首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
为探索高碳原料厌氧发酵产气特性,在(35±1)℃条件下,采用批式厌氧消化工艺对香菇废弃菌棒进行厌氧发酵试验。采用L9(33)正交试验设计,研究预处理天数、接种物质量分数和料液质量分数对香菇废弃菌棒厌氧发酵产沼气的影响,得出高碳物料厌氧发酵最佳工艺组合。结果表明:高碳物料并非厌氧发酵产沼气的最佳原料,但经适当预处理后其产气性能有较大提高,TS产气率达0.16 L/g,参比对照组增长128.57%。各因素对香菇废弃菌棒厌氧发酵产沼气影响的主次顺序为:预处理天数(极显著)、料液质量分数(极显著)、接种物质量分数(不显著)。同时应用多元回归理论建立多元回归模型,有助于预测香菇废弃菌棒不同发酵条件组合下的产气量。  相似文献   

2.
以烤烟秸秆与接种物的总固体质量比为4:6配制发酵底物,考察在室温和中温条件下厌氧发酵产沼气的情况,同时建立其动力学模型。研究结果表明,在室温(平均为22℃)和中温(28℃)条件下,产气规律基本一致,都在第5d和第25d左右出现两个产气高峰期,但室温条件下的总产气量比中温条件下高52%。对发酵动力学的研究发现,厌氧发酵过程可分两个阶段(0-20d和21-40d)进行拟合,所建模型的相关系数均大于0.97,拟合结果与试验数据较为接近。这说明,利用Cheynoweth方程能够较好地反映烤烟秸秆产沼气的规律。研究结果可为烤烟秸秆在厌氧发酵产沼气上的应用提供理论依据。  相似文献   

3.
醋渣沼气发酵潜力的研究   总被引:3,自引:1,他引:2  
陈智远  谭婧  丁琦  田硕 《中国沼气》2010,28(3):25-27
以醋渣为原料,在严格控制厌氧发酵温度为38℃±1℃的条件下,采用批量发酵工艺,进行厌氧发酵产沼气试验。结果表明,醋渣是良好的沼气发酵原料,其TS产气率和VS产气率分别为359.18 mL.g-1,392.67 mL.g-1,容积产气率为0.1675 mL.mL-1d-1。  相似文献   

4.
猪粪厌氧干湿发酵产气效率对比   总被引:1,自引:0,他引:1  
为了对比研究猪粪厌氧干湿发酵的产气效率,文章在中温37℃±1℃,接种物与原料的比例为1∶1的条件下,设置发酵浓度分别为8%和20%进行猪粪厌氧发酵产沼气实验。结果表明:猪粪厌氧湿发酵(发酵浓度为8%左右)的发酵产气周期要比猪粪厌氧干发酵(发酵浓度为20%左右)的更短;猪粪厌氧干发酵的VS产气率以及VS降解率均要高于猪粪厌氧湿发酵,且VS产气率提升了22. 10%;猪粪厌氧干湿发酵降解过程与Logistic方程的相关系数R~2均高于0. 99,Logistic方程可很好的反映猪粪厌氧干湿发酵过程的规律。  相似文献   

5.
温度对蔬菜废弃物沼气发酵产气特性的影   总被引:6,自引:1,他引:5  
运用实验室自行设计的小型沼气发酵装置,以废弃的甘蓝菜叶作为发酵原料,研究了温度对蔬菜废弃物沼气发酵产气特性的影响.结果表明,中温条件((35±1)℃)试验组的挥发酸质量浓度、氨态氮质量浓度以及pH值都在正常范围内,且优于高温((55±1)℃)和室温发酵试验组,可保证系统的顺利运行.产气特性研究表明:中温条件的总产气量比高温条件总产气量高42.5%,最高甲烷含量比高温条件和室温条件下分别高7.6%和19.1%.因此,中温条件适于蔬菜废弃物厌氧发酵产气.  相似文献   

6.
为考察柑橘皮沼气化处理的可行性,文章首先对柑橘皮的特征成分进行检测分析;其次,在中温条件下,对柑橘皮进行厌氧发酵产气特性试验研究。理化性质检测结果显示,柑橘皮中的挥发性物质(VS)约占干物质(TS)95.25%,理论上讲,柑橘皮是适合厌氧生物法处理的;厌氧发酵试验结果表明:柑橘皮的厌氧发酵产沼气潜力比较高,即单位原料质量产沼气量达1.05 m3·kg-1TS;从产气成分看,甲烷含量最高可达69.50%。从该研究综合分析,柑橘皮适宜厌氧发酵生物处理。  相似文献   

