首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To increase the current knowledge about the relationship between nutritional status and the digestive capacity of Siberian sturgeon (Acipenser baerii), we addressed the effect of starvation‐refeeding and macronutrient composition on growth parameters and key digestive enzyme activities in A. baerii. Acipenser baerii juveniles were fed four different diets for 3 weeks, then starved for 2 weeks and allowed to refed for 5 weeks with the same diets. Another group of fish were fed 10 weeks with the corresponding diets. Among 10‐week fed fish, high‐protein diets promoted higher body weight values, while the lowest specific growth rate was observed in fish fed a low‐protein, medium‐carbohydrate, high‐lipid diet (p < .05). At the end of the experiment, in fish refed for 5 weeks following a feeding‐starvation cycle and in 10‐week fed animals, the higher levels of blood glucose, triglycerides and cholesterol were found in fish fed low‐protein diets (p < .05). In all treatments, 2 weeks of starvation decreased α‐amylase activity in the intestine (p < .05), while 4 days of refeeding increased lipase (p > .05) and α‐amylase activity in the intestine as well as pepsin in the stomach (p < .05). Our findings suggest that A. baerii maintains a high capacity to digest proteins and lipids after 2 weeks of starvation and that α‐amylase can be used as an indicator of the nutritional status in fish submitted to starvation‐refeeding cycles. Indeed, refeeding with high‐protein and CHO:L ratio diets after starvation could improve the growth rate of A. baerii in culture.  相似文献   

2.
The effects of alternate starvation and refeeding on food consumption and compensatory growth of hatchery‐bred abalone, Haliotis asinina (Linnaeus), were determined. Two groups of abalone juveniles (mean shell length = 29 mm, body weight = 5 g) were alternately starved and refed a macro‐alga, Gracilariopsis bailinae at equal duration (5/5 or 10/10) over 140 days. A control group (FR) was fed the seaweed ad libitum throughout a 200‐day experimental period. Starved and refed abalone showed slower growth rates (DGR, 63 and 70 mg/day in the 5/5 and 10/10 groups respectively), as a result of reduced food intake (DFI 15% and 16% day?1 respectively), after repeated starvation and refeeding cycles. Percentage weight gains (5/5 = 196%, 10/10 = 177%) were significantly lower than that of the control (397%). When refed continuously over 60 days, the starved groups exhibited increased DFI and fed at the rate of 24% and 25% day?1, which were not significantly different from that of the control at 26% day?1. At the end of the experiment, no significant differences were observed among three treatments in terms of shell length (range: 46–48 mm), body weight (range 25–28 g), % weight gain (392–465%) and per cent survival (range 87–98%). The results indicated that H. asinina had a complete compensatory growth following a return to full rations after a series of intermittent starvation and refeeding cycles.  相似文献   

3.
To determine the main expression site of major yolk protein (MYP) gene and the mechanisms for adaptation to starvation and refeeding in Strongylocentrotus intermedius, MYP mRNA expression amounts were analysed using a real‐time RT‐PCR. The results showed that MYP could be transcribed in the intestine, stomach, gonad and coelomocytes, and that the intestine was the main expression site of MYP gene in non‐starved urchins. The MYP synthesis in the intestine decreased during 15 days of starvation (67.70%, 52.58% and 71.35% of the control at 5, 10 and 15 days of fasting respectively) and then increased dramatically by different amounts (the peaks were 2.71‐, 12.16‐ and 7.89‐fold that of the control respectively) during the refeeding stages. Nevertheless, the expression amounts in the gonads did not decline, but increased continuously during all periods of fasting (2.66‐, 3.72‐ and 13.19‐fold that of the control at 5, 10 and 15 days of starvation respectively) and during the refeeding stages. At the end of the recovery feeding experiment, the levels reached 9.58‐, 17.48‐ and 100.69‐fold that of the control. These data suggested that the ‘priority’ strategy for the sea urchin is to reduce MYP expression amounts in the intestine if food is limited and to increase MYP gene expression in the gonad to protect reproductive function.  相似文献   

