首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Coxiella burnetii causes significant reproduction losses in livestock and the disease Q fever in humans. Transmission of C. burnetii is facilitated by the stability of the bacterium in the environment and the susceptibility of a variety of host species to infection. Consequently, inter-species transmission occurs frequently through either direct or indirect contact. Wildlife may represent reservoirs of C. burnetii and could therefore be a source of infection for domestic animals. Understanding the prevalence of C. burnetii infections at the wildlife-livestock interface is important for disease control. This study aimed to investigate the extent of C. burnetii exposure in wild deer in eastern Australia. Serum samples were obtained from 413 wild deer from seven regions in four eastern Australian states from 2017 to 2020. Antibodies were detected using a commercial Q fever antibody kit validated for ruminants. Seroprevalence of C. burnetii antibodies in deer was determined and true prevalence estimated, for each region. The overall seroprevalence of C. burnetii antibodies in wild deer was 3.4% (14 seropositive of 413 deer sampled) with true prevalence estimated to be 4.3% (95% credible interval: 0.6%, 10.9%). Seropositive deer were identified only in Queensland (7/108 seropositive) and northern New South Wales (7/120 seropositive). This geospatial distribution is consistent with seropositivity in other animal species and indicative of the level of C. burnetii in the environment. The low seroprevalence suggests that wild deer are unlikely to be a major reservoir species for C. burnetii in eastern Australia but may still be implicated in inter-species transmission cycles.  相似文献   

2.
Zoonotic diseases impact both wild and domestic animal populations and can be transmitted to humans through close contact with animal species. Reservoir species acting as vectors are major traffickers of disease. Rodents contribute to the transmission of Coxiella burnetii although little is known about its prevalence in wild animal populations. DNA was extracted from genital swabs collected from woodland jumping mice, deer mice, Southern red‐backed voles, Eastern chipmunks, North American red squirrels, as well as Southern and Northern flying squirrels collected from Algonquin Park, Canada. The presence of C. burnetii was determined through real‐time PCR. All species sampled had some prevalence of infection, except Eastern chipmunks, indicating wild rodents in Algonquin Park are reservoirs for C. burnetii. Emerging zoonotic diseases are linked to increasing globalization. Contact amongst individuals increases as crowding, habitat loss and fragmentation increase within wild spaces. Parks often act as a last refuge for wildlife but may also be an important transmission zone of wildlife disease to humans. Investigations that attempt to discover wild reservoir species of zoonotic disease are critically important to understanding the risk of pathogen exchange between wild and human populations.  相似文献   

3.
Chagas disease (Trypanosoma cruzi infection) is one of the most important neglected tropical diseases affecting the Americas. The transmission dynamic of this parasite is a complicated process that involves three genera of Triatominae subfamily and over 100 known mammalian reservoirs composed of domestic, peridomestic and wildlife species. Understanding the complex relationship between vector species and mammalian hosts is important for preventing transmission to humans. We performed a historical literature review to assess the disease burden in the Texas wildlife and domestic animal population. Reports of sylvatic transmission in Texas date back to the 1940s. We found that up to 23 species can serve as reservoirs for T. cruzi in the state with wood rats, raccoons, and wild and domestic canine species most frequently reported as positive for the parasite. We finish with a discussion of the current research gaps, implications for high‐risk populations and future directions for research.  相似文献   

