首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 64 毫秒
1.
The importance of dietary 20:5n‐3 (EPA), 22:6n‐3 (DHA) and 20:4n‐6 (ARA) for growth, survival and fatty acid composition of juvenile cockles (Cerastoderma edule) was investigated. Cockles of 6.24 ± 0.04 mm and 66.14 ± 0.34 mg (live weight) were distributed into three treatments where live microalgae diets were fed constantly below the pseudofaeces production threshold, for three weeks. Diets had distinct fatty acid profiles: high EPA (53% Chaetoceros muelleri + 47% Pyramimonas parkeae), no DHA (47% Brachiomonas submarina + 53% Tetraselmis suecica) and low ARA concentrations (73% P. parkeae + 27% Phaeodactylum tricornutum). Growth was positively affected by high EPA and low ARA diets, whereas no significant growth was observed for the no DHA diet. High mortality of cockles fed no DHA diet raises questions about its suitability for cockles. In balanced diets with EPA and DHA, lower concentrations of ARA do not limit growth. The impact of dietary fatty acids was evident in the fatty acids of neutral and polar lipids of cockles. In polar lipids of all cockles, there was a decrease in EPA, in contrast to an increase in DHA. The combination of EPA and DHA in a live microalgae diet was beneficial for the growth and survival of juvenile cockles.  相似文献   

2.
This study evaluated the effects of Aurantiochytrium spp. microalgae meal and oil as dietary docosahexaenoic acid (DHA) sources on the growth, fatty acid composition and DHA retention of orange‐spotted grouper, Epinephelus coioides. Dietary fish oil was replaced with microalgae meal or oil to provide an equal amount of DHA as a fish oil‐containing basal diet. In total, three experimental diets were fed to triplicate groups of fish (initial wt: 8.48 ± 0.06 g) in a recirculating system for 8 weeks. The weight gain and feed efficiency of the fish did not differ significantly among the experimental diets. The fatty acid composition of the whole body of the fish generally reflected the composition of their diet. The concentration of eicosapentaenoic acid in the whole body was higher in the fish fed the fish meal control diet than in those fed the two experimental diets The fish fed the control diet and those fed the diet containing microalgae oil exhibited higher DHA concentrations than did the fish fed the diet containing microalgae meal. The whole‐body DHA retention was the highest in the fish fed the diet with microalgae oil, followed by the fish fed the control diet. The lowest whole‐body DHA retention was observed in the fish fed the diet containing microalgae meal. The results suggested that the oil from Aurantiochytrium spp. microalgae can be used as DHA source for the grouper. DHA utilization by the fish was higher when the diet was supplemented with microalgae oil than with dry microalgae meal.  相似文献   

3.
This study was conducted to evaluate the effect of dietary eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) levels on the fatty acid composition, salinity tolerance and antioxidant status of rainbow trout (Oncorhynchus mykiss). Four diets were formulated with total EPA and DHA contents of 5.41, 9.55, 13.97 and 17.88 g/kg (abbreviated as ED‐5.41, ED‐9.55, ED‐13.97 and ED‐17.88 respectively). Rainbow trout (initial weight of 90.61 ± 9.25 g) were fed the experimental diets for 8 weeks to accumulate significant differences in fatty acid composition and subsequently underwent salinity acclimation. Our results indicated that high dietary EPA and DHA significantly improved the EPA and DHA content in fish tissues. The serum osmolality of fish returned to their freshwater values in the ED‐9.55, ED‐13.97 and ED‐17.88 groups. The Na+, K+‐ATPase (NKA) activity of fish in the ED‐13.97 group changed dramatically to adapt the fish to the hypertonic environment. Moreover, there was no significant difference in the serum cortisol concentration and liver catalase (CAT) activity of fish in the ED‐13.97 group during salinity acclimation. The liver superoxide dismutase (SOD) activity in the ED‐13.97 group was significantly higher than that in ED‐5.41 and ED‐9.55 groups at the end of salinity acclimation. The muscle malondialdehyde (MDA) content in the ED‐13.97 group was significantly lower than that in the ED‐17.88 group before salinity acclimation and significantly lower than the ED‐5.41 and ED‐17.88 groups on day 7 of acclimation. The results of this study indicate that the rainbow trout in the ED‐13.97 group exhibited optimal salinity acclimation performance.  相似文献   

