首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A multicolumn solid-phase extraction cleanup for the determination of organophosphorus (OP) and organochlorine (OC) pesticides plus PCB congeners in virgin olive oil is presented. The method involves dissolution of the olive oil in hexane, followed by a cleanup system using a diatomaceous earth column (Extrelut-QE) with reversed (C(18)) and normal (alumina) phase SPE columns. Determination of OPs was by GC-NPD, while the OCs and PCBs were analyzed using GC-ECD. Recovery assays for OPs varied from 81.7% to 105.3%, for OCs ranged between 74.3% and 99.4%, while for PCBs were from 60.1% to 119.2%. Quantitation limits ranged from 10 to 25 microg/kg olive oil for OPs, and from 1 to 6 microg/kg olive oil for OCs and PCBs. In the case of positive samples, the confirmation of pesticide identity was performed by ion-trap GC-MS/MS. The applicability of the method was assayed with 19 virgin olive oil samples collected from different olive mills of Aragón (Spain). Only one OP pesticide (acephate) was detected in one sample at a concentration of 10 microg/kg. Organochlorine pesticides were found in 5-47% of samples at very low levels ranging from 1.5 to 5.2 microg/kg. PCBs were found in 20-90% of samples, showing concentrations between 2.3 and 17.3 microg/kg.  相似文献   

2.
The processing factors (pesticide concentration found in olive oil/pesticide concentration found in olives) of azinphos methyl, chlorpyrifos, lambda-cyhalothrin, deltamethrin, diazinon, dimethoate, endosulfan, and fenthion were determined in olive oil production process in various laboratory-scale olive oil extractions based on three- or two-phase centrifugation systems in comparison with samples collected during olive oil extractions in conventional olive mills located at different olive oil production areas in Greece. Pesticide analyses were performed using a multiresidue method developed in our laboratory for the determination of different insecticides and herbicides in olive oil by solid-phase extraction techniques coupled to gas chromatography detection (electron capture detection and nitrogen phosphorus detection), optimized, and validated for olive fruits sample preparation. Processing factors were found to vary among the different pesticides studied. Water addition in the oil extraction procedure (as in a three-phase centrifugation system) was found to decrease the processing factors of dimethoate, alpha-endosulfan, diazinon, and chlorpyrifos, whereas those of fenthion, azinphos methyl, beta-endosulfan, lambda-cyhalothrin, and deltamethrin residues were not affected. The water content of olives processed was found to proportionally affect pesticide processing factors. Fenthion sulfoxide and endosulfan sulfate were the major metabolites of fenthion and endosulfan, respectively, that were detected in laboratory-produced olive oils, but only the concentration of fenthion sulfoxide was found to increase with the increase of water addition in the olive oil extraction process.  相似文献   

3.
A method for the multiresidue determination of 35 pesticides (30 insecticides and five herbicides) in olive oil by gas chromatography (GC) is described. Three liquid-liquid extraction (LLE) procedures based on (i) partition of pesticides between acetonitrile (ACN) and oil solution in n-hexane, (ii) partition of pesticides between saturated ACN with n-hexane and oil solution in n-hexane saturated with ACN, and (iii) partition of pesticides between ACN and oil were tested for the optimization of the highest pesticide recoveries with the lowest oil residue in the final extracts. Experimental tests were preformed in order to study the efficiency of different clean up procedures with N-Alumina, Florisil, C18, and ENVI-Carb solid-phase extraction (SPE) cartridges for the compounds analyzed by GC-nitrogen phosphorus detection. A second step of clean up was also performed for the compounds analyzed by GC-electron capture detection (ECD), by using phenyl-bonded silica (Ph), diol-bonded silica (Diol), cyanopropyl-bonded silica (CN), and amino propyl-bonded silica (NH2) SPE cartridges. LLE of the oil solution in hexane with ACN followed by an ENVI-Carb SPE clean up of the extract gave the best results for all target compounds. The ACN extract was additionally cleaned through a Diol-SPE cartridge for the determination of pesticides analyzed mainly by GC-ECD. Pesticide recoveries form virgin olive oil spiked with 20, 100, and 500 microg/kg concentrations of pesticides ranged from 70.9 to 107.4%. The proposed method featured good sensitivity, pesticide quantification limits were low enough, and the precision, expressed as relative standard deviation, ranged from 2.4 to 12.0%. The proposed method was applied successfully for the residue determination of the selected pesticides in commercial olive oil samples.  相似文献   