4.
饥饿和恢复投喂对翘嘴鲌幼鱼摄食、生长及体成分的影响   总被引:3,自引:2,他引:1  
研究了在20.3~24.8℃条件下分别饥饿0 d、4 d、8 d、12 d和16 d后恢复投喂16 d对翘嘴鲌(Culter al-burnus)幼鱼摄食、生长及体成分的影响。结果显示:随着饥饿时间延长,幼鱼体质量损失率显著增大;肝体指数变小,水分和灰分含量逐渐升高;粗脂肪含量在饥饿前期下降较快,饥饿后期下降速率降低,各饥饿组与对照组差异显著(P<0.05);粗蛋白含量饥饿前期下降缓慢,饥饿4 d、8 d组与对照组差异不显著(P>0.05),饥饿后期下降明显,饥饿12 d、16 d组与对照组有显著差异(P<0.05);比能值不断下降,除饥饿4 d组外,各饥饿组与对照组都有显著差异(P<0.05)。恢复投喂后,各饥饿组鱼体生化组成和鱼体比能值均恢复至对照组水平,恢复投喂期间各饥饿处理组的摄食率显著高于对照组(P<0.05)。结果表明:饥饿4 d、8 d组翘嘴鲌幼鱼具有完全补偿生长能力;饥饿12 d、16 d幼鱼仅有部分补偿生长能力。  相似文献   

5.
The ability of Loligo opalescens paralarvae to resist and recover from starvation was examined by measuring their survival, growth rate and RNA/DNA ratios during starvation and refeeding. Paralarvae were fed Artemia sp. nauplii, zooplankton and mysid shrimp. Fourteen days after hatching they were separated into five feeding treatments: a control treatment (food was always available) and treatments starved for 2, 3, 4 and 5 days, and then refed. Each day, 5–7 paralarvae from each treatment were anesthetized to measure mantle length and wet weight (WW), and then RNA and DNA were extracted using an ethidium bromide fluorometric technique. Paralarvae did not survive 4 and 5 days of starvation, showing that at 15 days of age and at 16 °C the limit to recovery was 3 days of starvation. Paralarvae starved for 2 and 3 days showed compensatory growth that mitigated the effects of starvation, in that at the end of the experiment (10 days), they attained mean final body weights similar to the control treatment. Differences in the RNA/DNA ratios between control and starved paralarvae were detected within 2 days of food deprivation. For paralarvae starved 2 and 3 days, it took 1 day after refeeding to attain RNA/DNA ratios not significantly different from the control treatment. Additionally, RNA/DNA ratios were highest during the day (0800, 1200, 1600 h) and lowest at night (0000, 0400 h), suggesting daytime feeding activity. Growth rates ranged from − 14% to 21% WW day− 1 and the resulting equation between RNA/DNA ratio and growth rate (GR) of paralarvae was GR = 1.74 RNA/DNA − 11.79 (R2 = 0.70). After starvation, there was a reduction in growth variability in all starved treatments, while growth variability remained high in the control treatment. Findings from the present study indicate that nucleic acids are a valid indicator of nutritional condition and growth in squid paralarvae.  相似文献   

6.
Larval resistance to temporary starvation is considered a key factor for successful development in the wild. Subjecting larvae to temporary starvation during early and/or late development is occasionally used in larviculture to reduce production costs.Mithraculus forceps is a popular species in the marine aquarium industry for their ability to control nuisance algae in aquarium tanks; a larval culture methodology was previously proposed in order to avoid collection from the wild. In an attempt to reduce production/feeding costs of M. forceps larval culture (two zoea stages and a megalopa), larvae (megalopa stage) were starved after 7 and 8 days post-hatch (DPH); starvation treatments were compared with those of the control treatment where larvae were fed continuously. No differences were found in survival to juvenile, metamorphosis synchronism or larval duration between the treatments, which suggest that at least by day 7 DPH, megalopae have already achieved the point-of-reserve-saturation (PRS) and are able to successfully metamorphose to crab stage without feeding (facultative lecithotrophic); newly metamorphosed juveniles are slightly smaller (particularly the ones starved after 7DPH). This flexible way of development might be very advantageous in the wild and might allow the reduction of costs of larval culture in captivity.  相似文献   