4.
Traditionally, zoonotic pathogen ecology studies in wildlife have focused on the interplay among hosts, their demographic characteristics and their pathogens. But pathogen ecology is also influenced by factors that traverse the hierarchical scale of biological organization, ranging from within‐host factors at the molecular, cellular and organ levels, all the way to the host population within a larger environment. The influence of host disease and co‐infections on zoonotic pathogen carriage in hosts is important because these factors may be key to a more holistic understanding of pathogen ecology in wildlife hosts, which are a major source of emerging infectious diseases in humans. Using wild Norway rats (Rattus norvegicus) as a model species, the purpose of this study was to investigate how host disease and co‐infections impact the carriage of zoonotic pathogens. Following a systematic trap and removal study, we tested the rats for the presence of two potentially zoonotic bacterial pathogens (Bartonella tribocorum and Leptospira interrogans) and assessed them for host disease not attributable to these bacteria (i.e., nematode parasites, and macroscopic and microscopic lesions). We fitted multilevel multivariable logistic regression models with pathogen status as the outcome, lesions and parasites as predictor variables and city block as a random effect. Rats had significantly increased odds of being infected with B. tribocorum if they had a concurrent nematode infection in one or more organ systems. Rats with bite wounds, any macroscopic lesion, cardiomyopathy or tracheitis had significantly increased odds of being infected with L. interrogans. These results suggest that host disease may have an important role in the ecology and epidemiology of rat‐associated zoonotic pathogens. Our multiscale approach to assessing complex intrahost factors in relation to zoonotic pathogen carriage may be applicable to future studies in rats and other wildlife hosts.  相似文献   

5.
Rabies virus (RABV) does not persist in the environment as it is a very fragile agent. The primary hosts are mammalian species in the orders Carnivora and Chiroptera. Since the late 1980s, RABV has been isolated from non‐human primates, Callithrix jacchus (the white‐tufted marmoset), in four coastal states (Rio Grande do Norte, Ceará, Piauí and Pernambuco) in north‐eastern Brazil, where this species is indigenous. The original habitat of C. jacchus consisted of two Brazilian biomes, the Atlantic Forest and the Caatinga. However, these marmosets have since adapted to other ecosystems as a result of human activities. Between 1988 and 1989, RABV isolates were obtained from white‐tufted marmosets in the state of Rio Grande do Norte, but antigenic and genetic identification studies were not conducted at that time. In the following years, three additional states reported cases (Ceará, Piauí and Pernambuco). In two of these states (Ceará and Piauí), human cases of rabies transmitted by marmosets were reported. According to Brazilian Health Ministry data, at least 19 human cases in which this species was the source of infection were registered in between 1990 and 2016. Recent findings in laboratory tests of 12 rabid samples from humans and marmosets and the regional transmission among these animals for over 20 years, together with the gradual increase in the affected geographic area, support the concept of the emergence of a new RABV reservoir. Regional tourism, the wild animal trade and the cultural practice of maintaining these animals as pets, particularly in coastal regions, appear to be major risk factors for the increase in human cases. Additional epidemiological and ecological studies are required to better understand local disease dynamics and to identify ideal opportunities for prevention and control of this fatal infection.  相似文献   

6.
Culicoides biting midges (Diptera: Ceratopogonidae) are vectors of important diseases affecting wild and domestic animals. During the last decade they have played a major role in the epidemiology of the largest bluetongue epizootic ever recorded in Europe, the disease is transmitted between hosts almost exclusively by bites of Culicoides midges and affects both domestic and wild ruminants however severe disease usually occurs in certain breeds of sheep and some species of deer. An accurate vector identification is of major importance in arthropod borne diseases surveillance, as great differences in vectorial capacity are found even between close species. Unfortunately, specialized taxonomic knowledge of Culicoides identification is rarely available in routine surveillance, mainly based on wing morphology. Recently, some European species of Culicoides belonging to the subgenus Avaritia Fox, 1955 and Culicoides Latreille, 1809 have been described as new bluetongue virus vectors.In the present study, by using a fragment of the barcode region (COI gene) we report the presence of up to 11 species within the subgenus Culicoides in Catalonia (NE Spain), a region recently affected by a bluetongue epizootic. The molecular analysis revealed new non-described cryptic species which were grouped in three complexes of morphologically similar species, two in the Pulicaris complex resembling Culicoides pulicaris, two in the Fagineus complex resembling Culicoides fagineus and three in the Newsteadi complex resembling Culicoides newsteadi. The phylogenetic relationships among them showed that cryptic species detected in both Pulicaris and Fagineus complexes were closely related, whereas those in the Newsteadi complex were more distant. Accurate analysis of all species using morphological and molecular approaches resulted in the detection of diagnostic metric traits for cryptic species and the design of several new species-specific single and multiplex PCR assays to identify unambiguously all the species, most of them still lacking a specific molecular diagnosis.  相似文献   

