首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Most follicles undergo atresia during the developmental process. Follicular atresia is predominantly regulated by apoptosis of granulosa cells, but the mechanism underlying apoptosis via the mitochondria‐dependent apoptotic pathway is unclear. We aimed to investigate whether the mitochondria‐associated genes peroxisome proliferator‐activated receptor‐gamma, coactivator1‐alpha (PPARGC1A), nuclear respiratory factor‐1 (NRF‐1), B‐cell CLL/lymphoma 2 (BCL‐2) and BCL2‐associated X protein (BAX) played a role in follicular atresia through this pathway. The four mitochondria‐associated proteins (PGC‐1α, which are encoded by the PPARGC1A gene, NRF‐1, BCL‐2 and BAX) mainly expressed in granulosa cells. The mRNA and protein levels of PPARGC1A/PGC‐1α and NRF‐1 in granulosa cells increased with the follicular development. These results showed that these genes may play a role in the regulation of the follicular development. In addition, compared with healthy follicles, the granulosa cell in atretic follicles had a reduced expression of NRF‐1, increased BAX expression and increased ratio of BAX to BCL‐2 expression. These results suggested that changes of the mitochondria‐associated gene expression patterns in granulosa cells may lead to follicular atresia during goat follicle development.  相似文献   

3.
4.
A large number of microRNAs (miRNAs) have been detected from porcine testicular tissues thanks to the development of high‐throughput sequencing technology. However, the regulatory roles of most identified miRNAs in swine testicular development or spermatogenesis are poorly understood. In our previous study, ULK2 (uncoordinated‐51‐like kinase 2) was predicted as a target gene of miR‐26a. In this study, we aimed to investigate the role of miR‐26a in swine Sertoli cell autophagy. The relative expression of miR‐26a and ULK2 levels has a significant negative correlation (R2 = .5964,  .01) in nine developmental stages of swine testicular tissue. Dual‐luciferase reporter assay results show that miR‐26a directly targets the 3′UTR of the ULK2 gene (position 618–624). In addition, both the mRNA and protein expression of ULK2 were downregulated by miR‐26a in swine Sertoli cells. These results indicate that miR‐26a targets the ULK2 gene and downregulates its expression in swine Sertoli cells. Based on the expression of marker genes (LC3, p62 and Beclin‐1), overexpression of miR‐26a or knock‐down of ULK2 inhibits swine Sertoli cell autophagy. Taken together, these findings demonstrate that miR‐26a suppresses autophagy in swine Sertoli cells by targeting ULK2.  相似文献   

5.
According to our previous studies, bta‐miR‐152, PRKAA1 and UCP3 are differentially expressed in mammary gland tissues of high milk fat and low milk fat cows, and the trend in bta‐miR‐152 expression is opposite from those of PRKAA1 and UCP3. To further identify the function and regulatory mechanism of bta‐miR‐152 in milk fat metabolism, we investigated the effect of bta‐miR‐152 on cellular triglyceride content in bovine mammary epithelial cells cultured in vitro, on the basis of bta‐miR‐152 overexpression and inhibition assays. The target genes of bta‐miR‐152 were identified through qPCR, Western blotting and dual luciferase reporter gene detection. Compared with that in the control group, the expression of UCP3 was significantly lower in the bta‐miR‐152 mimic group, the expression of PRKAA1 was decreased, and the intracellular TAG content was significantly increased. After transfection with bta‐miR‐152 inhibitor, the expression of UCP3 increased significantly, and the expression of PRKAA1 decreased, but the difference was not significant; in addition, the intracellular TAG content decreased significantly. Therefore, we concluded that bta‐miR‐152 affects the intracellular TAG content by targeting UCP3.  相似文献   

