β‐glucan in Phoenix. For both cultivars, β‐glucan in the extruded flours had solubility (primary solubility) values higher than in their native counterparts. The solubility of β‐glucan in the purified β‐glucan samples differed depending on the barley cultivar and the extrusion conditions employed. The glycosidic linkage profiles of purified soluble β‐glucan from native and extruded barley flours were determined in order to understand the changes in the primary structure of β‐glucan and the effect of extrusion on the β‐glucan structure‐solubility relationship.  相似文献   

7.
Roller milling of hull‐less barley generates mill streams with highly variable β‐glucan and arabinoxylan (AX) content. For high β‐glucan cultivars, yields >20% (whole barley basis) of a fiber‐rich fraction (FRF) with β‐glucan contents >15% can be readily obtained with a simple short mill flow. Hull‐less barley cultivars with high β‐glucan content require higher power consumption during roller milling than normal β‐glucan barley. Recovery of flour from high β‐glucan cultivars was greatly expedited by impact passages after grinding, particularly after reduction roll passages. Pearling before roller milling reduces flour yield and FRF yield on a whole unpearled barley basis, but flour brightness is improved and concentration of β‐glucan in fiber‐rich fractions increases. Pearling by‐products are rich in AX. Pearling to 15–20% is the best compromise between flour and FRF yield and flour brightness and pearling by‐products AX content. Increasing conditioning moisture from 12.5 to 14.5% strongly improved flour brightness with only a moderate loss of flour yield on a whole unpearled barley basis. As moisture content was increased to 16.5%, flour yield declined without a compensating improvement in brightness, but the yield of fiber‐rich fraction continued to increase and concentration of β‐glucan in FRF also increased.  相似文献   

8.
Importance of β‐glucan in human nutrition is mirrored in numerous approval applications registering β‐glucan containing products as health beneficial products in accordance with forthcoming EU Health Claims Regulation. In comparison to other cereals, barley contains considerable amounts of β‐glucan. Naked barley is of particular interest because it circumvents the costs and loss of beneficial substances related to dehusking. In this study, the potential of near‐infrared spectroscopy as an accurate, fast and economic method of determination of β‐glucan in naked barley was appraised. Four different near‐infrared instruments were used to analyze 107 barley samples, in both whole grain and milled form. Importantly, both black and purple pericarp samples, which are of additional nutritional interest due to high anthocyanin content, and waxy samples, which show an extraordinary high β‐glucan content could be analyzed within the same calibration set as the normal samples. All tested dispersive near‐infrared reflection instruments showed suitability for supervision of breeding experiments and β‐glucan monitoring in food industries (R2 > 0.78). Common, industrially used near‐infrared transmission instruments also provided reasonable results, although only suitable for rough selection according to β‐glucan levels. On the other hand, the Fourier transform near‐infrared reflection instrument was able to perform analytical analyses (R2 = 0.96–0.98).  相似文献   

9.
Food processing conditions may affect the extractability and molecular weight of β‐glucans and arabinoxylans in cereal products. This can dramatically affect the functional and physiological properties of the final products. Therefore, the purpose of this research was to explore the effects of jet cooking on the content, extractability, and molecular weights of these polymers in barley flour from a high β‐glucan, waxy barley genotype, Prowashonupana. Barley flours were jet cooked without pH adjustment or after adjusting to pH 7, 9, or 11. Jet cooking without pH adjustment increased the extractability of β‐glucans from 15.4 to 38.0% when extracted with water at 30°C. As pH during jet cooking increased, the extractability further increased to 63.5% at pH 11. Arabinoxylan extractability was only substantially affected when the pH of jet cooking was alkaline (extractability increased from 11.4 to 48.5% when jet cooked at pH 11). Jet cooking without pH adjustment resulted in slight increases in peak molecular weights for both polymers (β‐glucan increased from 420,000 to 443,000; arabinoxylan increased from 119,000 to 125,000); higher pH values during jet cooking resulted in minor decrease in molecular weights.  相似文献   