4.
This study investigated the effects of varying dietary levels of decosahexaenoic acid (DHA) on growth performance, proximate composition and whole body fatty acid profiles of juvenile silver pomfret, Pampus argenteus. Triplicate groups of fish (30.55 ± 0.08 g) were fed diets containing 5.2%, 9.31% and 13.38% DHA (% of total fatty acids) or 0.85%, 1.52% and 2.18% DHA on dry diet weight for diets 1, 2 and 3 respectively. Survival was not affected by dietary DHA levels. The growth performance and feed utilization parameters of fish fed diets 2 and 3 were significantly (< 0.05) higher than those fed diet 1, although these parameters in diets 2 and 3 did not differ significantly (P > 0.05). Whole body lipid and fatty acid profiles were influenced by dietary DHA levels. Significantly higher n‐3 fatty acids particularly DHA, DHA:EPA(eicosapentaenoic acid) ratios and n‐3:n‐6 ratios were observed in fish fed diets 2 and 3 compared to those fed diet 1. Better growth performance and higher whole body DHA:EPA (2.31, 2.29) ratios and n‐3:n‐6 ratios (2.17, 2.12) observed in fish fed diets 2 and 3, respectively, suggests that silver pomfret juveniles have a higher requirement for n‐3 fatty acids, notably DHA for optimum growth and survival.  相似文献   

5.
The aim of this study was to evaluate the long‐term effects (7‐month experiment) of diets consisting of fish oil (Kilka fish) and vegetable oil (rapeseed) on the reproductive performance of sterlet sturgeon (Acipenser ruthenus) broodstock. Forty‐five broodstock (990.3 ± 20.05 g) were randomly allocated to three different diet treatments. Three experimental diets were formulated with graded levels of fish oil (100% FO), vegetable oil (100% VO), and a combination of fish and vegetable oil (50% FO + 50% VO). At the end of the 7‐month feeding trial period, the weight gain and final weight were changed significantly different between the treatments (p < 0.05). Broodstock fed the FO + VO diet had higher growth than those fed the only FO or VO diets (p < 0.05). The highest germinal vesicle migration percentage was observed in FO + VO treatment (p < 0.05). The DHA/EPA, DHA/ARA and EPA/ARA ratios in oocyte exhibited a significant difference in the different treatments (p < 0.05). This study indicates that nutrition of broodstock with diet including FO + VO (p < 0.05) can positively affect the growth performance of larvae compared with only FO or VO diets. Furthermore, the high levels of 18:1n‐9, AL and ALA contents in oocytes from broodstock fed VO and the lowest ALA content in oocytes from broodstock fed FO underlined the important role of broodstock diets in the reproductive process and embryonic and/or larval developments of sterlet.  相似文献   

6.
This study was conducted to investigate the effects of dietary docosahexaenoic to eicosapentaenoic acid (DHA/EPA) ratios on growth performance, survival and fatty acid composition of juvenile swimming crab (Portunus trituberculatus). Four isonitrogenous and isoenergetic experimental diets were formulated to contain different DHA/EPA ratios (0.70, 0.84, 1.06 and 1.25). There were three replicates (15 crabs per replicate) for each diet treatment. The crabs were fed (about 6–8% body weight) twice daily for 8 weeks. A good growth performance and feed utilization were observed in swimming crabs fed the diets with DHA/EPA ratios of 0.70 and 0.84. Crabs fed diet with 0.70 DHA/EPA ratio showed a significantly higher weight gain (WG) compared with the crabs fed the diet with DHA/EPA ratio of 1.25 (P < 0.05). The result of this study showed that the survival increased with decreasing the ratio of DHA/EPA. The DHA/EPA ratios in polar lipid from tissues were influenced by the dietary DHA/EPA ratios. Results of this study indicated that the growth performance and survival of juvenile swimming crab are correlated to the DHA/EPA ratio in the diets, and the best growth performance and survival were achieved with the ratios of 0.70–0.84.  相似文献   