6.
7.
Dairy cow mastitis is a detrimental factor in milk quality and food safety. Mastitis generally refers to inflammation caused by infection by pathogenic microorganisms. Our studies in recent years have revealed the role of miRNA regulation in Staphylococcus aureus‐induced mastitis. In the present study, we overexpressed and suppressed miR‐145 to investigate the function of miR‐145 in Mac‐T cells. Flow cytometry, ELISA and EdU staining were used to detect changes in the secretion of several Mac‐T cytokines and in cell proliferation. We found that overexpression of miR‐145 in Mac‐T cells significantly reduced the secretion of IL‐12 and TNF‐α, but increased the secretion of IFN‐γ; the proliferation of bovine mammary epithelial cells was also inhibited. Using quantitative real‐time PCR (qRT‐PCR), Western blotting and luciferase multiplex verification techniques, we found that miR‐145 targeted and regulated FSCN1. Knock‐down of FSCN1 significantly increased the secretion of IL‐12, while the secretion of TNF‐α was significantly downregulated in Mac‐T cells. Upon S. aureus infection of mammary gland tissue, the body initiated inflammatory responses; Bta‐miR‐145 expression was downregulated, which reduced the inhibitory effect on the FSCN1 gene; and upregulation of FSCN1 expression promoted mammary epithelial cell proliferation to allow the recovery of damaged tissue. The results of the present study will aid in understanding the immune mechanism opposing S. aureus infection in dairy cows and will provide a laboratory research basis for the prevention and treatment of mastitis.  相似文献   

8.
Several hundred thousand primordial follicles are present in the mammalian ovary, however, only 1% develop to the preovulatory stage and finally ovulate. The remainder will be eliminated via a degenerative process called ‘atresia’. The endocrinological regulatory mechanisms involved in follicular development and atresia have largely been characterized but the precise temporal and molecular mechanisms involved in the regulation of these events remain unknown. Many recent studies suggest that apoptosis in ovarian granulosa cells plays a crucial role in follicular atresia. Notably, death ligand‐receptor interaction and subsequent intracellular signaling have been demonstrated to be the key mechanisms regulating granulosa cell apoptosis. In this review we provide an overview of granulosa cell apoptosis regulated by death ligand‐receptor signaling. The roles of death ligands and receptors [Fas ligand (FasL)]‐Fas, tumor necrosis factor α (TNFα)‐TNF receptor and TNFα‐related apoptosis‐inducing ligand (TRAIL)‐TRAIL receptor (TRAILR)] and intracellular death‐signal mediating molecules (Fas‐associated death domain protein), TNF receptor 1‐associated death domain protein, caspases, apoptotic protease‐activating factor 1, TNFR‐associated factor 2 and cellular FLICE‐like inhibitory protein in granulosa cells are discussed.  相似文献   

9.
10.
Recent studies suggest that ovarian follicular atresia is associated with DNA fragmentation and degeneration of granulosa cells, the hallmark of programmed cell death or apoptosis. Apoptosis of granulosa cells play a major role in follicular atresia. These studies have also demonstrated the involvement of tumour suppressors, apoptotic proteins and survival factors. These factors contribute to the developmental decision as to whether the ovarian follicles mature or undergo atresia. However, the precise temporal and molecular events involved in the apoptotic pathways in this process need to be elucidated. The present report summarizes the role of Jun N‐terminal kinase (JNK), p38 mitogen activated protein kinase (p38 MAPK), and extracellular‐signal regulated kinase (ERK)‐signalling module in the regulation of pro‐ and anti‐apoptotic factors of the granulosa cells in regulating follicular atresia. The findings presented here suggest that the loss of tropic hormone support is translated into the attenuation of Raf‐1‐MAPK/ERK kinase (MEK)‐ERK‐signalling pathway of the granulosa cells and this results in the decreased phosphorylation of the pro‐apoptotic BAD.  相似文献   

11.
The objective of this experiment was to assess the features and extent of follicular apoptosis in the water buffalo (Bubalus bubalis) ovary using classical histology and nick end labelling technique. Ovaries (n = 40) procured from the slaughterhouse were used for the study. The sections (5 μm) were used for detection of terminal deoxynucleotidyl transferase‐mediated dUTP‐biotin nick end labelling (TUNEL) and classical histology (H&E). Those follicles showing ≥ 5% TUNEL positivity (TUNEL assay) and pyknotic nuclei (histology) in granulosa cells were classified as atretic. Based on histology, the atretic primary and secondary follicles (%) were 93.82 and 95.62 respectively. The histology study reveals that the rates (%) of atresia in <1, 1–3, 3–5 mm and >5 mm were 36.90, 40.50, 62.84 and 74.5 respectively. Further the atretic tertiary follicles (%) were significantly lower than the primary and secondary classes of follicles. TUNEL assay reveals that the atretic rate (%) of tertiary follicles in <1, 1–3, 3–5 and ≥ 5 mm class follicles were 50.88, 53.84, 81.81 and 36.36 respectively. The percentage of atresia in >5 mm diameter follicles were significantly lower in TUNEL than histology. Percentages of granulosa and thecal cells positive for atresia by TUNEL were 30.7 ± 0.53 and 13.82 ± 0.18 respectively per follicle. The initial structural changes in atretic follicles were seen primarily in the granulosa cells. In severely atretic follicles TUNEL positive granulosa cells along with theca cells have to be considered in assessing the rate and extent of atresia.  相似文献   

