首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
焉耆盆地白刺灌丛沙堆土壤理化性质   总被引:1,自引:0,他引:1  
对焉耆盆地白刺灌丛沙堆不同演化阶段和沙堆间低地土壤理化性质进行分析。结果显示:(1)白刺灌丛沙堆不同演化阶段土壤粉砂、黏粒、有机质和养分含量均高于沙堆间低地,而土壤砂粒含量和pH值低于沙堆间低地;从白刺灌丛沙堆发育到稳定阶段,土壤砂粒含量和pH值逐渐降到最小值,而粉砂、黏粒、有机质和养分含量达到最高值,从白刺灌丛沙堆稳定到活化阶段,土壤砂粒含量和pH值急剧增加,而粉砂、黏粒、有机质和养分含量大幅度下降;(2)从整个剖面来看,由于白刺灌丛沙堆侵蚀和堆积的差异,随着深度的增加砂粒含量先减后增,而pH值、粉砂、黏粒、有机质和养分含量先增后减;0—15 cm土层砂粒含量最高,而15—45 cm土层最低;0—15 cm土层pH值、粉砂、黏粒、有机质和养分含量最低,而15—45 cm土层最高;(3)白刺灌丛沙堆发育和活化阶段强烈的吹蚀不利于有机质的积累,白刺灌丛沙堆稳定后为降尘截存、凋落物积累和微生物的繁殖提供有力的保障,表层黏粒得以截存和地衣状薄层结皮形成,增加土壤的有机质和养分含量。  相似文献   

2.
侵蚀性花岗岩坡地不同地貌部位土壤剖面风化特征研究   总被引:2,自引:0,他引:2  
为揭示发育于侵蚀性风化花岗岩坡地上不同地貌部位土壤剖面的风化发育特征,在浙江省选择了典型的风化花岗岩坡地:浙江省嵊州市水土保持监测站为研究区,在监测站同一坡面不同侵蚀强度的坡顶、坡中、坡底选取3个典型的土壤剖面(140 cm),从下至上等距离(20 cm)采集土壤样品,共采集21个土样。进行了各层土壤基本理化特性和化学全量的分析,并分别计算了3个剖面不同层次的主要化学风化系数及总的风化强度,结果表明:(1)在强烈侵蚀的花岗岩风化残积坡地发育的土壤,总体发育成熟过程较弱,其进一步的发育与典型的地带性土壤的发育有很大的差异,侵蚀过程严重地影响了土壤的进一步成熟,侵蚀强度越大,则土壤发育越差。(2)土壤剖面总的风化强度不大,上下层的递变差异很小,脱硅富铝化过程随着剖面深度的增加风化程度越来越弱。(3)土壤剖面的化学分层不明显,各种风化指标均在60 cm左右形成了一个分界层,其上受水力侵蚀影响明显,其下呈现出的特性以继承残积母质为主。(4)不同地貌部位的风化发育程度排序为:坡底坡中坡顶,其与采样坡面的侵蚀强度排序正好相反。(5)风化程度与有机质和黏粒含量具有较为明显的正比关系,在侵蚀环境下,土壤的物理特性对风化的影响明显,在沉积环境下土壤有机质的影响大于黏粒含量的影响。总之,由于受侵蚀的影响,坡地土壤剖面的淀积层不发育,剖面呈现出的假淀积层不是由淋溶作用形成的,而是具有一定风化程度的风化残积层,结果导致发育于山地丘陵侵蚀性坡地的土壤层次划分不同于常规的土壤层次划分。  相似文献   