7.
This study was performed to determine the effect of starvation and delayed feeding on activities of digestive enzymes and alkaline phosphatase (ALP) of larval red swamp crayfish (Procambarus clarkii), so as to reveal the tolerance to prolonged starvation and the recovery of digestive enzymes after delayed feeding in larval and juvenile P. clarkii. In the control group, activities of trypsin and ALP increased significantly (< .05) with day‐age and then kept constant at 24 days after hatching (DAH) and 10 DAH, respectively, whereas the activities of amylase and pepsin increased firstly then decreased with day‐age, and the activity of lipase increased firstly then decreased and then increased again during the development period of juvenile P. clarkii (1–31 DAH). In the group with continuous starvation (CS), activities of pepsin and lipase both decreased (< .05) after fasting, and the activities of pepsin, lipase and trypsin in the groups with delayed feeding all increased (< .05) and recover to the levels of the control group after food supply. However, the activity of amylase increased (< .05) in the CS group, and it decreased to normal level after food supply. The ALP activity did not significantly (> .05) vary after starvation, whereas it decreased in the groups with delayed feeding after 1 day of food supply, and then increased back to the level similar with the control group. Results from this study could provide information for diet preparation and feeding regime in larval and juvenile red swamp crayfish culture.  相似文献   

8.
This study investigated the effect of starvation (78 days) and refeeding (33 days) on the oxidative stress [malondialdehyde (MDA)] and the non‐enzymatic antioxidants [vitamin E (VE), vitamin C (VC), vitamin A (VA), beta carotene (βC) and reduced glutathione (GSH)] in the hepatopancreas, muscle and gill tissues of freshwater crayfish (Astacus leptodactylus). Crayfish were divided into three experimental groups: control (fed), starved (not fed) crayfish for 78 days and refeeding crayfish for 33 days after 78 days of starvation. The biochemical analysis of the tissues was conducted at 3, 18, 33, 48, 63 and 78 days of starvation and feeding and at 3, 18 and 33 days of refeeding. It was determined that crayfish can withstand starvation period of 78 days. In all of the periods, the MDA levels were significantly higher in the tissues of starved crayfish when compared with the control. The findings of this study demonstrate that starvation has a negative effect on the VE, VC, VA, βC and GSH levels in the crayfish. The measured parameters returned to control values after 33 days of the refeeding. Additionally, the starvation resulted in decreased levels of VE, VA and βC in the abdomen muscle of crayfish consumed by humans.  相似文献   

9.
10.
Starvation resistance in the juveniles of Chinese shrimp, Fenneropenaeus chinensis Osbeck, was studied by point-of-no-return (PNR) and point-of-reserve-saturation (PRS) experiments. Changes in oxygen consumption rate, ammonia-N excretion rate, and oxygen consumed to nitrogen excreted (O:N) ratio were investigated immediately before and after the period of recovery feeding for each regime to assess metabolic response during starvation and refeeding. There was a significant change in survival rate and wet weight of test shrimp throughout the PNR and PRS experiments (P < 0.05). The estimated PNR and PRS for F. chinensis juveniles could be directly calculated from the selected equations as PNR50 = 7.86 days, PNR100 = 21.42 days, PRS0 = 1.16 days, and PRS50 = 11.75 days. A decrease in metabolic rate during starvation as a means of conserving energy was found in F. chinensis juveniles. Furthermore, although F. chinensis juveniles only utilized protein as an energy source during starvation, they showed a shift from pure protein during starvation to an equal utilization of protein and lipid or a lipid-carbohydrate mixture during later satiate feeding. The results in the present study indicate that F. chinensis juveniles have the ability to withstand and recover from relatively prolonged starvation after longer initial feeding periods. The knowledge derived from the understanding of starvation resistance and the corresponding metabolic response of F. chinensis juveniles will be useful in the design of feeding regimes in this species.  相似文献   

