首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 101 毫秒
1.
为确定受迫振动深松铲的关键参数,以前进速度、振动频率、振动角作为试验因素,以牵引阻力作为相应指标,首先采用单因素试验设计进行室内土槽试验,确定在牵引阻力最小的情况下,振动频率为8.3~9.2 Hz,振动角度约为0°,前进速度为3 km/h;然后采用二次通用旋转回归试验设计对试验参数进行优化,通过DPSv7.05软件对试验数据进行处理,建立相应指标与影响因素之间的回归数学模型。通过响应面分析,得到前进速度、振动频率与牵引阻力的关系图、等高线图。得出前进速度、振动频率、振动角对牵引阻力的最优参数组合:振动频率为8.35 Hz、前进速度为3 km/h、振动角为0°,为振动深松机的优化设计提供了参考。  相似文献   

2.
为了解决牛蒡收获机对动力高需求问题,应用振动减阻的原理,采用二次正交旋转组合试验设计,对牛蒡收获机偏心轮振动松土试验进行分析,确定收获机振动挖掘的关键参数与降低土壤对牵引阻力峰值的关系;建立了以机器振动频率、前进速度、振幅作为试验影响因素,收获机牵引阻力作为试验指标的回归数学模型。分析结果表明:数学模型与实际情况拟合良好,各因素对试验指标影响顺序为振动频率振幅收获机前进速度。通过MATLAB对回归数学模型的曲面的分析,得出影响因素的最佳值为收获机振动频率9.398Hz,前进速度0.705m·s-1,振幅8.67mm,阻力峰值为12.446kN。优化后的收获机可以配套中型拖拉机收获。  相似文献   

3.
液压激振式马铃薯收获机挖掘装置的设计   总被引:1,自引:0,他引:1  
在对振动速度变化成正弦曲线的挖掘铲进行运动学分析的基础上提出了振动挖掘铲的理想工作状态.应用动粘摩阻力模型对振动挖掘铲切入和提升阶段进行了动力学分析.在此基础上,以拖拉机液压输出作为动力源设计了一种液压激振式马铃薯收获机挖掘装置.应用SolidWorks和ADAMS软件建立了虚拟样机模型,在ADAMS中进行了虚拟试验.虚拟试验结果验证了设计的正确性,试验表明,设计的液压激振式马铃薯收获机挖掘装置具有振幅和频率调整方便的特点,在4~10 Hz范围内能较好的进行振动掘削,挖掘铲的平均牵引阻力为1.3~1.9 KN.  相似文献   

4.
4S-80马铃薯振动挖掘机牵引阻力的测试分析   总被引:2,自引:0,他引:2  
振动挖掘铲可大幅降低其入土阻力,4S-80马铃薯挖掘机采用铲筛一体的振动式结构。为了探知振动铲筛的实际降阻效果,设计了动态测试装置,并进行了几种不同作业状况下的牵引阻力测试。结果表明,铲筛振动状态下可显著降低挖掘作业时的机具牵引阻力和拖拉机牵引功率;低速作业时作业速度变化对振动挖掘铲作业的牵引阻力影响不大;机具挖掘深度增加时,拖拉机牵引阻力和牵引功率会明显增大。  相似文献   

5.
针对现有中药材挖掘机在挖掘黄芪时出现分离效率低、损伤率较高等问题,对典型中药材振动挖掘机的工作参数进行优化,使其满足黄芪挖掘作业。对其振动机构进行运动分析,通过Mathlab优化工具箱对振动机构的核心参数进行优化。基于Box-Behnken试验设计法以牵引速度、挖掘铲振动频率和铲面倾角为影响因素,以明茎率为主要指标,兼顾伤茎率进行参数优化。结果表明:当整机牵引速度为0.64m/s,挖掘铲振动频率为8 Hz,铲面倾角为15°时,明茎率为95.62%、伤茎率0.73%。田间试验结果表明:同等条件下,明茎率为93.62%、伤茎率0.82%;整机运行平稳可靠。优化的振动挖掘机满足黄芪挖掘农艺要求。  相似文献   