7.
Fasciola hepatica is a trematode infecting ruminants worldwide, occasionally reported in a wide range of animal species, including humans. According to the WHO, fasciolosis is recognized as a re-emerging neglected tropical disease, responsible for endemic and epidemic outbreaks in humans. Although the main hosts of the parasite are represented by cattle, sheep and goats, wildlife may be involved in its circulation. Here we firstly report F. hepatica in a wild boar from Italy (southern area) and characterize it both morphologically and molecularly. The nad1 gene analysis of specimens analyzed, revealed a high genetic similarity with those of humans from Iran and Peru, as well as a close phylogenetic relationship to those in ruminants from Brazil, Ecuador and Egypt. Considering the increase in the wild boar populations in urban and peri-urban areas, a potential role of this ungulate in the circulation of this zoonotic trematode is suggested.  相似文献   

8.
Cryptococcus species are environmental yeasts, with a worldwide distribution and remarkable environmental adaptation. Although many species do not cause disease, C. neoformans and C. gattii are causative agents of cryptococcosis, a life threatening infection and a significant public health problem worldwide. Infection especially affects immunocompromised animals and humans. In wildlife, cryptococcosis appears to be more prevalent in captive populations. The objective of this study was to assess whether apparently healthy quokkas (Setonix brachyurus) harbor Cryptococcus spp. Using cultural and molecular methods, we studied yeasts isolated from nasal swabs collected from 130 free-ranging quokkas on Rottnest Island (RI, n = 97) and the mainland (n = 33) of Western Australia. Unspeciated Cryptococcus spp. (from four quokkas), C. neoformans var. grubii (serotype A) (two quokkas) and C. magnus (one quokka) were isolated from the nasal lining of apparently healthy quokkas from RI. Cryptococcus neoformans var. grubii was isolated from animals captured in a human-populated area on RI. There was no significant effect of the presence of Cryptococcus on the results of haematology, blood chemistry, peripheral blood cell morphology or clinical examination. To the best of our knowledge, this is the first documented isolation of C. neoformans var. grubii (serotype A) and C. magnus in a free-ranging macropod in Western Australia. The public health implications of this finding should be further explored.  相似文献   

9.
Species in the bacterial genus, Bartonella, can cause disease in both humans and animals. Previous reports of Bartonella in bats and ectoparasitic bat flies suggest that bats could serve as mammalian hosts and bat flies as arthropod vectors. We compared the prevalence and genetic similarity of bartonellae in individual Costa Rican bats and their bat flies using molecular and sequencing methods targeting the citrate synthase gene (gltA). Bartonellae were more prevalent in bat flies than in bats, and genetic variants were sometimes, but not always, shared between bats and their bat flies. The detected bartonellae genetic variants were diverse, and some were similar to species known to cause disease in humans and other mammals. The high prevalence and sharing of bartonellae in bat flies and bats support a role for bat flies as a potential vector for Bartonella, while the genetic diversity and similarity to known species suggest that bartonellae could spill over into humans and animals sharing the landscape.  相似文献   

10.
Small mammals are important reservoirs of zoonotic diseases and are definitive hosts for medically important parasitic helminths. Several rodent and shrew species are peridomestic, bringing them into close contact with both humans and the intermediate hosts that maintain the transmission cycle. Here, we screened DNA extracted from large intestine tissue homogenate from 108 individuals comprised of 10 species. We detected two species known to infect humans, Dicrocoelium dendriticum and Moniliformis moniliformis. We also report the first detection of a second Angiostrongylus species in Singapore. This study demonstrates the diversity of helminths that are parasitizing the small mammals in Singapore.  相似文献   