11.
This study tested the hypothesis that different starvation time for fish before blood sampling can influence the result of plasma biochemical analysis. Glucose (GLU), total cholesterol (CHOL), triglyceride (TGL) and total protein (TP) in the plasma of juvenile Amur sturgeon (Acipenser schrenckii) were measured after different starvation duration (0, 0.5, 1, 2 and 3 days). Starvation time had a significant influence on plasma GLU, CHOL, TGL and TP concentrations (P < 0.05). Plasma GLU and TP concentrations were unpredictably variable with duration of starvation. Plasma TGL and CHOL concentrations after 3 days starvation were significantly higher than that in fish starved for 0, 0.5, or 1 day, and no significant difference was found among fish starved for 0, 0.5, or 1 day. In order to get baseline value for these blood parameters, juvenile Amur sturgeon should be starved for 1 day.  相似文献   

12.
The main objective was to study time kinetics of change in important highly unsaturated fatty acids (HUFAs) in phosphatidylcholine (PC) and phosphatidylethanolamine (PE) of Artemia franciscana nauplii and juveniles following enrichment and subsequent starvation. Samples of Artemia nauplii were taken at variable times (0.5–24 h) following enrichment and starvation. Samples of Artemia juveniles were taken after 2, 3 and 4 days of cultivation. No docosahexaenoic acid (DHA) was found in PC and PE of Artemia nauplii during the first hour of enrichment, while a significant (< 0.05) increase was found in total lipids (TLs). The content of DHA in PC and PE increased thereafter steadily from 1 to 8 h of enrichment. DHA in PC and PE during enrichment (1–8 h) and following starvation (8–24 h), respectively, increased and decreased significantly (< 0.05), but at a lower rate than that in TL. Moreover, juvenile Artemia (2–4 days) contained a relatively low level of DHA in TL compared with enriched Artemia nauplii, but the content of DHA in PC and PE was similar. The results open perspectives for both industry and science. For scientific studies, the lag phase in HUFA enrichment makes it possible to produce Artemia nauplii with variable relative HUFA enrichments in phospholipids and TL.  相似文献   

13.
研究了饥饿和再投喂过程中自斑狗鱼肝脏和肌肉RNA/DNA比值的变化.随着饥饿时间的延长,白斑狗鱼体内RNA/DNA比值不断下降,体重逐渐减小,饥饿561时RNA/DNA比值下降幅度达到最大.恢复投喂后,白斑狗鱼摄食强度明显增大,生长加快,各组试验中肝脏和肌肉RNA/DNA比值均超过正常投喂水平.试验结果表明RNA/DNA比值与体重变化呈正相关,进一步证明RNA/DNA比值可作为衡量鱼类生长的重要指标之一.  相似文献   