3.
刘森  冉祥滨  车宏  马永星  臧家业 《土壤》2014,46(5):886-893
硅是地壳中重要元素之一,深刻影响着地表物质循环。湿地是全球碳、硅循环和气候变化研究的重要组成部分,然而针对湿地硅循环方面的研究较少。本文分别运用化学提取法和无损提取法,得出了黄河口三角洲湿地地表土壤中生物硅的含量、组成,并对湿地硅的分布特征与影响因素进行了研究。结果发现:黄河口湿地生物硅含量介于2.48~19.3 g/kg之间,并具有冬季高、秋季低的特点;生物硅与颗粒有机碳和颗粒有机氮含量具有显著的正相关关系,表明三者具有相似的来源;生物硅和植物可利用硅之间显著的相关性表明生物硅在土壤硅循环中起着主要作用。土壤中生物硅的含量与距离河道和海岸的长度均呈负相关关系,在生物硅的"距离效应"中海洋的作用较为显著。湿地表层土壤中植硅体的形态丰富,在黄河沿岸分别以哑铃形或突起棒形为主要植硅体形态,这与其植被特点有关;在II区域则主要以平滑棒形为主,且硅藻对生物硅的贡献比例明显增加。I区大部分站位发现的硅藻为圆筛藻,而在II区发现的硅藻主要为月形藻和舟形藻(羽纹硅藻纲),这与湿地水陆相互作用有关。植硅体主要来源于本地植物,是土壤中生物硅的最主要贡献者,同时黄河泥沙携带的来自上游流域的植硅体也对湿地生物硅含量和组成有一定的贡献。黄河口湿地土壤中生物硅的含量和组成受到河流和海洋的共同影响,具有一定的区域特性,并可能对河流和海洋硅循环产生重大影响。  相似文献   

4.
水耕人为土时间序列的植硅体及其闭留碳演变特征   总被引:2,自引:1,他引:1  
陈留美  张甘霖 《土壤通报》2011,(5):1025-1030
以浙江慈溪滨海沉积物上发育的5个具有不同植稻年龄的水耕人为土剖面为研究对象,系统分析了土壤中的植硅体及其闭留碳的演变特征。结果表明,水耕人为土时间序列土壤中植硅体的含量变幅为3.67~17.51 g kg-1。水耕人为土中植硅体的剖面分布特征与有机碳相似,呈现出随着土壤深度的增加含量逐渐降低的趋势。其剖面分布特征表明植硅体在水耕人为土中不易移动。与起源土相比,水耕人为土表层植硅体含量有较大程度的增加,说明植稻有利于植硅体在土壤表层富集。而植硅体随植稻年龄的增加没有表现出有规律的增加或减少趋势。统计分析表明植硅体和总硅之间呈极显著正相关,说明植硅体对土壤发生中的硅循环起着重要作用。水稻产生的植硅体其体内闭留的碳量较高,但由于土体内植硅体总量较低,植硅体闭留碳仅占总有机碳的0.93%~1.68%。现有数据表明,仅通过根系与残茬返还土壤,种植富硅植物水稻并不能显著增强土壤的长期固碳能力。由于植硅体固定的碳在土壤环境中比较稳定,如果能强化秸秆还田,植稻对于土壤长期固碳具有意义。  相似文献   

5.
为了研究微地形下紫色土的矿物组成和土壤酸度之间的关系,采集了重庆合川丘陵地区典型的紫色土壤,通过电渗析模拟酸化,并通过X射线衍射光谱分析电渗析前后的矿物组成以及酸度变化。结果表明:不同地形部位的紫色土随着地形部位的降低,土壤原生矿物的比重逐渐降低,土壤的发育程度越来越高。紫色母岩及其发育的土壤pH大小关系为母岩石骨子土半沙半泥土豆瓣泥。pH变化与土壤中的方解石、钠长石和钾长石等矿物的含量有紧密关系。电渗析模拟土壤酸化后发现,石骨子土和半沙半泥土的pH分别降低了4.3,3.8个单位,同时土壤原生矿物分解风化,表明土壤原生矿物(如长石类矿物)可以缓冲土壤的酸化。  相似文献   

