首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Nuclear autoantigenic sperm protein (NASP) is associated with DNA replication, cell proliferation, and cell cycle progression through its specific binding to histones. The aim of this study was to examine the roles of NASP in bovine preimplantation embryonic development. Using NASP gene knockdown (KD), we confirmed the reduction of NASP messenger RNA (mRNA) expression during preimplantation development. NASP KD did not affect cleavage but significantly decreased development of embryos into the blastocyst stage. Furthermore, blastocyst hatching was significantly decreased in NASP KD embryos. Cell numbers in the inner cell mass of NASP KD blastocysts were also decreased compared to those of controls. These results suggest that NASP mRNA expression is required for preimplantation development into the blastocyst stage in cattle.  相似文献   

2.
In mouse embryos, segregation of the inner cell mass (ICM) and trophectoderm (TE) lineages is regulated by genes, such as OCT-4, CDX2 and TEAD4. However, the molecular mechanisms that regulate the segregation of the ICM and TE lineages in porcine embryos remain unknown. To obtain insights regarding the segregation of the ICM and TE lineages in porcine embryos, we examined the mRNA expression patterns of candidate genes, OCT-4, CDX2, TEAD4, GATA3, NANOG, FGF4, FGFR1-IIIc and FGFR2-IIIc, in blastocyst and elongated stage embryos. In blastocyst embryos, the expression levels of OCT-4, FGF4 and FGFR1-IIIc were significantly higher in the ICM than in the TE, while the CDX2, TEAD4 and GATA3 levels did not differ between the ICM and TE. The expression ratio of CDX2 to OCT-4 (CDX2/OCT-4) also did not differ between the ICM and TE at the blastocyst stage. In elongated embryos, OCT-4, NANOG, FGF4 and FGFR1-IIIc were abundantly expressed in the embryo disc (ED; ICM lineage), but their expression levels were very low in the TE. In contrast, the CDX2, TEAD4 and GATA3 levels were significantly higher in the TE than in the ED. In addition, the CDX2/OCT-4 ratio was markedly higher in the TE than in the ED. We demonstrated that differences in the expression levels of OCT-4, CDX2, TEAD4, GATA3, NANOG, FGF4, FGFR1-IIIc and FGFR2-IIIc genes between ICM and TE lineages cells become more clear during development from porcine blastocyst to elongated embryos, which indicates the possibility that in porcine embryos, functions of ICM and TE lineage cells depend on these gene expressions proceed as transition from blastocyst to elongated stage.  相似文献   

3.
4.
Nrf2 is a master regulator for antioxidant machinery against oxidative stress in bovine preimplantation embryos. The endogenous or exogenous modulation of Nrf2-KEAP1 system in bovine embryos may contribute to the understanding of the mechanisms behind the response of embryos to stress conditions. Therefore, here we aimed to investigate the protective effect of quercetin on bovine preimplantation embryos exposed to higher atmospheric oxygen concentration. For that, blastocysts, which were developed from zygotes cultured in media supplemented with or without quercetin under high oxygen level (20%), were subjected intracellular ROS level and mitochondrial analysis, and determining blastocyst formation rate and total cell number. Moreover, mRNA and protein expression level of Nrf2 and selected downstream antioxidant genes were investigated in the resulting blastocysts. Quercetin supplementation in vitro culture did not affect cleavage and blastocyst rate until day 7. However, quercetin supplementation resulted in higher blastocyst total cell number and reduction of intracellular ROS level accompanied by increasing mitochondrial activity compared with control group in both day 7 and day 8 blastocysts. Moreover, quercetin supplementation induced mRNA and protein of Nrf2 with subsequent increase in the expression of downstream antioxidants namely: NQO1, PRDX1, CAT and SOD1 antioxidants. In conclusion, quercetin protects preimplantation embryos against oxidative stress and improves embryo viability through modulation of the Nrf2 signalling pathway.  相似文献   