7.
Replacing dietary fish oil with DHA‐rich microalgae Schizochytrium sp. and EPA‐rich microalgae Nannochloropsis sp. for olive flounder (Paralichthys olivaceus) was examined. Three experimental isonitrogenous and isolipidic diets with lipid source provided by 50% fish oil (F50S50), 50% (M50F25S25) and 100% microalgae raw material (M100) respectively were compared with a soybean oil (S100) diet as control. Triplicate groups of olive flounder juveniles (16.5 ± 0.91 g) were fed the experimental diets, and a group was fed the control diets for 8 weeks in a recirculation system. Results showed feed efficiency and growth performance were not significantly changed when fish oil (FO) was totally substituted by soybean oil (SO) or microalgae raw material (MRM). The whole‐body composition, lipid content of liver and muscle, and lipid composition of plasma were not significantly influenced by the total substitution of FO by MRM. The polyunsaturated fatty acids (PUFA) content of muscle and liver declined in fish fed S100 diet, whereas it was not significantly reduced in fish fed M50F25S25 and M100 diets. The total substitution of FO by MRM not only maintained the levels of arachidonic acid, EPA or DHA but also increased n‐3/n‐6 ratio. In conclusion, MRM as the sole lipid source is sufficient to obtain good feed efficiency, growth performance and human health value in olive flounder juveniles.  相似文献   

8.
This is the first comprehensive study on the effect of dietary polyunsaturated fatty acid (PUFA) levels on the expression of fatty acid elongase 5 (AJELOVL5), PUFA composition, and growth in juvenile sea cucumbers. The specific growth rate (SGRw) was improved in n‐3 PUFA‐rich diets compared to low n‐3 PUFA diets. AJELOVL5 expression was apparently upregulated in juveniles fed lower PUFA diets relative to higher PUFA diets, with higher expression in the body wall and respiratory tree of juveniles fed diets without ɑ‐linolenic acid (ALA, 18:3n‐3) compared to juveniles fed higher ALA level diets; similar results were also detected in juveniles fed diets with lower eicosapentaenoic acid (EPA, 20:5n‐3), docosahexaenoic acid (DHA, 22:6n‐3), and none of ALA, EPA, or DHA respectively. The concentrations of ALA, EPA, and DHA in tissues were positively related to the content of dietary corresponding PUFA, with higher ALA content in juveniles fed diet ALA12.71 than in the ALA7.46 and ALA0 groups. Similar results were also obtained in sea cucumber fed diets enriched with either EPA or DHA. Interestingly, considerable levels of EPA and DHA were found in the tissues of juveniles fed diets of CK0 and DHA0, with no specific input of EPA or DHA, showing that the sea cucumber was capable of biosynthesizing EPA and DHA from their corresponding precursors as ALA and linoleic acid (LA, 18:2n‐6).  相似文献   

9.
The brackish cyclopoid copepod Apocyclops royi is used in Taiwanese aquaculture industry as a prey for fish larvae. This study investigated the effects of seven microalgal diets, namely single‐species diets of Isochrysis galbana (ISO), Nannochloropsis oculata (NAN), and Tetraselmis chui (TET), two‐species diets (ISO+NAN, ISO+TET and TET+NAN), and a three‐species diet (ISO+NAN+TET), on the population growth, female fecundity and fatty acid composition of A. royi. For reproductive traits, the combination ISO+NAN was found to be the most supportive diet for both population growth and female fecundity. For nutritional value, copepods fed ISO and ISO+NAN were detected to have the highest content of docosahexaenoic acid (DHA) (18.99% and 10.73% total fatty acid, respectively) and, more importantly, a high DHA/EPA ratio (6.09 and 4.09, respectively). Additionally, a comparison of fatty acid composition between copepods and microalgae gives a tentative indication that A. royi may have the ability to synthesize long‐chain polyunsaturated fatty acids (PUFA) from short‐chain PUFA. Our findings illustrate that ISO+NAN is the most suitable microalgal diet for mass culturing A. royi because it increases productivity and enhances the nutritional value of the copepods for use as fish larvae prey.  相似文献   