11.
12.
Paragonimiasis is a particular foodborne parasitic disease that is endemic to southern Kyushu, including Kagoshima Prefecture, Japan. We previously detected Paragonimus westermani triploid larvae in meat samples obtained from wild boars and sika deer hunted in Akune City, Kagoshima Prefecture. These mammals act as paratenic hosts and their meat is a source of human paragonimiasis. Paratenic host mammals and humans become infected with the lung fluke, P. westermani, following consumption of second intermediate hosts, freshwater crab species, namely, Geothelphusa dehaani or Sawagani in Japanese, and Eriocheir japonica or Mokuzugani in Japanese. Therefore, this study aimed to investigate the current infection status of P. westermani in freshwater crabs in Akune City. We collected freshwater crabs from 15 locations and found that the prevalence of P. westermani metacercariae was 1.6% for Sawagani (15 of 941 examined) and 22.1% for Mokuzugani (21 of 95 examined). Based on the morphological characterization of metacercariae and molecular analyses of the internal transcribed spacer 2 region and mitochondrial 16S rRNA gene region using PCR-restriction fragment length polymorphism and sequencing, all metacercariae were identified as the triploid form of P. westermani. These results indicate that Sawagani and Mokuzugani serve as second intermediate hosts to maintain the life cycle of triploid P. westermani. Further, infection in crabs potentially leads to subsequent P. westermani infections in wild mammals, including wild boars and sika deer, both of which are considered important types of game meat in Japan.  相似文献   

13.
Abstract

The ranavirus, epizootic hematopoietic necrosis virus (EHNV), is endemic to southern Australia with natural outbreaks resulting in mass mortality events in wild Redfin Perch Perca fluviatilis (also known as Eurasian Perch) and less severe disease in farmed Rainbow Trout Oncorhynchus mykiss. To further investigate the host range for EHNV, 12 ecologically or economically important freshwater fish species from southeastern Australia were exposed experimentally to the virus. A bath-challenge model at 18 ± 3°C was employed with limited use of intraperitoneal inoculation to determine if a species was likely to be susceptible to EHNV. Of the species tested, Murray–Darling Rainbowfish Melanotaenia fluviatilis and Dewfish Tandanus tandanus (also known as Freshwater Catfish) were considered to be potentially susceptible species. EHNV was isolated from approximately 7% of surviving Eastern Mosquitofish Gambusia holbrooki, indicating this widespread alien fish species is a potential carrier. The infection of Silver Perch Bidyanus bidyanus and Macquarie Perch Macquaria australasica and the lack of infection in Murray Cod Maccullochella peelii peelii and Golden Perch Macquaria ambigua ambigua after exposure to EHNV via water confirmed earlier data from Langdon (1989). Five other species of native fish were potentially not susceptible to the virus or the fish were able to recover during the standard 35-d postchallenge observation period. Overall, it appeared that EHNV was less virulent in the present experimental model than in previous studies, but the reasons for this were not identified.

Received May 21, 2012; accepted November 1, 2012  相似文献   

14.
Bartonella are fastidious, Gram-negative, aerobic bacilli belonging to the Alphaproteobacteria group. In the last ten years, the discovery of new Bartonella species from a variety of mammalian hosts, arthropod vectors and geographical areas has increased. More than 20 species of Bartonella have been identified, of which approximately thirteen are associated with disease in humans and animals. Recently, four novel species of Bartonella were isolated from mammalian hosts in Australia: Bartonella australis from eastern grey kangaroos (Macropus giganteus) and Bartonella rattaustraliani, Bartonella queenslandensis and Bartonella coopersplainsensis from rodents. Bartonella-like organisms have also been detected from Ixodes tasmani ticks collected from koalas (Phascolarctos cinereus). However, very little is known about Bartonella spp. in other marsupials in Australia. We report the identification of a novel Bartonella species detected from fleas (Acanthopsylla jordani) and ticks (Ixodes antechini) collected from a small carnivorous marsupial, Antechinus flavipes (Mardos or Yellow-footed antechinus) in the southwest of Western Australia. New nested-PCRs targeting the gltA gene and the ribosomal ITS region were developed as part of the present study. DNA sequencing of the 16S rRNA, gltA, ftsZ and rpoB genes and the ribosomal ITS region revealed that this detection is a distinct Bartonella species and is related to B. australis isolated from kangaroos. This is the first report of two different possible arthropod vectors in Australia (ticks and fleas) being infected with the same species of Bartonella. We propose the name Candidatus Bartonella antechini n. sp. for the recently characterized organism.  相似文献   