6.
栅条式马铃薯挖掘铲的设计与试验研究   总被引:1,自引:1,他引:0  
针对现有马铃薯挖掘机作业阻力大、挖掘铲土薯分离能力差等问题,设计了栅条式马铃薯挖掘铲,通过三因素二次正交旋转回归试验,分析了铲面倾角、挖掘铲长度、栅条间距对挖掘阻力的影响,得出挖掘阻力与影响因素的回归模型.结果表明:挖掘阻力最小时的最佳参数是挖掘铲长度为48.13cm,栅条间距为5.37cm,铲面倾角为30.3°;影响挖掘阻力的因子由主到次为:铲面倾角、挖掘铲长度、栅条间距.  相似文献   

7.
深松耕作阻力的影响因素分析与减阻策略   总被引:1,自引:0,他引:1  
【目的】识别深松耕作阻力的关键因素及其影响程度,为深松减阻技术与装备研究奠定基础。【方法】采用7因素3水平正交试验和单因变量方差分析方法,研究深松机铲形(箭形、凿形)、铲距(300,400,500mm)、入土角(18°,23°,28°)、土壤含水率(10%,15%,20%)、土壤坚实度(1 000,1 500,2 000kPa)、耕深(250,300,350mm)及牵引速度(2,3,4km/h)对深松耕作阻力的影响。【结果】铲形、铲距、入土角、土壤含水率、土壤坚实度、耕深、牵引速度的检验概率依次为0.613,0.057,0.056,0.495,0.013,0.001和0.797;不同因素对耕作阻力影响程度的排序为耕深土壤坚实度入土角铲距土壤含水率铲形牵引速度,且耕深、土壤坚实度、入土角、铲距对深松耕作阻力变化影响显著。【结论】为减小深松耕作阻力、提高耕作质量,建议在满足农艺要求的前提下,深松深度的确定应以"耕作层+犁底层"的厚度为主要依据;深松作业间隔年限的确定应将土壤坚实度作为重要评价指标;合理配置深松铲的入土角和铲距有助于减小深松作业阻力和提高作业质量。  相似文献   

8.
为探究自激式振动深松作业新的仿真研究方法,通过动力学仿真软件RecurDyn和离散元仿真软件EDEM对自激式振动深松过程进行联合仿真分析。以耕作阻力为评价指标,耕作深度、牵引速度和弹簧刚度为变量,设计3因素3水平响应面分析和优化试验。结果表明,牵引速度为3 km·h-1、耕作深度为350 mm和弹簧刚度为300 N·mm-1时,深松铲最大入土角为26.39°,弹簧振动频率为3.84~6.25 Hz,弹簧对耕作阻力有明显缓冲作用;自激式深松铲参数耕作深度为301 mm、速度为2.6 km·h-1、弹簧刚度115 N·mm-1时,以最小耕作阻力为评价指标的作业效果最优。EDEM-RecurDyn联合仿真为自激式振动深松铲的优化设计提供新方法。  相似文献   

9.
铲筛激振式马铃薯挖掘机的设计与研究   总被引:2,自引:0,他引:2  
针对我国丘陵山地作业大型机械不适宜、小型手扶类拖拉机动力不足的问题,以减阻和提高土薯分离效率为目标,设计了一种铲筛激振式马铃薯挖掘机。该机将挖掘铲后端设计成栅格状,分离筛各齿条倾角由内向外增大,增加了土薯分离面积;采用铰链四杆式摆动机构和组合式偏心轮,可实现挖掘铲倾角和振幅调整。田间试验表明,该机土薯分离效果良好,明薯率为96.2%,挖净率为97.8%,伤薯率低于3.9%;在前进速度为0.34 m/s情况下,无振动时的平均牵引阻力为1 498 N,而频率为14 Hz,振幅为4 mm和8 mm时的平均牵引阻力分别为1 204 N和995 N。研究表明,振动挖掘可以降低牵引阻力,提高土薯分离效率,所设计的挖掘机性能指标均满足作业要求。  相似文献   