10.
Films for potential food use were prepared from aqueous solutions of β‐glucan extracted from hulled barley, hull‐less barley, and oats. The extracts (75.2–79.3% β‐glucan) also contained proteins, fat, and ash. Glycerol was used as a plasticizer. The films were translucent, smooth, and homogeneous in structure on both sides. Water vapor permeability of films prepared from 4% solutions of β‐glucan extracts were higher than those from 2% solutions, despite similar values for water vapor transmission rate. Mechanical properties were influenced by both β‐glucan source and concentration. The oat β‐glucan films showed higher tensile strength and water solubility, and lower color, opacity, and deformation values than those of barley. Films prepared from hull‐less barley cv. HLB233 remained intact upon immersion in water for 24 hr.  相似文献   

11.
Four hull‐less barley samples were milled on a Bühler MLU 202 laboratory mill and individual and combined milling fractions were characterized. The best milling performance was obtained when the samples were conditioned to 14.3% moisture. Yields were 37–48% for straight‐run flour, 47–56% for shorts, and 5–8% for bran. The β‐glucan contents of the straight‐run white flours were 1.6–2.1%, of which ≈49% was water‐extractable. The arabinoxylan contents were 1.2–1.5%, of which ≈17% was water‐extractable. Shorts and bran fractions contained more β‐glucan (4.2–5.8% and 3.0–4.7%, respectively) and arabinoxylan (6.1–7.7% and 8.1–11.8%, respectively) than the white flours. For those fractions, β‐glucan extractability was high (58.5 and 52.3%, respectively), whereas arabinoxylan extractability was very low (≈6.5 and 2.0%, respectively). The straight‐run white flours had low α‐amylase, β‐glucanase, and endoxylanase activities. The highest α‐amylase activity was found in the shorts fractions and the highest β‐glucanase and endoxylanase activities were generally found in the bran fractions. Endoxylanase inhibitor activities were low in the white flours and highest in the shorts fractions. High flavanoid, tocopherol, and tocotrienol contents were found in bran and shorts fractions.  相似文献   

12.
The in vitro bile acid binding by rice bran, oat bran, dehulled barley, and β‐glucan enriched barley was determined using a mixture of bile acids at a duodenal physiological pH of 6.3. Six treatments and two blank incubations were conducted testing substrates on an equal protein basis. The relative in vitro bile acid binding of the cereal brans on an equal total dietary fiber (TDF) and insoluble dietary fiber (IDF) basis considering cholestyramine as 100% bound was rice bran 45 and 49%; oat bran 23 and 30%; dehulled barley 33 and 57%; and β‐glucan enriched barley 20 and 40%, respectively. Bile acid bindings on equal protein basis for the respective cereals were 68, 26, 41, and 49%. Bile acid binding by rice bran may account to a great extent for its cholesterol‐lowering properties, while bile acid binding by oat bran suggests that the primary mechanism of cholesterol lowering by oat bran is not due to the bile acid binding by its soluble fiber. Bile acid binding was not proportional to the soluble fiber content of the cereal brans tested. Except for dehulled barley, bile acid binding for rice bran, oat bran, and β‐glucan enriched barley appear to be related to their IDF content. Highest relative bile acid binding values for rice bran and β‐glucan enriched barley were observed on an equal protein basis, whereas highest values for dehulled barley were based on IDF. Data suggest that of all four cereals tested, bile acid binding may be related to IDF or protein anionic, cationic, physical and chemical structure, composition, metabolites, or their interaction with active binding sites.  相似文献   