5.
The present study was conducted to test different methods for porcine inner cell mass (ICM) and epiblast isolation and to evaluate the morphology and expression of pluripotency genes in ICM‐ and epiblast‐derived outgrowth colonies (OCs) and passages thereof with particular attention on the relationship between OCT4 expression and embryonic stem cell (ESC)‐like morphology. A total of 104 zona pellucida‐enclosed and 101 hatched blastocysts were subjected to four different methods of ICM and epiblast isolation, respectively: Manual isolation, immunosurgery, immunosurgery with manual cleaning, or whole blastocyst culture. OCs were established on mouse embryonic fibroblast (MEF) cells and categorized according to morphology and OCT4 staining. Although all isolation methods resulted in ESC‐like OCs, immunosurgery with manual cleaning yielded significantly higher rates of ICM/epiblast attachment and subsequent ESC‐like morphology, whereas no significant difference was found between ICM and epiblasts with respect to these characteristics. All ESC‐like OCs showed nuclear OCT4 staining and expression of OCT4, NANOG and SOX2 as evaluated by RT‐PCR. Upon initial passages, the expression of pluripotency markers was, however, gradually lost in spite of maintained ESC‐like morphology. In conclusion, we have established a robust system for derivation of ESC‐like OCs from porcine ICM and epiblasts and we have shown that localization of OCT4 is associated with an ESC‐like morphology although this relationship is lost during early passages.  相似文献   

6.
To improve embryo development in bovine separated blastomeres, we evaluated applicability of co‐culture with intact embryos. The morphological quality of blastocysts derived from separated blastomeres and rate of blastocyst formation were only slightly increased when the cells were co‐cultured with intact embryos, which did not provide significant differences when statistically analyzed. However, the cell count of inner cell mass (ICM), trophectoderm (TE) and total number of cells in Day 8 blastocysts were significantly higher when the cells were co‐cultured with the intact embryos than those with the cells cultured individually (P < 0.05). Transfer of four monozygotic pairs of blastocysts derived from the cells co‐cultured with intact embryos led to three pregnancies even when the blastomeres were produced by in vitro maturation and in vitro fertilization of oocytes collected by ovum pick‐up from elite cows. These results suggest that co‐culturing with intact embryos may enhance development of bovine separated blastomere.  相似文献   

7.
Incomplete or aberrant reprogramming of nuclear genome is one of the major problems in somatic cell nuclear transfer. In this study, we studied the effect of histone deacetylase inhibitor m‐carboxycinnamic acid bishydroxamide (CBHA) on in vitro development of buffalo embryos produced by Hand‐made cloning. Cloned embryos were treated with CBHA (0, 5, 10, 20 or 50 μM) for 10 hr from the start of reconstruction till activation. At 10 μM, but not at other concentrations examined, CBHA increased (p < .05) the blastocyst rate (63.77 ± 3.97% vs 48.63 ± 3.55%) and reduced (p < .05) the apoptotic index of the cloned blastocysts (8.91 ± 1.94 vs 4.36 ± 1.08) compared to untreated controls, to levels similar to those in IVF blastocysts (4.78 ± 0.74). CBHA treatment, at all the concentrations examined, increased (p < .05) the global level of H3K9ac in cloned blastocysts than in untreated controls to that observed in IVF blastocysts. Treatment with CBHA (10 μM) decreased (p < .05) the global level of H3K27me3 in cloned blastocysts than in untreated controls but it was still higher (p < .05) than in IVF blastocysts. CBHA (10 μM) treatment increased (p < .05) the relative expression level of pluripotency‐related genes OCT‐4 and NANOG, and anti‐apoptotic gene BCL‐XL, and decreased (p < .05) that of pro‐apoptotic gene BAX than in untreated controls but did not affect the relative expression level of apoptosis‐related genes p53 and CASPASE3 and epigenetics‐related genes DNMT1, DNMT3a and HDAC1. These results suggest that treatment of cloned embryos with 10 μM CBHA improves the blastocyst rate, reduces the level of apoptosis and alters the epigenetic status and gene expression pattern.  相似文献   