10.
Five treatments (short‐neck clam Ruditapes philippinarum and four formulated diets with the green microalgae Dunaliella tertiolecta or the golden‐brown microalgae Isochrysis galbana in the ratio (dw/dw) of 5% or 10% to that of clam meat) were used to investigate the growth performance and haemolymph quality of juvenile Chinese horseshoe crabs Tachypleus tridentatus under laboratory culture. At the end of the 12‐week study, various growth and moulting indicators as well as haemolymph biochemical parameters did not show any significant differences among the treatments. Significantly higher percentages of haemolymph amoebocyte viability and granular‐spherical amoebocyte state were noted in both 5% and 10% I. galbana‐supplemented diets compared to that of clam meat. However, the percentages of these two haemolymph parameters in juveniles fed with D. tertiolecta decreased significantly at the end of the experiment. Such differences were attributed to the presence of polyunsaturated fatty acid (PUFA), notably eicosapentaenoic acid (EPA), in I. galbana that was absent in D. tertiolecta and clam meat. Like many marine invertebrates, juvenile horseshoe crabs do not naturally obtain sufficient PUFAs from their diets to meet developmental and physiological needs; hence, supplementing microalgae with high levels of EPA in a protein‐rich diet boosts immune competence and the health status of juvenile horseshoe crabs while under culture.  相似文献   

11.
Six diets were designed to investigate the effects of dietary docosahexaenoic acid (22:6n‐3; DHA) levels (0.5, 1.3, 2.3, 4.2, 8.1 and 15.9 g/kg diets) on growth performance, fatty acid profile and expression of some lipogenesis‐related genes of blunt snout bream (Megalobrama amblycephala). Fish (average weight: 26.40 ± 0.11 g) were randomly fed one of six diets for 8 weeks. Results indicated that the final body weight (FBW) and specific growth rate (SGR) of fish fed 1.3 g/kg DHA were significantly higher than other groups except for the 2.3 g/kg DHA (p < .05). Compared with other groups, the number of lipid droplet clusters of the liver stained with oil red O in the 2.3 g/kg DHA group was the highest, which was consistent with the lipid contents of whole body and liver. The DHA proportion in liver and muscle significantly increased with the increasing dietary DHA levels (p < .05), which reflected fatty acid profiles of diets. The highest mRNA expressions of acetyl‐CoA carboxylase α (ACCα), fatty acid synthase (FAS) and sterol regulatory element‐binding protein‐1 (SREBP‐1) occurred in the 1.3 g/kg DHA group, followed by 2.3 g/kg DHA. In summary, the supplementation of 1.3–2.3 g/kg DHA could improve growth performance and lipogenesis, and the dietary DHA could improve DHA and PUFA proportion in liver and muscle.  相似文献   

12.
A series of diets with varying docosahexaenoic acid (DHA; 22:6n‐3) inclusion levels (1 g kg?1 3 g kg?1, 6 g kg?1, 10 g kg?1, 15 g kg?1 and 18 g kg?1) were fed to juvenile barramundi (Lates calcarifer) for 6 weeks. Two additional diets examined the addition of arachidonic acid (ARA; 20:4n‐6) or eicosapentaenoic acid (EPA; 20:5n‐3) to the diets at 10 g kg?1 when DHA was also included at 10 g kg?1. Fish were fed the diets on a pair‐fed feeding regime to eliminate feed intake variability. Fish were weighed, and blood and tissue samples were collected after 6 weeks. Behavioural parameters were also assessed. Improvement in growth was seen with increasing inclusion of DHA up to a maximum at 10 g kg?1 inclusion, albeit the response was minor. However, the addition of ARA to the diet reduced the growth response, while the addition of EPA improved the growth response. An improvement in feeding behaviour was also seen with increasing DHA up to a peak at 10 g kg?1, while those animals fed diets low in DHA showed increasingly cryptic behaviour. With the increasing inclusion of DHA, a range of pathologies were observed, but the addition of an EPA component to the diet limited these pathologies, while the addition of ARA made little improvement and in some cases exacerbated the pathologies.  相似文献   