4.
A sensitive and specific method is described for the simultaneous determination of oxytetracycline, tetracycline (TC), and chlortetracycline residues in edible swine tissues, by combining liquid chromatography with spectrofluorometric and mass spectrometry detection. The procedure involved a preliminary extraction with EDTA-McIlvaine buffer acidified at pH 4.0, followed by solid-phase extraction cleanup using a polymeric sorbent. The liquid chromatography analysis was performed with spectrofluorometric detection after postcolumn derivatization with magnesium ions. The limits of quantification were 50 microg/kg for muscle and 100 microg/kg for kidney tissues. The recovery values were greater than 77.8% for muscle and 65.1% for kidney. The method has been successfully used for the quantification of tetracyclines in swine tissues samples. The selective liquid chromatography mass spectrometric analysis for confirmation of oxytetracycline in one positive swine muscle sample was made by atmospheric pressure chemical ionization (APCI). The APCI mass spectra of the TCs gave the protonated molecular ion and two typical fragment ions, required for their confirmation in single ion monitoring scan mode in animal tissues.  相似文献   

5.
An analytical multiresidue method for the simultaneous determination of various classes of pesticides in soil was developed. Pesticides were extracted from soil with ethyl acetate. Soil samples were placed in small columns, and the extraction was carried out assisted by sonication. Pesticides were determined by gas chromatography with electron impact mass spectrometric detection in the selected ion monitoring mode. Spiked blank samples were used as standards to counteract the matrix effect observed in the chromatographic determination. Pesticides were confirmed by their retention times, their qualifier and target ions, and their qualifier/target abundance ratios. Recovery studies were performed at 0.2, 0.1, and 0.05 microg/g fortification levels of each pesticide, and the recoveries obtained ranged from 87.0 to 106.2% with a relative standard deviation between 2.4 and 10.6%. Good resolution of the pesticide mixture was achieved in approximately 41 min. The detection limits of the method ranged from 0.02 to 1.6 microg/kg for the different pesticides studied. The developed method is linear over the range assayed, 25-1000 microg/L, with determination coefficients >0.999. The proposed method was used to determine pesticide levels in real soil samples, taken from different agricultural areas of Spain, where several herbicides and insecticides were found.  相似文献   

6.
A rapid multiresidue method was developed for the determination of nine organophosphorus pesticides in fruit juices. The analytical procedure is based on the matrix solid-phase dispersion (MSPD) of juice samples on Florisil in small glass columns and subsequent extraction with ethyl acetate assisted by sonication. Residue levels were determined by gas chromatography with nitrogen-phosphorus detection. Spiked blank samples were used as standards to counteract the matrix effect observed in the chromatographic determination. The NPD response for all pesticides was linear in the concentration range studied with determination coefficients >0.999. Average recoveries obtained for all of the pesticides in the different juices and fortification levels were >70% with relative standard deviations of <11%. The detection limits ranged from 0.1 to 0.6 microg/kg. The identity of the pesticides was confirmed by gas chromatography with mass spectrometric detection using selected ion monitoring. The proposed MSPD method was applied to determine pesticide residue levels in fruit juices sold in Spanish supermarkets. At least one pesticide was found in most of the samples, although the levels detected were very low, far from the maximum residue levels established for raw fruit.  相似文献   

7.
A method based on disposable pipet extraction (DPX) sample cleanup and gas chromatography with mass spectrometric detection by selected ion monitoring (GC/MS-SIM) was established for 58 targeted pesticide residues in soybean, mung bean, adzuki bean and black bean. Samples were extracted with acetonitrile and concentrated (nitrogen gas flow) prior to being aspirated into DPX tubes. Cleanup procedure was achieved in a simple DPX-Qg tube. Matrix-matched calibrations were analyzed, and the limits of quantification (LOQ) of this method ranged from 0.01 mg kg(-1) to 0.1 mg kg(-1) for all target compounds. Coefficients of determination of the linear ranges were between 0.9919 and 0.9998. Recoveries of fortified level 0.02 mg kg(-1) on soybean, mung bean, adzuki bean and black bean were 70.2-109.6%, 69.1-119.0%, 69.1-119.8%, and 69.0-120.8%, respectively, for all studied pesticides. Moreover, pesticide risk assessment for all the detected residues in 178 market samples at Beijing market area was conducted. A maximum 0.958% of ADI (acceptable daily intake) for NESDI (national estimated daily intake) and 55.1% of ARfD (acute reference dose) for NESTI (national estimated short-term intake) indicated low diet risk of these products.  相似文献   