14.
15.
The starvation tolerance of post-larval abalone (Haliotis iris) was determined by examining post-larval growth and survival after various periods of starvation. Competent larvae (10 days old at 16°C) were induced to attach and metamorphose with 2 μM GABA. Post-larvae were either fed diatoms (Nitzschia longissima) or starved. In Experiment 1, post-larvae were starved immediately after metamorphosis for periods of 1, 2, 4, 8, 15, 20, 25 and 30 days. Starved post-larvae grew relatively well for several days after metamorphosis despite the absence of food (averages of 10.4 and 17.8 μm shell length (SL) per day after 8 days for two batches). Subsequent growth was minimal, averaging 1.7 and 0.7 μm day−1 over 6–7 days for the two batches. There was no clear relationship between period of starvation and growth rate when fed. Mean daily growth rate over 3 weeks when fed ranged from 15–22 μm day−1. However, the duration of starvation did have a significant effect on survival. Survival of post-larvae fed after 1–2 days of starvation was 90–100% after 3 weeks of feeding. Longer starvation periods gave progressively lower survival and post-larvae starved for 30 days all died within a week of being fed. In Experiment 2, post larvae were fed for 3 weeks after metamorphosis, then starved for 0, 3, 7, 14 or 21 days. Growth rates of starved post-larvae averaged only 5–6 μm day−1 in the first week (vs. 30 μm day−1 in controls), and later declined to zero. Growth resumed within a week following return to food, but the 14- and 21-day starvation treatments took 2 weeks to reach growth rates comparable to controls. The no-starvation controls and the 3- and 7-day starvation treatments all had >70% survival over 4 weeks after return to food. Survival in the 14- and 21-day starvation treatments was 15–20%, with almost all mortalities occurring in the first week after return to food. These data suggest that Haliotis iris post-larvae are relatively tolerant of starvation, so abalone farmers have a week or so to remedy food shortages before major post-larval mortality begins.  相似文献   

16.
Many fish species can withstand long period of food deprivation and consequently compensate for any weight loss by undergoing rapid growth during resumption of feeding. There is an interest in taking advantage of compensatory growth to reduce feed cost. In this present study, we attempted to compare the changes in hepatic mitochondrial proteome of zebrafish undergoing starvation and refeeding. Two‐dimensional gel separation and image analysis revealed a total of 65 spots that showed changes in expression after 15 days of starvation followed by 7 days of refeeding. A total of 35 proteins were selected for mass spectrometry analysis, resulting in the positive identification of 18 proteins. Identified proteins indicated that starvation resulted in reduction in glycolysis and increase in gluconeogenesis, while refeeding caused these activities to return to normal levels. Expression pattern of several proteins related to fatty acid and amino acid metabolism also suggested the utilization of non‐carbohydrate resources for energy during starving conditions. Proteins with chaperoning and antioxidative roles such as glucose‐regulated protein, paraxonase and heat‐shock protein were also upregulated in starved conditions.  相似文献   

17.
饥饿及恢复生长对方斑东风螺抗氧化体系的影响   总被引:3,自引:0,他引:3  
在(25.8±1.7)℃条件下,测定了方斑东风螺(Babylonia areolata)不同饥饿期(7d、15d、25d、40d)后再投喂(30d)过程中足肌、肝胰脏的抗氧化体系相关指标变化。结果显示,分别饥饿25d和40d时幼螺两组织丙二醛(MDA)含量较对照组均显著升高;饥饿25d前,超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GPx)活力较对照组逐渐增强,当禁食达40d时却显著减弱;谷胱甘肽硫转移酶(GST)活力饥饿状态下先略上升后下降,肝胰脏、足肌中分别于饥饿25d和40d时显著降低;谷胱甘肽还原酶(GR)活力及谷胱甘肽(GSH)含量随禁食延长均呈下降趋势。恢复生长后,除饥饿40d组GR活力及肝胰脏MDA水平较对照呈差异显著外,该组其余指标及其他各处理组相应指标均恢复至或接近对照组水平。结果表明,饥饿胁迫下螺体抗氧化体系虽被激活,但仍处于一定的氧化应激状态,提示幼螺养成中禁食时间不宜超过25d,且SOD、CAT与GPx活性可作为螺体饥饿胁迫状态的指示参数。  相似文献   