12.
The differentiation of preadipocytes into adipose tissues is tightly regulated by various factors including microRNAs and cytokines. This article aims to study the effect of miR‐330‐5p on expression of BCAT2 in ovine preadipocytes. Ovine preadipocytes were isolated, and we found that the miR‐330‐5p expression decreased gradually during the early differentiation of ovine preadipocytes, while BCAT2 expression increased. BCAT2 was identified as a direct target of miR‐330‐5p, ectopic expression of miR‐330‐5p could change the expression of both BCAT2 mRNA and protein. Silencing BCAT2 had the same inhibition effects as overexpressing miR‐330‐5p on the preadipocyte differentiation, but overexpressing BCAT2 had the converse effects. Taken together, we demonstrated that miR‐330‐5p is a negative regulator of differentiation by targeting BCAT2, and clarified the role of BCAT2 and miR‐330‐5p during preadipocyte differentiation.  相似文献   

13.
14.
Early follicular development is closely related to oocyte‐granulosa cells‐ovarian stromal cells/theca cells. The aim of the present study was to investigate the effects of ovarian cortical, medullary stromal and theca cells on oestradiol and progesterone biosynthesis, proliferation and apoptosis of goat ovary granulosa cells in vitro. Using Transwell coculture system, we evaluated steroidogenesis, cell proliferation and apoptosis, and some molecular expressions regarding steroidogenic enzyme, luteinizing hormone receptor and apoptosis‐related genes in granulosa cells. The results indicated that ovarian stromal/theca cells were able to stimulate oestradiol and progesterone production, promote cell proliferation and inhibit apoptosis of granulosa cells. Among all the three kinds of cells, theca cells affected strongly on granulosa cell function, and ovarian medullary stromal cells had the weakest effect on granulosa cells. These findings would provide an important knowledge of cell interaction among follicular cells during follicular development.  相似文献   

15.
卵巢是家禽的重要繁殖器官,会产生大量卵泡,而卵泡在生长发育的各个阶段中都可能因为不同因素的调控而发生闭锁,最终导致繁殖性能衰退。颗粒细胞对卵泡的生长发育有重要调控作用,其凋亡会诱导卵泡发生闭锁。诱导颗粒细胞发生凋亡的因素较多,包括激素、细胞因子、氧化应激、线粒体及其他体外因素。颗粒细胞凋亡主要由线粒体途径导致,其涉及到半胱天冬酶(Caspase)家族参与,当线粒体裂解时会释放细胞色素C (Cyt-C),随后形成凋亡小体激活Caspase-3和Caspase-8,最终激活Caspase-9导致颗粒细胞凋亡;当颗粒细胞发生凋亡,家禽体内卵泡丧失生物功能并且卵泡细胞之间的调控失衡,促使卵泡内卵母细胞和膜细胞凋亡,最终导致卵泡发生闭锁;颗粒细胞在存活状态下所分泌的生长因子、性腺类固醇、细胞因子能减少卵母细胞氧化损伤,防止细胞内活性氧(ROS)水平过高导致的线粒体DNA损伤,从而避免线粒体功能障碍而造成的颗粒细胞凋亡。作者从颗粒细胞凋亡及其影响因素、颗粒细胞凋亡和卵泡闭锁的关系、颗粒细胞凋亡对卵泡闭锁的影响3个方面进行阐述,以期为减少卵泡闭锁、提高家禽繁殖性能提供理论依据。  相似文献   