8.
A new method to determine pesticide residues in nuts is presented, in which the pesticides are extracted from samples with a small amount of ethyl acetate and anhydrous sodium sulfate. No additional cleanup or concentration steps are necessary. The extract is directly injected into the high-pressure liquid chromatograph, where preseparation of the pesticide residues from other components coextracted from the nuts is carried out using methanol/water as the eluent. The selected liquid chromatography fraction containing the pesticides is automatically transferred to the gas chromatograph using the through-oven transfer adsorption/desorption interface. The calculated limits of detection for each pesticide varied from 0.1 to 61.3 microg/kg. The repeatabilities of the analysis and the overall procedure (extraction and analysis) were satisfactory. No variations in the retention time were observed. The method was applied to the analysis of pistachio nut, peanut, walnut, hazelnut, and sunflower seed.  相似文献   

9.
A method for analysis of 37 pesticide residues in tea samples was developed and validated and was based on reversed-dispersive solid-phase extraction (r-DSPE) cleanup in acetonitrile solution, followed by liquid chromatography-electrospray tandem mass spectrometry determination. Green tea, oolong tea, and puer tea were selected as matrixes and represent the majority of tea types. Acetonitrile was used as the extraction solvent, with sodium chloride and magnesium sulfate enhancing partitioning of analytes into the organic phase. The extract was then cleaned up by r-DSPE using a mixture of multiwalled carbon nanotubes, primary secondary amine, and graphitized carbon black as sorbents to absorb interferences. Further optimization of sample preparation and determination allowed recoveries of between 70% and 111% for all 37 pesticides with relative standard deviations lower than 14% at two concentration levels of 10 and 100 μg kg(-1). Limits of quantification ranged from 5 to 20 μg kg(-1) for all pesticides. The developed method was successfully applied to the determination of pesticide residues in market tea samples.  相似文献   

10.
Fipronil is a pesticide suspected of having harmful effects on honey bees at microgram per kilogram levels. Considering the lack of methodology, it thus appeared to be necessary to develop a method for the determination of the lowest amounts of fipronil and its metabolites in pollen. This paper describes a new analytical method with a limit of quantification (LOQ) of 0.1 microg/kg for a representative sample weight of 5 g. In the case of a field study, this tool was used for checking the possible existence of fipronil and/or metabolites in pollen samples, but none of them contained residues higher than the LOQ. This three-step rapid method uses liquid-solid solvent extraction with mechanical grinding, followed by liquid-liquid partitioning and Florisil solid-phase extraction for the two cleanup steps. The quantification is made by liquid chromatography with electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). Indeed, combined with an adequate sample treatment, this technique offers good sensitivity and selectivity in such a complex matrix. The method has given good recoveries of 74-104% with relative standard deviations of 5.6-18.2%.  相似文献   

11.
An analytical method has been developed for the quantification of two herbicides (ethidimuron and methabenzthiazuron) and their two main soil derivatives. This method involves fluidized-bed extraction (FBE) prior to cleanup and analysis by reverse-phase liquid chromatography with UV detection at 282 nm. FBE conditions were established to provide efficient extraction without degradation of the four analytes. (14)C-labeled compounds were used for the optimization of extraction and purification steps and for the determination of related efficiencies. Extraction was optimal using a fexIKA extractor operating at 110 degrees C for three cycles (total time = 95 min) with 75 g of soil and 150 mL of a 60:40 v/v acetone/water mixture. Extracts were further purified on a 500 mg silica SPE cartridge. Separation was performed on a C18 Purosphere column (250 mm x 4 mm i.d.), at 0.8 mL min(-1) and 30 degrees C with an elution gradient made up of phosphoric acid aqueous solution (pH 2.2) and acetonitrile. Calibration curves were found to be linear in the 0.5-50 mg L(-1) concentration range. Besides freshly spiked soil samples, method validation included the analysis of samples with aged residues. Recovery values, determined from spiked samples, were close to 100%. Limits of detection ranged between 2 and 3 microg kg(-1) of dry soil and limits of quantification between 8 and 10 microg kg(-1) of dry soil. An attempt to improve these performances by using fluorescence detection following postcolumn derivatization by orthophthalaldehyde-mercaptoethanol reagent was unsuccessful.  相似文献   