6.
长期水耕植稻对水稻土耕层质地的影响   总被引:1,自引:0,他引:1  
为了解长期水耕植稻对南方地区水田表土层颗粒组成的影响,以浙江省为研究区,采用历史资料分析、典型样区调查及定点观察相结合的方法,研究水稻土耕作层(包括犁底层)与心土层间黏粒含量的差异,分析植稻时间对水稻土不同土层颗粒组成的影响,比较植稻期间稻田排水中泥砂物质的颗粒组成与对应土壤间的差异,探讨了长期植稻对水稻土剖面质地分异的影响。对浙江省456个代表性剖面统计,与水稻土心土层比较,耕作层和犁底层黏粒含量平均下降了14%和10%。对植稻不同时间的浅海沉积物(从10~20年至80年)、第四纪红土(从5~20年至70年)和玄武岩风化物(从5~20年至35~70年)发育的水稻土比较发现,随植稻时间的增加,耕作层和犁底层土壤砂粒含量呈现增加趋势,黏粒含量明显下降,耕作层、犁底层与心土层黏粒含量的比值逐渐下降。农田排水中泥砂物质的黏粒和粉砂含量高于对应农田土壤,而砂粒含量则低于相应的土壤。分析认为,长期水耕植稻可导致耕作层土壤砂化(即砂粒含量增加,黏粒含量下降),其原因除与水耕过程中黏粒淋淀外,排水中黏粒和粉砂细颗粒的选择性流失对耕作层砂化也有较大的贡献。  相似文献   

7.
为了解贵州东北部山地土壤的发生学特性及土壤分布,选择梵净山地区采集了不同海拔高度的13个代表性土壤剖面,分析了其成土环境、土壤风化强度的垂直变化,鉴定了区内土壤的主要诊断层、诊断特性,并根据中国土壤系统分类对研究区土壤类型进行了分类。结果表明,随着海拔的增加,区内土壤温度状况由热性转变为温性,水分状况逐渐由湿润向常湿润转变。梵净山地区土壤风化较弱,土壤中存在较多的2∶1型矿物,土壤脱硅富铁铝化处于中下水平。土体厚度、土壤黏粒、全铁、游离氧化铁含量、铁游离度随海拔增加而下降,砾石含量、黏粒CEC、土壤ba值、黏粒Sa值随海拔增加而上升,部分土壤出现明显的黏化。区内土壤酸化明显,多数土壤的pH在5.5以下,部分土壤的铝饱和度超过了60%,土壤的平均铝饱和度随海拔增加而下降。研究区土壤黄化非常明显,土壤色调主要为10YR。共检出淋溶土、雏形土和新成土3个土纲,5个亚纲、8个土类和12个亚类,土壤类型主要由淋溶土和雏形土组成。亚纲在海拔高度变化上有一定的分布规律,随着海拔的上升,由湿润淋溶土、湿润雏形土向常湿淋溶土、常湿雏形土转变。  相似文献   

8.
【目的】时间序列法是定量研究土壤发生过程、演变速率及其变化阈值的重要手段,构建可靠的土壤时间序列需对土壤母质均一性和相对年龄进行判定。【方法】以海南岛北部不同喷发期玄武岩发育土壤所构成的成土时间序列(0.09、0.146、0.64、1.12、1.81、2.30 Ma B. P.)为对象,利用各种土壤属性参数(包括剖面形态、颗粒组成、稳定元素含量、风化发育指数和元素变化率等)对该时间序列母质均一性和土壤相对年龄进行判定。【结果】各剖面颜色、质地、结构等形态总体呈均一、渐变的特征,去除黏粒后的粗粉粒含量、稳定元素Ti/Zr比值在剖面内和剖面间变化均较小,表明时间序列土壤的起源母质相同。随着成土年龄的增加,黏粒含量和剖面发育指数呈线性增加的趋势,土壤风化强度指标(B指数、CIW指数、CIA指数和ba值)服从对数函数变化规律,在土壤相对年龄的判定中具有较好的指示意义。【结论】研究区土壤母质来源相同,土壤相对年龄可通过相关土壤属性体现出来,为定量研究土壤发生阈值奠定了基础。  相似文献   