8.
9.
This study examined the influence of EGF on the expression of EGF receptors (EGFR) and developmental competence of embryos cultured individually versus those cultured in groups. Cat oocytes were in vitro matured and fertilized (IVM/IVF), and cleaved embryos were randomly assigned to one of seven culture conditions: one group each in which embryos were subjected to group culture supplemented with or without 5 ng/ml EGF and five groups in which embryos were subjected to single-embryo culture supplemented with EGF (0, 5, 25, 50 or 100 ng/ml). Morulae, blastocysts and hatching blastocysts were assessed at days 5 and 7; post IVF, respectively, and total blastocyst cell numbers were assessed at day 7. Relative mRNA expressions of EGFR of 2–4-cell embryos, 8–16-cell embryos, morulae and blastocysts cultured in groups or singly with or without EGF supplementation were examined. OCT3/4 and Ki67 in blastocysts derived from the group or single-embryo culture systems with or without EGF supplementation were localized. A higher rate of embryos cultured in groups developed to blastocysts than individually incubated cohorts. Although EGF increased blastocyst formation in the single-embryo culture system, EGF did not affect embryo development in group culture. Expression levels of EGFR decreased in morulae and blastocysts cultured with EGF. An increased ratio of Ki67-positive cells to the total number of cells in the blastocyst was observed in singly cultured embryos in the presence of EGF. However, EGF did not affect the expression of OCT3/4. These findings indicate that EGF enhanced developmental competence of cat embryos cultured singly by stimulating cell proliferation and modulating the EGFR expression at various developmental stages.  相似文献   

10.
This study assessed the effects of cryoprotectant concentration during equilibration on the efficiency of bovine blastocyst vitrification and the expression of selected developmentally important genes. In vitro produced bovine blastocysts were equilibrated in either 7.5% ethylene glycol (EG) + 7.5% DMSO (Va group) or in 2% EG + 2% DMSO (Vb group) then vitrified on Cryotop® sheets in 16.5% EG + 16.5% DMSO + 0.5M sucrose. After warming, embryos were cultured for 48 hr. Re‐expansion, hatching, and the numbers of total and membrane damaged cells were compared among vitrified groups and a control. There was no significant difference between the vitrified groups in survival, cell numbers and the extent of membrane damage. Vitrification increased the number of membrane‐damaged cells in both groups, however, in a greater extent in the Vb group. Vitrification increased (p < .05) the expression of the HSP70 gene in Va but not in Vb embryos. The expression of IGF2R, SNRPN, HDAC1, DNMT3B, BAX, OCT4, and IFN‐t genes were the same in control and vitrified groups. In conclusion, the concentration of cryoprotectants during equilibration did not affect survival rates; however, normal cell numbers could be maintained only by equilibration in 15% cryoprotectants which was associated with increased HSP70 expression.  相似文献   

11.
The aim of this study was to evaluate three different cloning strategies in the domestic cat (Felis silvestris) and to use the most efficient to generate wild felid embryos by interspecific cloning (iSCNT) using Bengal (a hybrid formed by the cross of Felis silvestris and Prionailurus bengalensis) and tiger (Panthera tigris) donor cells. In experiment 1, zona‐free (ZP‐free) cloning resulted in higher fusion and expanded blastocyst rates with respect to zona included cloning techniques that involved fusion or injection of the donor cell. In experiment 2, ZP‐free iSCNT and embryo aggregation (2X) were assessed. Division velocity and blastocyst rates were increased by embryo aggregation in the three species. Despite fewer tiger embryos than Bengal and cat embryos reached the blastocyst stage, Tiger 2X group increased the percentage of blastocysts with respect to Tiger 1X group (3.2% vs 12.1%, respectively). Moreover, blastocyst cell number was almost duplicated in aggregated embryos with respect to non‐aggregated ones within Bengal and tiger groups (278.3 ± 61.9 vs 516.8 ± 103.6 for Bengal 1X and Bengal 2X groups, respectively; 41 vs 220 ± 60 for Tiger 1X and Tiger 2X groups, respectively). OCT4 analysis also revealed that tiger blastocysts had higher proportion of OCT4‐positive cells with respect to Bengal blastocysts and cat intracytoplasmic sperm injection blastocysts. In conclusion, ZP‐free cloning has improved the quality of cat embryos with respect to the other cloning techniques evaluated and was successfully applied in iSCNT complemented with embryo aggregation.  相似文献   