13.
The need for a sustainable aquaculture is increasing the use of plant ingredients in replacement to fishmeal and fish oil in diets for tambaqui Colossoma macropomum, which is leading to not detectable levels of docosahexaenoic acid (DHA) in its flesh. We evaluated the effect of a finishing plant diet supplemented with 5% of microalgae meal from Schizochytrium sp. (MD) on tambaqui growth, on proximal composition and fatty acid content of its flesh, comparing it to a non‐supplemented diet. One hundred and sixty‐two fish (489.67 g) were distributed into six tanks (2,000 L) and fed the experimental diets for a 90‐day period. Three fish per tank were euthanized for analyses every 15 days. The MD did not affect the growth and proximal composition of fish flesh. The MD increased the DHA content (from 14.81 to 38.60 mg/g of lipids) and the n‐3:n‐6 ratio (from 0.16 to 0.51) in the flesh of fish, beginning on the 15th day and reaching the highest DHA content on the 71st day (39.81 mg/g of lipids). We recommend C. macropomum to be fed with a finishing diet supplemented with microalgae meal for 71 days before slaughter to improve the DHA content and n‐3:n‐6 ratio in the flesh.  相似文献   

14.
An experiment was conducted in the laboratory to investigate the effects of additive ratios of docosahexaenoic acid (DHA) to eicosapentaenoic acid (EPA) on the growth and survival of cobia (Rachycentron canadum) juveniles from August to October 2005. Three hundred and eighty cobia juveniles (56 days of age, body weight 6.9 ± 0.1 g, body length 9.2 ± 0.1 cm) were selected and 20 of them were freely taken for initial sample analysis in the week 0. Additional 360 juveniles were randomly assigned into eight groups with triplicate, total 24 tanks with 15 fish each. Cobia juveniles were reared in glass‐steel tanks (200‐L volume per tank) using filtered seawater with temperature 26–30.5 °C, salinity 25.4–33.0 g L?1 and pH 7.8–8.0. Cobia juveniles were fed for 8 weeks using seven treatment diets (D‐1 to D‐7) with the same amount of DHA and EPA (15.0 ± 1.2 g kg?1 of dried diet), but varying ratios of DHA to EPA (0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2.1, respectively) and a control diet (D‐0, DHA + EPA = 8.0 g kg?1 of dried diet, DHA/EPA = 1.3). Five juveniles per tank were randomly taken for sample analysis at the end of weeks 4 and 8, respectively. The highest protein efficiency rate (PER; 1.5 in mean), average body weight (BW; 73.3 g per fish in mean) and the lowest feed conversion ratio (FCR; 1.6 in mean) were obtained in cobia juveniles fed the control diet at the end of week 8. These parameters were significantly different (P < 0.05) among juveniles fed the control and treatment diets; however, no significant difference (P > 0.05) was found among juveniles fed the treatment diets evaluated in this study. It was concluded that the survival and growth of cobia juveniles were not greatly influenced by additive ratios of DHA to EPA in our experimental conditions.  相似文献   

15.
A feeding experiment was conducted to determine the optimal formulation level of algae meal, which is rich in docosahexaenoic acid (DHA), in a non‐fish meal diet. Six iso‐nitrogenous (450 g/kg) and iso‐lipidic (130 g/kg) experimental diets were prepared. The control diet was formulated with fish meal (400 g/kg), fish oil (60 g/kg), plant protein sources (220 g/kg) and rapeseed oil (50 g/kg). Plant protein sources (soy protein concentrate, soybean meal and corn gluten meal), rapeseed and fish oil were formulated in the second diet (NFM + FO). In the third diet, fish oil of the NFM + FO diet was replaced by rapeseed oil (NFM + NFO) and designated as the negative control. In the other three diets, rapeseed oil in the NFM + NFO diet was replaced with algae meal (Schizochytrium sp. powder) at 50 g/kg, 100 g/kg and 150 g/kg (AM5, AM10 and AM15, respectively). Triplicate groups of juvenile red sea bream (8.8 g) were fed the experimental diets for 12 weeks near satiation. The growth was lowest in the fish fed NFM + NFO diet. This was improved by the formulation of algae meal, which reached the growth level of the NFM + FO group in the AM10 group. The lipid content of the whole fish body in the NFM + NFO group was significantly lower than those of other groups. The fatty acid profile showed significant differences among dietary treatments. DHA content in total and polar lipids of the whole body and liver was highest in the AM10 and AM15 groups. These results reconfirm that microalgae are a suitable lipid source for the replacement of dietary fish oil for marine fish, and the optimal level was estimated as 50 g/kg?100 g/kg in diet.  相似文献   