9.
珠江三角洲平原不同种植年限土壤铁氧化物特征研究   总被引:4,自引:0,他引:4  
珠江三角洲平原具有上千年的围垦历史,其土壤发生演变过程深受人为作用影响,开展此区域不同种植年限土壤中铁氧化物形态特征和分布规律的研究,能够揭示人为耕种下土壤发生演变过程。以珠江三角洲平原不同种植年限的土壤剖面为对象,研究了滨海沉积物、河流冲积物和三角洲沉积物发育的土壤及黏粒中全铁、游离铁含量变化及其影响因素。结果表明:随着种植年限的增加,河流冲积物、三角洲沉积物发育土壤中游离铁(Fe_d)向土体下部淀积深度逐渐增加,黏粒中游离铁(Fe_(d(clay)))含量在水耕氧化还原层中呈减小趋势,而滨海沉积物发育的土壤Fe_d含量及淀积深度均有所减小。随着种植年限的增加,滨海沉积物发育的土壤全铁(Fe_t)和游离铁(Fe_d)在黏粒中的富集程度呈增大趋势,而河流冲积物、三角洲沉积物发育的土壤Fe_t和Fe_d富集程度逐渐减小。土壤Fe_d与Fe_t、黏粒游离铁(Fe_(d(clay)))与黏粒全铁(Fe_(t(clay)))均呈极显著正相关;全铁富集率(Fe_(t(clay))/Fe_t)、游离铁富集率(Fe_(d(clay))/Fe_d)均与Fe_(t(clay))、Fe_(d(clay))、黏粒铁游离度(Fe_(d(clay))/Fe_(t(clay)))呈极显著正相关,与Fe_t、Fe_d、土壤铁游离度(Fe_d/Fe_t)、黏粒含量呈极显著负相关,且Fe_(t(clay))/Fe_t与Fe_(d(clay))/Fe_d呈极显著正相关,表明土壤铁氧化物在黏粒中的富集以Fe_d为主,且铁氧化物的富集程度受土壤黏粒含量的影响。  相似文献   

10.
选择位于河南省南阳市淅川县荆紫关镇龙泉村丹江中游河谷黄土母质发育的土壤剖面作为研究对象,对其剖面构型及其色度、元素、粒度等理化性质进行了分析。结果表明,丹江中游河谷黄土母质发育的土壤具有Ap-Bp-Bt-Bw剖面形态特征;在剖面40~220 cm深度发生明显的黏粒富集,具有黏化层(Bt)的诊断特征;风化成壤强度达到中等风化强度阶段。剖面具有热性土壤温度状况和湿润土壤水分状况,在中国土壤系统分类中可划为耕淀简育湿润淋溶土。  相似文献   

11.
The primary source of dissolved silicon (Si: DSi) is the weathering of silicate minerals. In recent years, it has been shown that Si cycling through vegetation creates a more soluble Si pool in the soil, as amorphous Si (ASi) deposits in plants (phytoliths) are returned to the soil through litter. Amorphous Si accumulation in soils depends on a number of factors, including land use. In addition to the biogenic ASi fraction, soils contain other non‐biogenic amorphous and sorbed Si fractions that could contribute significantly to DSi export to rivers, but hitherto these Si fractions have been difficult to separate from each other with traditionally applied extraction methods. The objective of this paper is to understand better how land use affects the distribution of the different extractable Si fractions. We re‐analysed samples from the land‐use gradient studied previously by Clymans et al. ( 2011 ) with a continuous Si and aluminium (Al) extraction technique. Different extractable Si fractions of biogenic or pedogenic origin were successfully separated on the basis of their dissolution in alkaline solutions (Na2CO3 and NaOH) and Si:Al ratios. We show that forests store almost all alkaline extractable Si (AlkExSi) in the pedogenic fraction while the importance of phytoliths increases with human disturbance to become the dominant fraction in the AlkExSi pool at the arable site. The pedogenic AlkExSi pool is also more reactive than the phytolith‐bound Si. Conversely, pastures and croplands tend to preserve phytoliths in the soil, which are less reactive, decreasing the potential of DSi export relative to forested ecosystems.  相似文献   

12.

Purpose

Determining the dynamics of silicon in lakes, one of the essential nutrients for diatoms, is valuable for understanding aquatic environmental problems. The dissolved silicon (DSi) and biogenic silicon (BSi) budgets in Lake Kasumigaura, a shallow eutrophic lake in Japan, during the last three decades were assessed based on the analysis of dated sediment cores and a water quality database.