13.
Fresh and dried white salted noodles (WSN) were prepared by incorporating up to 40% flour from hull‐less barley (HB) genotypes with normal amylose, waxy, zero amylose waxy (ZAW), and high amylose (HA) starch into a 60% extraction Canada Prairie Spring White (cv. AC Vista) wheat flour. The HB flours, depending on genotype, contained four to six times the concentration of β‐glucan of the wheat flour, offering potential health benefits. The HB‐enriched noodles were made with conventional equipment without difficulty. Noodles containing 40% HB flour required less work input during sheeting, probably due to higher optimum water absorption and weakening of the dough due to dilution of wheat gluten. The addition of HB flour had a negative impact on WSN color and appearance, as evident from decreased brightness, increased redness, and more visible specking. The impact of HB flour on cooked WSN texture varied by starch type. Enrichment with HA or normal starch HB flour produced WSN with bite and chewiness values equivalent to or superior to the wheat flour control. Addition of waxy and ZAW HB flour resulted in WSN with lower values for bite and chewiness. The diversity of HB starch types allows tailoring of WSN texture to satisfy specific markets. HB flour also has potential as an ingredient in novel noodle products targeting health‐conscious consumers who associate darker colored cereal‐based foods with superior nutritional composition.  相似文献   

14.
One nonwaxy (covered) and two waxy (hull-less) barleys, whole grain and commercially abraded, were milled to break flour, reduction flour, and the bran fraction with a roller mill under optimized conditions. The flour yield range was 55.3–61.8% in whole grain and increased by 9–11% by abrasion before milling. Break flours contained the highest starch content (≤85.8%) independent of type of barley and abrasion level. Reduction flours contained less starch, but more protein, ash, free lipids, and total β-glucans than break flours. The bran fraction contained the highest content of ash, free lipids, protein, and total β-glucans but the lowest content of starch. Break flours milled from whole grain contained 82–91% particles <106 μm, and reduction flours contained ≈80% particles <106 μm. Abrasion significantly increased the amount of particles <38 μm in break and reduction flours in both types of barley. Viscosity of hot paste prepared with barley flour or bran at 8% concentration was strongly affected by barley type and abrasion level. In cv. Waxbar, the viscosity in bran fractions increased from 428 to 1,770 BU, and in break flours viscosity increased from 408 to 725 BU due to abrasion. Sugar snap cookies made from nonwaxy barley had larger diameter than cookies prepared from waxy barley. Cookies made from break flours were larger than those made from reduction flours, independent of type of barley. Quick bread baked from nonwaxy barley had a loaf volume similar to that of wheat bread, whereas waxy barley bread had a smaller loaf volume. Replacement of 20% of wheat flour by both waxy and nonwaxy barley flour or bran did not significantly affect the loaf volume but did decrease the hardness of quick bread crumb.  相似文献   

15.
Wheat tortillas were enriched with whole barley flour (WBF) of different particle sizes including 237 μm (regular [R]), 131 μm (intermediate [IM]), and 68 μm (microground [MG]). Topographical and fluorescent microstructure images of flours, doughs, and tortillas were examined. Flours and tortillas were analyzed for color, protein, ash, starch, moisture, and β‐glucan content. Farinograph testing was conducted on the flour blends. Water activity and texture analyses of tortillas were conducted. A 9‐point hedonic scale was used by 95 untrained panelists to evaluate tortilla appearance, color, flavor, texture, and overall acceptability. Two commercial products (CP) were included in some analyses. As WBF particle size decreased, color was lighter; protein, moisture content and mixing stability decreased; ash, starch content, water absorption and farinograph peak time increased; and β‐glucan content was constant. WBF tortillas were darker than the control (C), while IM and MG tortillas had lower peak forces than C. No flavor differences were reported among C, R, and MG tortillas but higher scores were given to both CP in all attributes tested. Tortillas made with the largest WBF particle size (R) were the most similar in protein content, texture and flavor when compared with C tortillas made with refined bread flour.  相似文献   