12.
Various somatic cell nuclear transfer (SCNT) techniques for mammalian species have been developed to adjust species-specific procedures to oocyte-associated differences among species. Species-specific SCNT protocols may result in different expression levels of developmentally important genes that may affect embryonic development and pregnancy. In the present study, porcine oocytes were treated with demecolcine that facilitated enucleation with protruding genetic material. Enucleation and donor cell injection were performed either simultaneously with a single pipette (simplified one-step SCNT; SONT) or separately with different pipettes (conventional two-step SCNT; CTNT) as the control procedure. After blastocysts from both groups were cultured in vitro, the expression levels of developmentally important genes (OCT4, NANOG, EOMES, CDX2, GLUT-1, PolyA, and HSP70) were analyzed by real-time quantitative polymerase chain reaction. Both the developmental rate according to blastocyst stage as well as the expression levels CDX2, EOMES, and HSP70 were elevated with SONT compared to CTNT. The genes with elevated expression are known to influence trophectoderm formation and heat stress-induced arrest. These results showed that our SONT technique improved the development of SCNT porcine embryos, and increased the expression of genes that are important for placental formation and stress-induced arrest.  相似文献   

13.
X-chromosome inactivation (XCI) is an epigenetic process that equalizes expression of X-borne genes between male and female eutherians. This process is observed in early eutherian embryo development in a species-specific manner. Until recently, various pluripotent factors have been suggested to regulate the process of XCI by repressing XIST expression, which is the master inducer for XCI. Recent insights into the process and its regulation have been restricted in mouse species despite the evolutionary diversity of the process and molecular mechanism among the species. OCT4A is one of the represented pluripotent factors, the gate-keeper for maintaining pluripotency, and an XIST repressor. Therefore, in here, we examined the relation between OCT4A and X-linked genes in porcine preimplantation embryos. Three X-linked genes, XIST, LOC102165544, and RLIM, were selected in present study because their orthologues have been known to regulate XCI in mice. Expression levels of OCT4A were positively correlated with XIST and LOC102165544 in female blastocysts. Furthermore, overexpression of exogenous human OCT4A in cleaved parthenotes generated blastocysts with increased XIST expression levels. However, increased XIST expression was not observed when exogenous OCT4A was obtained from early blastocysts. These results suggest the possibility that OCT4A would be directly or indirectly involved in XIST expression in earlier stage porcine embryos rather than blastocysts.  相似文献   

14.
The consistent failure to isolate bona fide pluripotent cell lines from livestock indicates that the underlying mechanisms of early lineage specification are poorly defined. Unlike other species, the contrivances of segregation have been comprehensively studied in the mouse. In mouse, FGF/MAPK signalling pathway dictates the segregation of hypoblast (primitive endoderm). However, it is not evident whether this mechanism is also conserved in livestock. Here, in this study, we examined the roles of FGF/MAP kinase signalling pathways in porcine parthenogenetic embryos during the early development. Porcine parthenogenetic embryos were cultured in the medium addition with FGFR inhibitor BGJ398 (10 μm ) or DEMOS. Pluripotency‐ and lineage‐related gene expressions in the early porcine embryos were determined. Compared to control, total cell numbers on day 7 were significantly higher (55 ± 5.96 vs 47 ± 1.97, p < 0.05) in embryos cultured in the presence of BGJ398, but had no significant effect on the rate of blastocyst development (47% vs 44%, p > 0.05). Nonetheless, BGJ398 treatment significantly augmented the expression of pluripotency and trophoblast marker genes (SOX2, OCT4, KLF4 and CDX2), but did not significantly change the expression of NANOG and hypoblast marker gene (GATA4). Furthermore, the addition of FGF signalling agonist (FGF2) during the embryo development significantly decreased the expression of pluripotency and trophoblast marker genes (SOX2, NANOG, KLF4 and CDX2), but no significant effect on the expression of OCT4 and GATA4 was observed. Here, we exhibit that inhibition of FGF signalling could improve the quality of the porcine embryo and escalate the chance to capture pluripotency. Besides, it also promotes the trophoblast development of porcine parthenogenetic embryo. In addition, the data suggested that FGF signalling pathway is dispensable for the segregation of hypoblast and epiblast lineages in porcine embryo during the early development.  相似文献   