10.
4U-1400FD型马铃薯联合收获机挖掘铲的参数优化   总被引:6,自引:3,他引:3  
对4U-1400FD型马铃薯联合收获机的挖掘铲建立牵引阻力的数学模型,在此模型下分析挖掘铲的铲面倾角、作业速度、挖掘深度、铲体长度等因素对挖掘铲牵引阻力的影响.结果表明:挖掘铲参数的最佳组合为铲面倾角20°,铲体长度470 mm,铲宽1 400mm.通过田间试验,该挖掘铲的性能符合规定的指标.  相似文献   

11.
为解决目前深松作业过程中牵引阻力较大的问题,应用液压振动技术,设计一种液压强迫式振动深松单体。该深松单体主要由机械部分和液压振动系统2部分组成。采用理论设计与试验相结合的方法,对深松单体的关键部件进行选型与参数分析,运用SolidWorks simulation模块对深松单体机架进行模态分析,研究其固有频率和振型。模态分析结果表明:深松单体机架在工作时不会与外部激励频率发生共振现象。田间试验结果表明:深松单体的各项性能指标均满足国家标准的要求;与常规深松作业相比,深松单体牵引阻力平均降幅为31.18%。  相似文献   

12.
为了研究草沙障铺设过程中插入阻力和牵引的大小和影响因素,并为固沙装备铺设系统和牵引动力系统设计提供理论参数,本研究设计并搭建了草沙障插入装置试验平台,对刀盘在沙地中插草过程进行了参数化建模,分析了刀盘各运动状态下的受力因素,并进行了参数化计算和公式推导,建立了不同运动状态下插入阻力和牵引力平衡方程。结果表明,通过单因素和正交试验研究,铺设速度对插入阻力和牵引力大小并无明显影响,但是插入深度和铺设厚度对两者影响显著。建立插入阻力和牵引阻力与插入深度、铺设厚度、铺设速度之间的回归模型,通过分析回归模型和响应面结果最终得出影响插入阻力的因素主次顺序为铺设厚度和插入阻力,影响牵引力的因素主次为插入深度和铺设厚度。将实际测量值与理论模型计算值比较,最后得出相近程度达到98%左右。  相似文献   

13.
针对我国南方丘陵地区土壤含水率较高导致花生播种机开沟器的开沟沟型不稳定、牵引阻力大的问题,设计了一种适用于南方土壤的花生播种机种沟开沟器,并结合南方土壤模型参数,采用离散元仿真和土槽试验相结合的方法优化开沟器作业参数。利用EDEM平台搭建土壤与开沟器模型,以开沟深度、双翼夹角和入土角为试验因素,以沟型系数和牵引阻力为评价指标,结合响应面法进行Box-Behnken试验,研究各因素及其交互作用对开沟器作业效果的影响规律,并确定最优参数组合为:开沟深度40 mm、双翼夹角98°、入土角144°。对比仿真试验和土槽试验结果,沟型系数和牵引阻力的误差分别为3.78%和6.68%,基于最优作业参数组合得到土槽试验中沟型系数为1.02、牵引阻力为46.3 N。该研究提高了开沟器的作业性能,为南方丘陵地区花生播种机种沟开沟器设计提供理论参考。  相似文献   

14.
马铃薯仿生挖掘铲片的设计与仿真   总被引:1,自引:0,他引:1  
据蝼蛄前足胫节爪趾第1趾的体视显微镜照片设计了马铃薯挖掘机挖掘铲铲片,为马铃薯挖掘机提供了一种减阻效率较高的挖掘铲。应用AutoCAD软件获取爪趾外侧曲线和内侧曲线的轮廓点,并将点坐标值数据使用LIST命令导出,并借助EXCEL软件多项式拟合法对爪趾的侧面轮廓线进行拟合,在拟合多项式的基础上在Solidworks软件中进行仿生铲片的建模,最后应用LS-DYNA软件仿真模拟普通铲片与仿生铲片挖削土壤的过程,并测定两种铲片的土壤阻力。仿真结果表明,仿生铲片较普通铲片土壤阻力减小近61%。所设计的仿生挖掘铲片为马铃薯挖掘机挖掘铲减阻技术要求提供了一种解决思路,且结构新颖。  相似文献   