15.
Coxiella burnetii is considered a re‐emerging zoonosis in many countries. The bacterium is enzootic in livestock and wildlife in the United States, and environmental contamination is widespread. Despite the potential for exposure, the estimated prevalence of Q fever in humans and animals is not well elucidated, and reported human infections in the United States are relatively rare. Zoonotic transmission of the bacterium is usually associated with abortions in domestic ruminants, but other modes of transmission, such as contact with infected blood and/or milk during field dressing of infected wildlife, have not been thoroughly investigated. Studies of zoonotic pathogen transmission between animal reservoir hosts and humans are usually established in response to documented emergence or re‐emergence of a zoonosis in a particular locale, and, as such, the prevalence of infection in wildlife is largely unknown for many zoonotic pathogens, including C. burnetii. The objective of this study was to create a disease risk surface for C. burnetii seroprevalence in wild white‐tailed deer (Odocoileus virginianus) in New York State. Blood samples were collected from hunter‐harvested deer from across New York State in 2009 and 2010. The samples were processed and tested for the presence of anti‐C. burnetii antibodies via indirect microimmunofluorescence assays using phase II C. burnetii strain RSA439. Overall, 14.50% of the tested white‐tailed deer were C. burnetii phase II seropositive. The dual Kernel density estimation method was used to create a smoothed disease risk surface, which revealed variation in seroprevalence ranging from 0% to 32.0%. Areas of higher seroprevalence were detected in four discrete areas of Central New York and in one additional area in the southwest corner of the northern part of the state. This suggests certain locales where humans may be at increased risk for exposure to the bacterium secondary to contact with potentially infected deer.  相似文献   

16.
Toxoplasma gondii is one of the most prevalent zoonotic protozoan parasites among warm‐blooded animal populations (humans included) around the world, causing multiple clinic manifestations including death in the most severe cases of infection. Due to the versatile life cycle of T. gondii and its diversity of potential hosts, there is a common perception that natural areas and wildlife are highly prevalent reservoirs for the parasite; however, information and reports of the parasite on wildlife populations in Colombia are scarce. Using PRC‐based detection analyses of the B1 gene, we evaluated the presence of T. gondii in 49 native small mammal species (10% of the mammal species of Colombia) from 4 different undisturbed natural habitats. Additionally, to understand the ecogeographical distribution of the parasite in Colombia, we developed a literature search of infection reports including information on the host species, density of records and occurrence patterns (using landcover and ecoregions) in natural, rural and urban areas. Our literature review showed a total of 8,103 reports of T. gondii for Colombia of which 86% were related to humans, and 14% to non‐human mammals and other categories, with just a single report associated to wildlife; additionally, 82% of all reports were associated to urban areas whereas only 18% to rural sites. Based on the negative results for the presence of T. gondii in our PCR‐based analyses and our literature search, we suggest that T. gondii has a synanthropic distribution in Colombia occurring in ecoregions as variable as the xeric scrubs in the northern lowlands and humid montane Andean forests, also we show a lack of information on the parasite relationship with wildlife, a concerning fact given that zoonoses are the leading mechanism for the emergence of infectious diseases.  相似文献   

17.
Reports of canine chlamydiosis are infrequent, possibly because the pathogen is rarely considered to be a cause of disease in dogs. This report presents details of Chlamydophila psittaci infection in four bitches with recurrent keratoconjunctivitis, severe respiratory distress and reduced litter size (up to 50% stillborn or non-viable puppies) in a small dog-breeding facility in Germany. Cell culture and immunofluorescence examination of conjunctival, nasal and pharyngeal swabs revealed chlamydial inclusions. PCR and sequencing of ompA amplification products confirmed the presence of Cp. psittaci genotype C. The zoonotic potential of the pathogen was illustrated by evidence of disease in two children that lived on the premises with the infected dogs. There was circumstantial evidence to suggest infection of dogs and humans may have followed the introduction of two canaries and a parrot to the household. The persistent nature of the chlamydial infection suggests that dogs may be reservoirs of Cp. psittaci, but this putative role and whether or not dogs shed the pathogen require further investigation.  相似文献   