Materials and methods

Sediment cores (100?cm long) were taken at the center of Lake Kasumigaura in 2005, 2007, and 2009 and at two other sites in 2007. BSi contents of the dated sediments were determined by wet alkaline digestion. The net sedimentation rates of BSi were defined as the difference between the DSi load from inflowing rivers and the DSi and BSi loads from the outflow of the lake, calculated using DSi concentrations and diatom abundances in the lake from 1980 to 2007 and DSi concentrations of the inflowing rivers during 1994, 2007, and 2009. The gross sedimentation rates of BSi were estimated by multiplying BSi concentrations in lake water by the diatom sinking rate reported by previous studies.

Results and discussion

Budgetary calculations based on the database showed that 60?C70?% of DSi inputs from the inflowing rivers during the 27?years could ultimately be accumulated as diatom frustules in bottom sediments in the lake. The sediment analysis revealed that the amount of BSi accumulated in the lake from 1980 to 2007 was 2.0?C2.6?×?1011?g, similar to the amount based on the database of 1.3?C2.4?×?1011?g. Although the gross sedimentation rates of BSi likely increased, the net sedimentation rates of BSi decreased significantly from 6?C10?×?109?g?year?1 in the 1980s to 2?C6?×?109?g?year?1 in the 2000s, suggesting a fast recycling of BSi in recent years caused by an increase in sediment resuspension and regeneration.

Conclusions

The sediment core information and the water quality database can be used for calculating the long-term silicon budgets in Lake Kasumigaura. An increase in the DSi release rates was identified, which is consistent with recent sediment resuspension. Comparing the sediment core information with the database suggests the long-term dissolution of sediment BSi; however, analysis of the BSi content in sediment cores representing a much longer time period is needed to confirm this.  相似文献   

13.
Evaluation of the stoichiometry of base cations (BCs, including K+, Na+, Ca2+, and Mg2+) and silicon (Si) (BCs:Si) during soil mineral weathering is essential to accurately quantify soil acidification rates. The aim of this study was to explore the differences and influencing factors of BCs:Si values of different soil genetic horizons in a deep soil profile derived from granite with different extents of mineral weathering. Soil type was typic acidi-udic Argosol. Soil samples were collected from Guangzhou, China, which is located in a subtropical region. To ensure that the BCs and Si originated from the mineral weathering process, soil exchangeable BCs were washed with an elution treatment. The BCs:Si values during weathering were obtained through a simulated acid rain leaching experiment using the batch method. Results showed that soil physical, chemical, and mineralogical properties varied from the surface horizon to saprolite in the soil profile. The BCs:Si values of soil genetic horizons during weathering were 0.3-3.7. The BCs:Si value was 1.7 in the surface horizon (A), 1.1-3.7 in the argillic horizon (Bt), and 0.3-0.4 in the cambic (Bw) and transition (BC) horizons, as well as in horizon C (saprolite). The general pattern of BCs:Si values in the different horizons was as follows: Bt > A > Bw, BC, and C. Although BCs:Si values were influenced by weathering intensity, they did not correlate with the chemical index of alteration (CIA). The release amounts of Si and BCs are the joined impact of soil mineral composition and physical and chemical properties. A comprehensive analysis showed that the BCs:Si values of the soil derived from granite in this study were a combined result of the following factors: soil clay, feldspar, kaolinite, organic matter, pH, and CIA. The main controlling factors of BCs:Si in soils of different parent material types require extensive research. The wide variance of BCs:Si values in the deep soil profile indicated that H+ consumed by soil mineral weathering was very dissimilar in the soils with different weathering intensities derived from the same parent material. Therefore, the estimation of the soil acidification rate based on H+ biogeochemistry should consider the specific BCs:Si value.  相似文献   

14.
The contributions of cation exchange and mineral weathering to the neutralization of acidity in the Jingahata watershed in central Japan were estimated through a laboratory weathering experiment and runoff chemistry measurements. The laboratory experiment was conducted in a stirred-flow reactor for a whole soil sample collected from the C horizon in the watershed. The concentration ratios of base cations (Ca2+, Mg2+, K+ and Na+) to Si (BC/Si) released during the steady-state stage of the laboratory experiment were in good agreement with the ratios of the net flux of base cations to the flux of Si in the streamwater (BC N ET/Si L).This result suggests that the acidity in the watershed is neutralized primarily by mineral weathering without causing a net loss of base cations from exchange sites. The alkalinity/acidity balance estimated for the watershed shows that the total weathering rate of base cations is approximately 3.26 keq ha?1 yr?1. Weathering of plagioclase (An41) contributes 83% of the total weathering rate. The dominant acidity source is CO2 released within the soil horizons, accounting for roughly 85% of the total acidity flux (3.20 keq ha?1 yr?1). This high internal production of acidity suppresses the relative importance of atmospheric acidity inputs (0.3 keq ha?1 yr?1).  相似文献   