12.
Sample treatment procedures were tested for the determination of polycyclic aromatic hydrocarbons (PAHs) in ground coffee. Pressurized liquid extraction (PLE), under different conditions, was combined with several cleanup methods, namely in situ purification, C18-silica solid-phase extraction (SPE), silica SPE, acid digestion, and alkaline saponification. Soxhlet extraction and direct alkaline saponification were also tested. Best results were obtained using PLE with hexane/acetone 50:50 (v/v) under 150 degrees C. Alkaline saponification followed by cyclohexane extraction and silica SPE was required to eliminate interferent compounds. Finally, 11 PAHs could be quantified in ground coffee with limits of detection in the range of 0.11-0.18 microg kg(-1). Application to ground Arabica coffee lots from Colombia revealed the presence of several PAHs, giving an overall toxicity equivalence in the range of 0.16-0.87 microg kg(-1). PAH identification was performed using both high-performance liquid chromatography-diode array detection and gas chromatography coupled to mass spectrometry.  相似文献   

13.
The behavior in the field and the transfer from olives to olive oil during the technological process of imidacloprid, thiacloprid, and spinosad were studied. The extraction method used was effective in extracting the analytes of interest, and no interfering peaks were detected in the chromatogram. The residue levels found in olives after treatment were 0.14, 0.04, and 0.30 mg/kg for imidacloprid, thiacloprid, and spinosad, respectively, far below the maximum residue levels (MRLs) set for these insecticides in EU. At the preharvest interval (PHI), no residue was detected for imidacloprid and thiacloprid, while spinosad showed a residue level of 0.04 mg/kg. The study of the effect of the technological process on pesticide transfer in olive oil showed that these insecticides tend to remain in the olive cake. The LC/DAD/ESI/MS method showed good performance with adequate recoveries ranging from 80 to 119% and good method limits of quantitation (LOQs) and of determination (LODs). No matrix effect was detected.  相似文献   

14.
The application of liquid chromatography time-of-flight mass spectrometry (LC/TOF-MS) for the identification and quantitation of four herbicides (simazine, atrazine, diuron, and terbuthylazine) in olive oil samples is reported here. The method includes a sample treatment step based on a preliminary liquid-liquid extraction followed by matrix solid-phase dispersion (MSPD) using aminopropyl as a sorbent material. A final cleanup step is performed with florisil using acetonitrile as an eluting solvent. The identification by LC/TOF-MS is accomplished with the accurate mass (and the subsequent generated empirical formula) of the protonated molecules [M + H]+, along with the accurate mass of the main fragment ion and the characteristic chlorine isotope cluster present in all of them. Accurate mass measurements are highly useful in this type of complex sample analyses since they allow us to achieve a high degree of specificity, often needed when other interferents are present in the matrix. The mass accuracy typically obtained is routinely better than 2 ppm. The sensitivity, linearity, precision, mass accuracy, and matrix effects are studied as well, illustrating the potential of this technique for routine quantitative analyses of herbicides in olive oil. Limits of detection (LODs) range from 1 to 5 microg/kg, which are far below the required maximum residue level (MRL) of 100 microg/kg for these herbicides in olive oil.  相似文献   

15.
A sensitive and reliable method was developed and validated for trace determination of sulfonylurea herbicides residues in cereals (wheat, rice, and corn) by liquid chromatography-tandem mass spectrometry. The selected analytes were ethoxysulfuron, ethametsulfuron-methyl, bensulfuron-methyl, chlorimuron-ethyl, pyrazosulfuron-ethyl, and cyclosulfamuron. In this work, the extraction procedure was performed by using a mixture solvent of phosphate buffer (pH 9.5)/acetonitrile (8:2, v/v) as the extraction solvent and then was cleaned up by using Spe-ed C18/18% SPE cartridges, providing good recoveries for all of the tested analytes and with no matrix effects affecting method accuracy. The limits of detection for the studied analytes in cereal samples were between 0.043 and 0.23 μg kg(-1), and the limits of quantification were between 0.14 and 0.77 μg kg(-1), lower in all cases than the maximum residue limits permitted by the European Union for this kind of food. The developed methodology has demonstrated its suitability for the monitoring of these residues in cereal samples with high sensitivity, precision, and satisfactory recoveries.  相似文献   

16.
The acid-induced liquid-liquid phase separation of anionic surfactants in aqueous solutions and its applicability to cloud point extraction methodology were applied as a tool for the extraction of 1,4-dichlorobenzene (p-DCB) from aqueous samples. p-DCB is extracted into the micelles of sodium dodecane sulfonate (SDSA) in a 4.2 M HCl solution. The micellar phase is separated from the bulk aqueous solution after centrifugation and collected from the surface of the suspension. The micellar extracts are injected into a high-performance liquid chromatographic apparatus and quantified at 225 nm with a reference wavelength of 280 nm. Following the proposed methodology, a preconcentration factor of ca. 160 is achieved (starting from 50 mL solutions) allowing for detection limits at the low microg/L level. Application to honey samples produced detection limits of 2.5 microg/kg with quantification limits of 7.5 microg/kg, while the recoveries of the method ranged from 85% at high concentrations to 95% at lower concentrations of p-DCB. The combined uncertainty of the entire analytical procedure was 4.5% at the concentration level of 30 microg/kg allowing for reliable and reproducible results for the determination of p-DCB at the concentration levels considered as thresholds for EU and U.S. legislation (10 microg/kg).  相似文献   