15.
王彬  马蕾  李维华 《广东农业科学》2014,41(21):165-167
深松作业在不大范围翻动土壤的前提下能有效改善土壤的多项理化性质,是实现耕作可持续发展的重要措施.针对一般深松机具结构不合理、作业时牵引阻力大的问题,设计了一种基于振动减阻原理的深松机,确定了深松铲、曲柄连杆机构、切茬圆盘刀、限深轮和机架等部件的主要结构参数.田间试验表明,该机设计合理,田间通过性强,在对北方玉米旱地进行30 cm耕深的深松时,相比无振动深松机具,机具的牵引阻力下降约21.24%,减阻效果明显.  相似文献   

16.
为获得伐根机车架和操作把手的振动特性,建立合理的车架把手仿真模型,用专业的模态测试系统结合后处理软件以及Ansys Workbench有限元分析软件,对伐根机的车架把手机构进行试验模态和有限元模态分析,并对两者的结果进行对比。结果表明:试验模态与有限元模态分析得到的结果基本吻合,通过2种方法获得的前6阶模态的固有频率误差在10%以内,各阶振型基本相同,说明二者都能较好地反映实际结构的振动特性;简化的有限元模型准确性高,可作为静力学和动力学分析的基本模型;伐根机车架前端与刀盘轴连接处以及把手手持部分易发生较大振幅,建议采取添加隔振材料、变刚性连接为弹性连接、增大易损部位的抗疲劳强度等措施实现隔振和减振。   相似文献   

17.
为研究气吸式免耕播种机的振动特性,对2BM-5型气吸式免耕播种机进行振动测试与振动理论分析。根据振动测试结果,以免耕播种机的前进速度与振动信号正弦基波为基本参数构建简谐激励,建立气吸式免耕播种机的振动幅频特性与振动固有频率的频率响应数学模型,并进行气吸式免耕播种机振动幅频特性信号的验证。结果表明:气吸式免耕播种机垂直振动的主要影响因素有播种机结构、质量、作业前进速度、入土装置与不同类型土壤作用的阻尼情况和地表不平度;其垂直振动存在2个固有频率的振型。  相似文献   

18.
利用数值模拟结合正交试验设计方法,研究不同刀具楔角、耕作深度和土壤-耕具间摩擦因数对切削阻力的影响,及切削过程中土壤裂纹的扩展形态。模拟结果表明:当楔角一定时,随着耕深和摩擦因数的增加,裂纹长度随之增加且趋于平缓;当楔角和耕深不变,摩擦因数不同时,裂纹形态的扩展趋势不同;当楔角为20°,耕深为10cm,摩擦因数为0.45时切削力较小;而当楔角为25°,耕深为20cm,摩擦因数为0.70时切削阻力较大。楔角、耕深及土壤-耕具间摩擦因数都是影响耕作过程切削阻力大小的因素,而且因素间的交互影响不可忽视。不同因素水平下土壤切削过程产生的裂纹形态及切削力大小不同。  相似文献   

19.
针对现有联合收获机割台搅龙向链耙输送器输送油葵时产生的回带和堵塞问题,对搅龙和链耙输送器关键部件进行优化,设计加工试验台架并进行了试验研究.单因素试验确定搅龙转速最优水平为170r·min-1、搅龙拨板倾角最优水平为12°,输送槽倾角和搅龙底板倾角最优水平为25°,刮板高度最优水平为50mm,输送间隙最优水平为25 mm.根据单因素试验结果搅龙转速、搅龙拨板倾角和输送槽倾角对输送效果影响较大,正交试验表明,影响输送效果的主次因素为输送槽倾角、搅龙转速、搅龙拨板倾角,最优参数组合为搅龙底板倾角和输送槽倾角均为25°,搅龙转速170r·min-1,搅龙拨板倾角12°;该条件下输送率为100%,籽粒脱落率不足0.6%,输送过程稳定可靠,不存在堵塞问题,完全满足油葵联合收获机的作业要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号