15.
Soil is a limited natural resource that needs to be efficiently salvaged during landscape construction operations for its further use as topsoil. To avoid inclusion of undesirable subsoil material (e.g. excess clay from Bt horizon), the majority of current guidelines define borrowed topsoil material as the surface layer of native soil, or the soil A horizon. Using information from over 7000 soil pedons from the 48 contiguous United States, we characterized selected topsoil properties and simulated the mixing of A and E horizons. The selected soil properties were compared among four different operationally defined topsoils: A surface layer, ASL; AP surface layer, APL; A horizon, A; and a mix of A and E horizons, AE. Average topsoil depth decreases in the order: AE > A > APL > ASL; sand content decreases in the order: ASL > AE > A > APL; clay decreases in the order: APL > A > ASL > AE; and organic carbon decreases in the order: ASL > A > APL > AE. On average, mixing of A and E horizons increases excavation depth by over 2.5 fold while having minor effects on soil texture; with AE/A ratio of 1.03, 1.00 and 1.07 for sand, silt and clay content, respectively. Yet, average soil organic matter content decreases by 38% upon mixing A and E horizons. Given the marked increase in soil volume and minor effect on soil texture, it is our suggestion that, for landscaping purposes, protocols for salvaging excavated soil material, for reuse as topsoil material include the E horizon (where it exists). Supplementing the recovered soil material with organic matter, such as compost, to overcome its dilution due to the incorporation of E horizon is recommended.  相似文献   

16.
A comparison was made between two soil climosequences on north- and south-facing slopes in northern Italy to determine the influence of slope aspect on soil processes. The climosequences span an elevational gradient ranging from moderate (1200 m a.s.l.) to high alpine (2420 m a.s.l.) climate zones on surfaces having an age of about 15 000 years. The soils were investigated with respect to organic C, oxalate and dithionite extractable Fe, Al and Si, elemental losses (Ca, Mg, K, Na, Fe, Al, Si, Mn) and clay minerals. The stocks of soil org. C as well as of oxalate-extractable Fe and Al was greatest in the subalpine zone near the timberline. There are no clear differences in organic C content between the soils on north- and south-facing sites. Fe-oxalate and to a lesser extent Alo-stocks were, however, greater on north-facing sites, indicating that weathering is greater there. Eluviation and illuviation of Al and Fe within the soil profile, typical for podzolisation, was more distinctly expressed on the N slopes. The probability of ITM (Imogolite-type-material) formation in the soil seemed to be greater on south-facing sites. On the north-facing sites, element leaching was most intense in the subalpine zone close to the timberline while on the south-facing sites this was only the case for the base cations. The N slopes exhibited higher leaching of elements which generally indicates a higher weathering intensity. On south-facing sites, typical podzolisation processes were measurable only above 2000 m a.s.l. The development of smectites is also a reflection of the weathering intensity; smectite was discernible in the surface horizon at all sites on N slopes but the highest amount was detected in the sub-alpine climate zone. For the south-facing sites only in the alpine climate zone could smectite be detected. Higher temperatures and an increased number of freeze-thaw cycles on south-facing slopes should theoretically enhance rates of chemical weathering. This could, however, not be confirmed with our measurements. The degree of chemical weathering increases from the south- to the north-facing sites that are characterised by lower temperatures, lower evapotranspiration and consequently by a higher humidity. Although precipitation in Alpine regions is abundant, the availability and flux of water through the soil is the prime factor in weathering intensity.  相似文献   