16.
A feeding trial was conducted to evaluate the optimum dietary level of eicosapentaenoic acid (EPA, 20:5n‐3) based on growth and non‐specific immune responses in juvenile rock bream. A basal diet without EPA supplementation was used as a control, and six other diets were prepared by supplementing with 4, 8, 12, 16, 20 or 40 g of EPA per kg diet. The actual EPA concentrations of the diets were 0.5, 4.3, 8.5, 13.0, 16.8, 21.0 and 41.2 g of EPA per kg diet, and the diets were abbreviated as EPA0.5, EPA4.3, EPA8.5, EPA13.0, EPA16.8, EPA21.0 and EPA41.2, respectively. Triplicate groups of fish averaging 1.06 ± 0.01 g (mean ± SD) were fed one of the seven experimental diets at the apparent satiation for 8 weeks. At the end of the feeding trial, weight gain, specific growth rate and feed efficiency of fish fed EPA16.8, EPA21.0 and EPA41.2 diets were significantly higher than those of fish fed EPA0.5, EPA4.3, EPA8.5 and EPA13.0 diets (< .05). Superoxide dismutase activity of fish fed EPA16.8, EPA21.0 and EPA41.2 diets were significantly higher than those of fish fed EPA0.5, EPA4.3 and EPA8.5 diets. Fish fed EPA21.0 and EPA41.2 diets showed significantly higher lysozyme activity than did fish fed EPA0.5, EPA4.3, EPA8.5 and EPA13.0 diets. The broken‐line analysis of weight gain indicated that the optimum dietary EPA level was 16.7 g/kg diet. These results suggested that the optimum dietary EPA level in juvenile rock bream could be greater than 16.7 g/kg diet but less than or equal to 16.8 g/kg diet based on the broken‐line analysis and the ANOVA test of weight gain.  相似文献   

17.
The aim of this study was to determine the effects of replacing fish oil (FO) with laurel seed oil (LSO), as an alternative plant lipid source in diets on the growth and fatty acid composition of rainbow trout (Oncorhynchus mykiss; 111.47 ± 0.2 g mean individual weight). At the end of the feeding trial, survival was 100% in all treatments. No significant differences were seen in growth between the dietary groups (P > 0.05). The protein, lipid and ash contents were not significantly different among the groups (P > 0.05); however, there was a significant difference in protein and ash content between the treatment groups and the initial, and between the 50LSO group and the initial group, respectively (P < 0.05). The viscerosomatic index (VSI) and hepatosomatic index (HSI) values were not affected by increasing LSO percentages in the diets. The n‐6 polyunsaturated fatty acid (PUFA) concentration increased with increasing LSO levels in the diets. In contrast, the n‐3 PUFA levels decreased with increasing LSO levels in the diets. The liver and muscle were used for the analysis of fatty acids. The highest level of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) concentrations was recorded in fillet of fish fed the FO diet and the lowest in those fed the 50LSO diet. However, EPA and DHA ratios in the liver of fish fed the 75LSO diet were higher than those in fillet of fish fed the FO and 50LSO diets. No significant differences were seen in fatty acid composition between the dietary groups (P > 0.05). Based on the results of growth performance and fatty acid composition of the experimental fish in this study, it can be concluded that the 75% concentration of laurel seed oil performed best among the diets tested in the experiment.  相似文献   