16.
Germination can be used to improve the texture and flavor of cereals. However, germination generally causes breakdown of β‐glucans, which is undesirable with respect to the functional properties of β‐glucan. Our aim was to assess possibilities of germinating oat without substantial loss of high molecular weight β‐glucan. Two cultivars, hulled Veli and hull‐less (naked) Lisbeth were germinated at 5, 15, and 25°C and dried by lyophilization or oven drying. Elevated germination temperatures led to an increase in Fusarium, aerobic heterotrophic bacteria, Pseudomonas spp., lactic acid bacteria, enterobacteria, and aerobic spore‐forming bacteria. Therefore, the germination temperature should be kept low to avoid excessive growth of microbes. Of the samples germinated at 15°C, only one contained low amounts of the Fusarium toxin deoxynivalenol (52 μg/kg). Germination led to the breakdown of β‐glucans, but the decrease in the molecular weight of β‐glucan was initially very slow. A short germination schedule (72 hr, 15°C) terminated with oven drying was developed to produce germinated oat with retained β‐glucan content. Compared with the native oat, 55–60% of the β‐glucan could be retained.  相似文献   

17.
Barley is considered a healthy food because of its high content of β‐glucan and phenolic antioxidants. In the current study, 28 black, blue, and yellow barleys were investigated in terms of their composition of free and bound phenolic acids and 2,2‐diphenyl‐1‐picrylhydrazyl radical scavenging capacity. Free phenolics were based on aqueous methanol extraction, whereas bound phenolics were extracted following alkaline hydrolysis. Phenolics were then separated and quantified by liquid chromatography and the Folin–Ciocalteu method. Significant differences were observed between the three barley color groups, and within each color group a wide range of phenolics concentrations existed. Ferulic acid was the predominant phenolic acid in free and bound extracts, followed by p‐coumaric acid in all the barleys investigated. Total phenols content and individual phenolic acids strongly correlated with free radical scavenging capacity of barley. Black and blue barley were found to be related and distinct from yellow barley. The results showed significant variations in phenolics among barleys, with a potential for the development of barley grains with high content of phenolic compounds as antioxidant potential.  相似文献   

18.
The main nonstarch polysaccharide of rye is arabinoxylan (AX), but rye contains significant levels of (1→3)(1→4)‐β‐d ‐glucan, which unlike oat and barley β‐glucan, is not readily extracted by water, possibly because of entrapment within a matrix of AX cross‐linked by phenolics. This study continues objectives to improve understanding of factors controlling the physicochemical behavior of the cereal β‐glucans. Rye β‐glucan was extracted by 1.0N NaOH and increasing concentrations of ammonium sulfate were used to separate the β‐glucan from AX and prepare a series of eight narrow molecular weight (MW) distribution fractions. Composition and structural characteristics of the isolated β‐glucan and the eight fractions were determined. High‐performance size‐exclusion chromatography (HPSEC) with both specific calcofluor binding and a triple detection (light scattering, viscometry, and refractive index) system was used for MW determination. Lichenase digestion followed by high‐performance anion exchange chromatography of released oligosaccharides, was used for structural evaluation. The overall structure of all fractions was similar to that of barley β‐glucan.  相似文献   

19.
Temporal and genotypic differences in bulk carbohydrate accumulation in three barley genotypes differing in the content of mixed linkage β‐(1→3),(1→4)‐D‐glucan (β‐glucan) and starch were investigated using proton high‐resolution, magic angle spinning, nuclear magnetic resonance (1H HR MAS NMR) during grain filling. For the first time, 1H HR MAS NMR spectra of flour from immature barley seeds are analyzed. Spectral assignments are made using two‐dimensional (2D) NMR methods. Both α‐ and β‐glucan biosynthesis were characterized by inspection of the spectra as well as by calibration to the reference methods for starch and β‐glucan content. Starch was quantified with very good calibrations to the α‐(1→4) peak (5.29–5.40 ppm) and the region 3.67–3.83 ppm covering starch glycopyranosidic protons from H5 and H6. In contrast, the spectral inspection of the β‐anomeric region 4.45–4.85 ppm showed unexpected lack of intensity in the high β‐glucan mutant lys5f at seed maturity, resulting in poor calibration to reference β‐glucan content. We hypothesize that the lack of β‐glucan signal in lys5f indicates partial immobilization of the β‐glucan that appears to be either genotypic dependent or water/β‐glucan ratio dependent.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号