17.
为研究闽江河口湿地典型植被群落带及交错带硅素空间分布特征,以鳝鱼滩湿地为研究对象,于2015年7月由陆向海方向设置2条样带,对植物生物硅含量及储量分配比、表层土壤生物硅及有效硅含量进行测定分析。结果表明:(1)闽江河口湿地典型植被群落带植物生物硅含量均低于交错带,且不同类型植物硅含量差异较大(p0.05),其中芦苇、短叶江芏、互花米草和扁穗莎草硅含量分别为15.66,9.09,7.17,7.77mg/g。从空间来看,高潮滩不同植物生物硅含量均高于低潮滩。就不同器官而言,不同植物地上部分均高于地下部分,具体表现为枯体茎叶根,其含量分别为13.40,12.49,11.72,6.58mg/g。(2)交错带植物(短叶茳芏与芦苇)地下根系生物硅分配比大于地上各器官,而典型群落带植物生物硅分配比则与之相反。(3)湿地表层土壤近岸方向2条样带生物硅含量变化趋势基本一致,近海方向2条样带则呈现相反的变化趋势;由岸及海方向2条样带表层土壤有效硅含量变化趋势基本一致。研究表明,植物的生态学特性及其生长环境条件不同、地形条件和潮汐作用带来水文条件的差异对湿地硅素的空间分布具有一定的影响,这对研究河口潮汐湿地硅素生物地球化学循环有重要意义。  相似文献   

18.
Chemical weathering is an important neutralisation process and sourceof cations in forest soil. The presence of dissolved organic matter in the soil solution can have a considerable influence on weathering release. The aim of this study is to compare the weathering potentialof natural soil solutions, collected from Norway spruce, Scots pine and birch sites, to release Al, Ca, Mg, K, Na, and Si from the fine fraction in the C horizon of a podzol. Residual organic matter in the mineral soil was removed with H2O2. The <0.06 mm fraction of the mineral soil was suspended in soil solution, collected from the three sites, for 11 days with continuous agitation. Ultrapure water was used as a control. The pH of the suspensions was maintained at 5.4 by bubbling with CO2. The initial mean DOC concentrations in the soil solutions were 65, 56 and 40 mg L-1 for the spruce, pine and birch sites, respectively. The presence of DOM in the soil solution did not significantly enhance the capacity to weather mineral soil material, and no systematic differences were found between the three sites. However, Al release from the mineral soil was slightly higher in the soil solutions containing DOM compared to the control solution with no DOM. The proportions of DOM fractions capable of enhancing weathering were comparable with those reported in earlier studies. The weathering of metals was found to be primarily due to pH-driven processes. The lack of considerable weathering enhancement by DOM could be due to the fact that the cation-binding sites of the organic ligands were already saturated by e.g. Al and Fe in the soil solution derived from these podzolic, Al- and Fe-rich soils.  相似文献   

19.
Soil response to acid and sulphur inputs is influenced largely by the soil's physico‐chemical properties. We studied the effects of such depositions in two types of Andosols exposed to volcanogenic emission (Masaya, Nicaragua), namely Eutric Andosols rich in allophanic constituents, and Vitric Andosols rich in volcanic glass. Small mineral reserves and large contents of secondary short‐range ordered minerals indicate a more advanced weathering of the Eutric than the Vitric Andosols. Strong correlations between soil specific surface and oxalate‐extractable Al, Si and Fe contents highlight the predominant contribution of short‐range ordered minerals to surface area. Both types of Andosols showed a decrease in pH upon acid input. Sulphur deposition increased the soil's S content to 5470 mg S kg?1. However, the acid neutralizing capacity of the soil solid phase (ANCs) was not significantly affected by the acid and S inputs. Non‐exchangeable (mineral reserve) and exchangeable cations and total contents of sulphur and phosphorus dictate most of the ANCs variation. In the Vitric Andosols, mineral reserves contributed up to 97% to these four additive pools, whereas the exchangeable cations accounted for 1–4%. In the Eutric Andosols, the contribution of mineral reserves was less (71–92%), but the exchangeable cation content was greater (1–20%), whereas the contribution of sulphur and phosphorus was significant at 1–15% and 2–7%, respectively. The main process involved in H+ consumption is mineral weathering in Vitric Andosols and ion exchange in Eutric Andosols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号