17.
A method based on a headspace solid phase microextraction (HS-SPME) technique followed by gas chromatography with flame thermionic and mass spectrometric detection was developed for the determination of seven organophosphorus (OPs) insecticide residues in strawberry and cherry juice samples. The extraction capacities of four fiber coatings, polyacrylate (PA 85 microm), poly(dimethylsiloxane) (PDMS 100 microm), carbowax-divinylbenzene (CW-DVB 65 microm), and poly(dimethylsiloxane)-divinylbenzene (PDMS-DVB 65 microm), have been studied and compared. The method was developed using spiked strawberry and cherry juices in a concentration range of 0.5-50 microg/L. The PDMS 100 microm fiber showed good extraction efficiency for the target compounds. An increase in the extraction efficiency of OP insecticides was observed when the parameters affecting the HS-SPME process such as temperature, extraction time, salt additives, stirring rate, pH, and effect of dilution were optimized. Good linearity of compounds was observed in the tested concentration range. The relative standard deviations were found to be <20%. The limits of detection were between 0.025 and 0.050 microg/L. The mean relative recoveries ranged from 82 to 102%.  相似文献   

18.
A reliable analytical method was presented for the simultaneous determination of six N-nitrosamines, nine aromatic amines, and melamine in milk and dairy products using gas chromatography coupled with mass spectrometry. The sample treatment includes the precipitation of proteins with acetonitrile, centrifugation, solvent changeover by evaporation, and continuous solid-phase extraction for cleanup and preconcentration purposes. Samples (5 g) containing 0.15-500 ng of each amine were analyzed, and low detection limits (15-130 ng/kg) were achieved. Recoveries for milk and dairy products samples spiked with 1, 10, and 50 μg/kg ranged from 92% to 101%, with intraday and interday relative standard deviation values below 7.5%. The method was successfully applied to determine amine residues in several milk types (human breast, cow, and goat) and dairy products.  相似文献   

19.
The phenolic composition of "lampante olive oil", "crude olive pomace oil", and "second centrifugation olive oil" was characterized by high-performance liquid chromatography with UV, fluorescence, and mass spectrometry detection. The phenolic profile of these olive oils intended for refining was rather similar to that previously reported for virgin olive oil. However, a new compound was found in these oils, which is mainly responsible of their foul odor. It was identified as 4-ethylphenol by comparison of its UV and mass spectra with those of a commercial standard. Although 4-ethylphenol was discovered in all oils intended for refining, its presence was particularly significant in "second centrifugation olive oils", its concentration increasing with time of olive paste storage. Similar trends were observed for hydroxytyrosol, hydroxytyrosol acetate, tyrosol, and catechol, the concentration of these substances reaching values of up to 600 mg/kg of oil, which makes their recovery for food, cosmetic, or pharmaceutical purposes attractive.  相似文献   

20.
An analytical method for the simultaneous determination of 51 pesticides in commercial honeys was developed. Honey (10 g) was dissolved in water/methanol (70:30; 10 mL) and transferred to a C(18) column (1 g) preconditioned with acetonitrile and water. Pesticides were subsequently eluted with a hexane/ethyl acetate mixture (50:50) and determined by gas chromatography with electron impact mass spectrometric detection in the selected ion monitoring mode (GC-MS-SIM). Spiked blank samples were used as standards to counteract the matrix effect observed in the chromatographic determination. Pesticides were confirmed by their retention times, their qualifier and target ions, and their qualifier/target abundance ratios. Recovery studies were performed at 0.1, 0.05, and 0.025 microg/g fortification levels for each pesticide, and the recoveries obtained were >86% with relative standard deviations of <10%. Good resolution of the pesticide mixture was achieved in approximately 41 min. The detection limits of the method ranged from 0.1 to 6.1 microg/kg for the different pesticides studied. The developed method is linear over the range assayed, 25-200 microg/L, with determination coefficients of >0.996. The proposed method was applied to the analysis of pesticides in honey samples, and low levels of a few pesticides (dichlofluanid, ethalfluralin, and triallate) were detected in some samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号