15.
We found retardation of preimplantation embryo growth after exposure to maternal restraint stress during the preimplantation period in our previous study. In the present study, we evaluated the impact of preimplantation maternal restraint stress on the distribution of inner cell mass (ICM) and trophectoderm (TE) cells in mouse blastocysts, and its possible effect on physiological development of offspring. We exposed spontaneously ovulating female mice to restraint stress for 30 min three times a day during the preimplantation period, and this treatment caused a significant increase in blood serum corticosterone concentration. Microscopic evaluation of embryos showed that restraint stress significantly decreased cell counts per blastocyst. Comparing the effect of restraint stress on the two blastocyst cell lineages, we found that the reduction in TE cells was more substantial than the reduction in ICM cells, which resulted in an increased ICM/TE ratio in blastocysts isolated from stressed dams compared with controls. Restraint stress reduced the number of implantation sites in uteri, significantly delayed eye opening in delivered mice, and altered their behavior in terms of two parameters (scratching on the base of an open field test apparatus, time spent in central zone) as well. Moreover, prenatally stressed offspring had significantly lower body weights and in 5-week old females delivered from stressed dams, fat deposits were significantly lower. Our results indicate that exposure to stress during very early pregnancy can have a negative impact on embryonic development with consequences reaching into postnatal life.  相似文献   

16.
17.
18.
Epigenetic reprogramming confers totipotency even during somatic cell nuclear transfer (SCNT), which has been used to clone various animal species. However, as even apparently healthy cloned animals sometimes have aberrant epigenetic status, the harmful effects of these defects could be passed onto their offspring. This is one of the biggest obstacles for the application of cloned animals for livestock production. Here, we investigated the DNA methylation status of four developmentally regulated genes (PEG3, XIST, OCT4, and NANOG) in sperms from a cloned and a non‐cloned bull, and blastocysts obtained by in vitro fertilization using those sperms and SCNT. We found no differences in the methylation status of the above genes between cloned and non‐cloned bull sperms. Moreover, the methylation status was also similar in blastocysts obtained with cloned and non‐cloned bull sperms. In contrast, the methylation status was compromised in the SCNT blastocysts. These results indicate that sperm from cloned bulls would be adequately reprogrammed during spermatogenesis and, thus, could be used to produce epigenetically normal embryos. This study highlights the normality of cloned bull offspring and supports the application of cloned cattle for calf production.  相似文献   

19.
旨在基于高通量SNP芯片建立一种可评估牛早期胚胎染色体质量和生产性能的方法,为胚胎牛育种提供技术支撑。本研究通过胚胎切割技术分别对荷斯坦奶牛体内囊胚(n=27)、体外囊胚(n=21)、体外2细胞胚胎(n=6)和8细胞胚胎(n=5)进行切割取样并统计发育率,其中体内囊胚组分为1/2体内胚组(切取半个胚胎)和体内滋养层(trophoblast cells, TE)组(切取体内胚胎少量TE),体外囊胚组、体外2和8细胞胚胎分别为体外TE组(切取体外胚胎少量TE)、体外2细胞(切取体外2细胞胚胎的1个卵裂球)和8细胞组(切取体外8细胞胚胎的1个卵裂球)。切割取样后进行全基因组扩增(whole-genome amplification, WGA),对扩增成功且DNA量大于1 000 ng的样品进行SNP芯片检测,芯片检出率大于90%的进行生产性能评估,低于90%的进行染色体片段缺失分析和数据填充。结果显示:1)切割部分TE后,体内TE组剩余部分和体外TE组剩余部分继续培养24 h后的发育率分别为(94.4±5.6)%和(90.5±6.6)%,而1/2体内胚组剩余部分的发育率显著降低,仅为(22....  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号