18.
Translocation of Tasmanian devils (Sarcophilus harrisii) is a common strategy for recovery of the species as carried out by the Save the Tasmanian Devil Program. Dasyurids including the endangered Tasmanian devil are well known to asymptomatically harbour the zoonotic bacteria Salmonella enterica in their intestinal tracts. Testing for Salmonella is a routine component of pretranslocation health testing, so a statewide microbiological survey of captive and wild devils was implemented in order to understand prevalence and common Salmonella serotypes, and inform decision-making when positive cultures are identified. This preliminary study identified a significantly higher proportion of Salmonella isolations in wild compared with captive devils. Mississippi and Typhimurium were the most common serotypes, followed by Lexington, Bovismorbificans, Kottbus and Amsterdam. Given the common finding of Salmonella in wild devils and the range of serotypes involved, in addition to numerous isolations in domestic species and humans, it is unlikely that the release of small numbers of captive devils to the wild in Tasmania poses a significant risk to the destination ecosystem. Ongoing monitoring of devils is required as the stress of acclimatisation could predispose devils to clinical disease. Appropriate personal protective attire is pertinent to protect personnel handling animals from this zoonotic infection.  相似文献   

19.
Infection of equids by Leishmania (L.) parasites was previously described in both the Old and New World, particularly in Central and South America. Equine cutaneous leishmaniasis (CL) is caused by the Leishmania species, L. Viannia (V.) braziliensis and L. infantum, previously identified in humans and other parasite hosts living in the same geographic endemic areas. Sporadic autochthonous clinical cases, with no travel history, were documented in several countries including Germany, Portugal, Spain, Texas and Brazil; L. infantum and L. (Mundinia) martiniquensis were the infectious species. Prevalence of subclinical infections is extremely low and CL is observed in only a small proportion of infected animals with the appearance of single or multiple cutaneous lesions located on the head, external ear, scrotum, legs and the neck. To date, there has been no report of visceral abnormalities. However, the mild clinical profile of the disease and its spontaneous regression may indicate that skin lesions related to Leishmania infection is underdiagnosed. Importantly, although the prevalence of Leishmania infections in the equine population is low, a risk may rise from its potential involvement in the parasite transmission cycles as a source of infection for phlebotomine vectors and susceptible mammalian hosts. This review article summarises our current knowledge of the epidemiology, clinical presentation and diagnosis of Leishmania-infected equids.  相似文献   

20.
Toxoplasmosis Update and Public Health Implications   总被引:1,自引:0,他引:1       下载免费PDF全文
Toxoplasma gondii has a coccidian life cycle in the intestine of domestic and wild felids that includes a series of asexual and sexual stages and an oocyst stage that is shed in the feces. Oocysts complete their development outside the body, eventually becoming infective for about 350 species of vertebrates including cats and man. The effects of climate on oocyst survival and the physical and biological means of oocyst dispersal are discussed. Infectivity and pathogenicity for livestock species vary. Acute disease results from rapidly multiplying tachyzoites that may be transmitted by carnivorism, transfusion, vertical transmission and other routes. Patent infections may persist for the life of a host as bradyzoites within tissue cysts. Bradyzoites initiate acute infection in other hosts after carnivorism or organ transplantation or in the same host after immunosuppression. Also discussed are: (a) prevalence of T. gondii in livestock as determined by digestion and serological techniques, (b) identification in humans as accomplished by isolation, serological and skin test techniques and (c) identification in cats as accomplished primarily by fecal examinations for oocysts infective for mice. Source of human infections, major outbreaks, treatment, effects on mental health and methods for preventing toxoplasmosis in man and livestock are listed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号