16.
The anti‐Müllerian hormone (AMH) is an important marker of ovarian reserve and for predicting the response to superovulatory treatments in several species. The objective of this study was to investigate whether AMH and its receptor (AMHR2) are regulated in bovine granulosa cells during follicular development. In the first experiment, granulosa cells were retrieved from the two largest follicles on days 2 (before), 3 (at the expected time) or 4 (after deviation) of follicular wave. In the second experiment, four doses of FSH (30, 30, 20 and 20 mg) or saline were administered twice a day starting on Day 2 of the first follicular wave of the cycle. Granulosa cells and follicular fluid were collected from the two largest follicles 12 h after the last injection of FSH or saline. AMH mRNA abundance was similar in granulosa cells of the two largest follicles (F1 and F2) before deviation (Day 2), but greater in dominant (DF) than subordinate follicles (SF) at the expected time (Day 3) and after (Day 4) deviation (p < 0.05). In experiment 1, AMH mRNA levels declined in both DF and SF near the expected time and after deviation when compared to before deviation. There was no difference in AMHR2 mRNA levels before and during follicular deviation (p > 0.05), but they tended to be greater in DFs than SFs (p < 0.1) after deviation. Experiment 2 showed that AMH and AMHR2 mRNA in granulosa cells and AMH protein abundance in follicular fluid were similar (p > 0.05) between both co‐dominant follicles collected from the FSH‐treated cows. These findings indicate the followings: AMH mRNA levels decrease in both DFs and SFs during follicular deviation; granulosa cells from heathy follicles express more AMH mRNA compared to subordinate follicles undergoing atresia and FSH stimulates AMH and AMHR2 mRNA expression in granulosa cells of co‐dominant follicles.  相似文献   

17.
MicroRNAs (miRNAs) are a class of single‐stranded non‐coding small RNA molecules, which participate in the regulation of many physiological processes, and play a crucial role in cancer, metabolism and other processes. Rno‐miR‐425‐5p has been shown to play a role in the response to cold stress. To explore the mechanism by which rno‐miR‐425‐5p regulates the response to cold stress, we analysed the candidate target genes of rno‐miR‐425‐5p. After verification in rat hepatocyte BRL cells and in rat liver tissue, we identified several target genes that were altered in expression in response to cold stress. In rat liver tissue, the expression of rno‐miR‐425‐5p was significantly increased and the expression levels of target genes DLST and SLC16A1 were decreased under cold stress. The miRNA and mRNA levels were analysed by quantitative real‐time PCR and the protein levels were detected by Western blot analysis. Combined with the results of bioinformatic analysis, we concluded that rno‐miR‐425‐5p reduced the expression of DLST and SLC16A1, inhibiting energy release from the tricarboxylic acid cycle and preventing the liver from being injured by excessive energy mobilization.  相似文献   

18.
19.
生殖激素控制卵泡细胞凋亡的研究进展   总被引:8,自引:0,他引:8  
研究表明颗粒细胞凋亡是导致卵泡闭锁的重要原因,而颗粒细胞凋亡涉及许多因素,其中生殖激素,如GnRH、FSH、LH、P4、E、A、GH、Mel、inhibin、activin、follistatin等间接地和直接地对卵巢卵泡细胞凋亡发挥重要的综合控制作用,因此正确理解激素对体内、外卵泡及颗粒细胞发育和衰亡的调节网络具有很重要的理论和实践意义。  相似文献   

20.
The mammalian ovary is an extremely dynamic organ in which a large majority of follicles are effectively eliminated throughout their reproductive life. Due to the numerous efforts of researchers, mechanisms regulating follicular growth and atresia in mammalian ovaries have been clarified, not only their systemic regulation by hormones (gonadotropins) but also their intraovarian regulation by gonadal steroids, growth factors, cytokines and intracellular proteins. Granulosa cells in particular have been demonstrated to play a major role in deciding the fate of follicles, serving molecules that are essential for follicular growth and maintenance as well as killing themselves by an apoptotic process that results in follicular atresia. In this review, we discuss the factors that govern follicular growth and atresia, with a special focus on their regulation by granulosa cells. First, ovarian folliculogenesis in adult life is outlined. Then, we explain about the regulation of follicular growth and atresia by granulosa cells, in which hormones, growth factors and cytokines, death ligand-receptor system and B cell lymphoma/leukemia 2 (BCL2) family members (mitochondria-mediated apoptosis) are further discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号