18.
饥饿与再投喂对中华倒刺鲃幼鱼生长和消化酶活性的影响   总被引:1,自引:0,他引:1  
周兴华  向枭  向桢  欧仁建  陈俊  冉龙虎 《淡水渔业》2012,42(3):50-54,73
在室内水温23~26℃的条件下,将中华倒刺鲃(Spinibarbus sinensis)幼鱼分装于6个饲养桶中,试验设计分为两组,每组3个平行,并依次编号为A、B、C、D、E、F,将两组同时饥饿20 d,分别在饥饿0、3、5、10、15、20 d对A、B、C取样。而D、E、F饥饿20 d后进行16 d的恢复投喂,并在再投喂3、7、12、16 d进行取样,分别测定其体质量、肥满度、肝脏指数以及肝胰脏、前后肠消化酶(胰蛋白酶、脂肪酶、淀粉酶)活性的变化。结果表明:(1)在饥饿过程中,中华倒刺鲃幼鱼体质量、肥满度、肝脏指数均呈下降趋势;恢复投喂后,三者均有不同程度的恢复。(2)肝胰脏蛋白酶活性在饥饿过程中呈下降趋势,并在20 d降到最低,恢复投喂后其活性逐步回升到正常水平;而肠蛋白酶活性饥饿过程中先升高,并在5 d达到最高值而后呈下降趋势,恢复投喂后达到正常水平。(3)饥饿过程中,肝胰脏和前后肠脂肪酶活性迅速升高,在10 d达到最值,并显著高于饥饿前的水平,而后逐步下降,恢复投喂后脂肪酶活性仍持续维持在较高的水平。(4)肝胰脏和前后肠淀粉酶活性在饥饿过程中逐步下降,恢复投喂后其活性恢复至正常水平。  相似文献   

19.
We evaluated whether body fat content affects the energetic metabolism and growth in pacu submitted to daily feeding, fasting and refeeding. For 15 days, fish were fed different diets to obtain lean and fat conditions, and then subjected, for 20 days to: (1) continuously feeding (control), or (2) fasting for 15 days and refeeding for 5 days. Blood (glucose, triglycerides, cholesterol, non‐esterified fatty acids and total protein) and tissue (liver lipid and glycogen, muscle lipid and mesenteric fat) metabolic indicators, and growth performance parameters (weight gain, specific growth rate, daily feed intake and feed conversion ratio) were measured. Fasting led both lean and fat pacu to make notable use of their energy reserves, through glycogenolysis and lipolysis, reflected in reduced blood glucose and triglycerides, liver glycogen and muscle lipid levels. Lipolysis was confirmed by the high levels of non‐esterified fatty acids, especially in fat pacu. Refeeding led to higher plasma glucose and liver lipid in lean fish. Muscle fat increased in fat fish but was not restored in lean fish, while mesenteric fat index (MFI) remained the same in fat fish and increased in lean fish. Although refeeding occurred only for 5 days, lean fish grew more and were more efficient at utilizing food (higher weight gain and better feed conversion ratio). In conclusion, our results suggest that fat pacu have higher glycogenic and lipogenic abilities, and the higher deposition of lipids in fish does not mean higher availability of energy for growth when compensatory growth is stimulated by refeeding after fasting.  相似文献   

20.
The aim of this study was to evaluate the effects of dietary lipids on protein‐sparing and lipoprotein lipase (LPL) mRNA expression in culture using 360 juvenile soft‐shelled turtles (Pelodiscussinensis) (initial weight 4.26 ± 0.14 g). The turtles were allotted to six diets with three duplicates for 60 days. A control diet with 46% protein and 55% fishmeal (CD) and five isonitrogenous diets with 41.3% protein and 45% fishmeal (F, S, L1, L2 and L3) were used, containing the following three lipid types: fish oil, soybean oil and mixed oils (soybean oil: fish oil = 1:1). The results showed that the survival rate was not affected by dietary lipids (P > 0.05). The highest weight gain and lowest feed coefficient ratio were seen in the L3 diets (P < 0.05). Turtles fed with L2 and L3 diets had lower superoxide dismutase activities, higher alanine aminotransferase activities and higher cholesterol concentrations than those exposed to other diets (P < 0.05). Hepatic LPL activity and LPL mRNA expression were higher in the L3 diets than in the other diets (P < 0.05). Overall, there were obvious protein‐sparing effects of dietary lipids and LPL mRNA expression was stimulated by high dietary lipids in soft‐shelled turtles in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号