18.
A 30‐day experiment was conducted to investigate the effect of phospholipids (PLs) on growth performance, survival, fatty acid profile and gene expression of the early juvenile (C1) swimming crab (Portunus trituberculatus). Five semi‐purified diets were formulated with graded PLs levels (0%, 1%, 2%, 4% and 8%). Each diet was fed to four replicates of crabs (30 crabs per replicate, initial weight: 8.4 ± 0.1 mg). In this study, crabs fed diets with 2%, 4% and 8% PLs had significantly higher survival rates than crabs fed with 0% and 1% PLs. Crabs fed diets with 0% and 1% PLs had significant lower weight gain (WG) than crabs fed with 8% PLs. But crabs fed with diets containing 2%, 4% and 8% PLs showed no significant difference in WG. Besides, the content of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in whole body was higher than that in diets, but the monounsaturated fatty acids (MUFA) content showed an opposite trend. The EPA and DHA content in whole body increased with the increase in dietary PLs. Moreover, the moulting number increased with the increasing dietary PLs levels, the lowest moulting number was observed in crabs fed diets without supplementation of PLs. The ecdysteroid receptor (EcR) was found to be significantly up‐regulated by PLs levels. This study demonstrated that 2% PLs could meet the requirement of early juvenile (C1) swimming crab based on the growth and survival. And 4%–8% PLs supplemented in diets could reduce the leaching of feed.  相似文献   

19.
In this study, the feasibility of using pomegranate seed oil, rich in conjugated linolenic acid and its partial replacement for fish oil in fish diet were investigated. Common carp, Cyprinus carpio, juveniles (1.8 ± 0.1 g) were fed four isonitrogenous and isolipidic diets with similar basal composition but different oil mixture containing 100% fish oil (A), 50% fish oil +50% sunflower oil (B), 50% fish oil +25% sunflower oil +25% pomegranate seed oil (C) and 50% fish oil +50% pomegranate seed oil (D) for 8 weeks. The highest weight gain was observed in fish fed diet D (p < 0.05). Test diets had no significant effect (p > 0.05) on saturated and monounsaturated fatty acid contents of fish muscle. Docosahexaenoic acid (22:6n‐3; DHA) was significantly lower in the muscle of fish fed diet B (p < 0.05) compared to those fed diet A. However, there was no significant difference in the muscle DHA content of fish fed diets A, C, or D. No specific hepatocyte damage associated to dietary pomegranate seed oil was found in this study. This study showed a 50‐50 combination of fish oil and pomegranate seed oil could be used as dietary lipid source for common carp without any adverse effect on growth performance or muscle n‐3 content while accumulated punicic acid in the muscle could be considered as added value for the final human consumer.  相似文献   

20.
We examined the effect of dietary eicosapentaenoic acid (EPA, 20:5n‐3) on growth, survival, pigmentation and fatty acid composition of Senegal sole larvae. From 3 to 40 days post‐hatch (dph), larvae were fed live food that had been enriched using one of four experimental emulsions containing graduated concentrations of EPA and constant docosahexaenoic acid (DHA, 22:6n‐3) and arachidonic acid (ARA, 20:4n‐6). Final proportions of EPA in the enriched Artemia nauplii were described as ‘nil’ (EPA‐N, 0.5% total fatty acids, TFA), ‘low’ (EPA‐L, 10.7% TFA), ‘medium’ (EPA‐M, 20.3% TFA) or ‘high’ (EPA‐H, 29.5% TFA). Significant differences among dietary treatments in larval length were observed at 25, 30 and 40 dph, and in dry weight at 30 and 40 dph, although no significant correlation could be found between dietary EPA content and growth. Eye migration at 17 and 25 dph was affected by dietary levels of EPA. Significantly lower survival was observed in fish fed EPA‐H diet. Lower percentage of fish fed EPA‐N (82.7%) and EPA‐L (82.9%) diets were normally pigmented compared with the fish fed EPA‐M (98.1%) and EPA‐H (99.4%) enriched nauplii. Tissue fatty acid concentrations reflected the corresponding dietary composition. ARA and DHA levels in all the tissues examined were inversely related to dietary EPA. This work concluded that Senegal sole larvae have a very low EPA requirement during the live feeding period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号