7.
研究以餐厨垃圾为原料,在中温(37℃)和高温(55℃)条件下开展批次试验。通过测定各项产气指标探究不同温度对餐厨垃圾厌氧发酵产气性能的影响,并采用Gompertz模型和一级动力学模型对中温和高温条件下餐厨垃圾厌氧发酵累计产甲烷量进行拟合。结果表明,高温厌氧发酵最大产甲烷潜能为398.33 mL·g-1VS,高出中温发酵32.37%,高温条件下餐厨垃圾厌氧发酵累积沼气产量和甲烷产量分别为665.89和399.41 mL·g-1VS,显著高于中温条件下的累积沼气产量及甲烷产量。餐厨垃圾高温发酵甲烷生成速率常数k为0.43558 d-1,高于中温发酵动力学常数(k=0.31367 d-1),餐厨垃圾高温厌氧发酵产甲烷速率高于中温发酵。综上所述,相较于中温条件,高温条件下餐厨垃圾批次厌氧发酵产气性能更优异。  相似文献   

8.
研究了发酵温度、接种物与原料的不同配比、发酵液酸碱度等主要工艺条件对秸秆厌氧发酵产沼气的影响。同时,设计了自动加热恒温系统,对秸秆进行了氨化处理,进行了接种物与原料不同配比、发酵液不同pH值等一系列试验。试验结果表明,接种物与原料比例为1:1,发酵液pH值为7.0左右时,产气效果好,效率高。  相似文献   

9.
为了研究石墨对高浓度厌氧发酵性能的影响,以牛粪为原料,温度为36℃±1℃,VS浓度为10%,接种物为30%,加入不同浓度及粒径的石墨进行高浓度厌氧发酵产沼气实验。结果表明:石墨添加量为0.75 g·L-1的VS沼气产率最高,比对照组提高了9.02%,VS去除率比对照组提高了8.22%;石墨粒径为325目的VS沼气产率最高,比对照组提高了6.39%,VS去除率比对照组提高了9.5%。通过动力学模型对实验数据进行拟合,修正的Gompertz模型相关系数在0.99以上,Logistic模型的相关系数在0.98以上,两种动力学模型均能够较好的反应石墨的添加对牛粪高浓度厌氧发酵产气的降解规律,为石墨作为添加剂对牛粪高浓度厌氧发酵的产气性能影响提供数据支撑。  相似文献   

10.
以玉米秸秆为厌氧发酵基质,以微量元素Fe、Co、Ni混合液为添加液,研究中温条件下微量元素的添加对玉米秸秆厌氧发酵产沼气及辅酶F420活性的影响,探讨添加频次与产气效果的关系。结果表明:添加微量元素试验组的累积产气量和产气率稳定性优于未添加试验组;微量元素的添加频次不同,其产气效果也不同;当微量元素混合液中Fe、Co、Ni的浓度为1.0、0.1、0.2mg/L时,每天添加微量元素的试验组产沼气效果最佳,比未添加组累积产气量提高23%,TS、VS降解率分别提高16.1%和22.3%,辅酶F420含量高峰值显著提高。本研究为提高玉米秸秆厌氧发酵的产气效果提供了依据。  相似文献   

11.
非木材纤维纸浆中杂细胞的沼气发酵   总被引:3,自引:1,他引:3  
采用L9(34)正交试验法,对影响杂细胞沼气发酵的基质浓度、发酵温度、添加剂三因素进行批量发酵.结果表明,基质浓度对发酵效果影响最大,其次是添加剂.发酵温度对发酵周期影响最大.以产气量和TS去除率为指标,优选出最佳发酵条件是基质浓度6%,中温(35℃)发酵,以碳铵为添加剂.以此为条件,进行60d的续料发酵,结果为,TS去除率达68.64%,原料产气率299.9mL*gTS-1,容积产气率0.3224L*L-1d-1,CH4含量64%,符合沼气发酵供能的要求.  相似文献   

12.
目前,通过对秸秆进行化学预处理后产沼气的研究越来越多,其中以酸碱作为预处理试剂最为常见,但酸碱试剂对设备腐蚀较严重且对环境造成二次污染,故试验选择在厌氧发酵过程中可以被微生物分解的有机溶剂甲醇、丙酮进行预处理。为此,利用自行设计的可控性恒温发酵装置,以小麦秸秆为发酵原料,通过p H值、VFA、甲烷含量、还原糖等指标分析了秸秆经不同浓度的甲醇、丙酮处理后其厌氧发酵产气效率的变化。结果表明:浓度为3%、4%、5%的甲醇、丙酮预处理后的秸秆的累积产气量较对照组均有所提高。其中,5%丙酮处理秸秆后的发酵效果最好,较对照产气量增加了81%;经5%甲醇处理组的秸秆甲烷含量达到68%。  相似文献   

13.
为了提高厌氧发酵产气效率,在单因素试验基础上,采用响应面法对厌氧发酵工艺参数进行优化,通过Box-Behnken中心组合试验设计,以厌氧发酵产气量为响应值,研究发酵温度、总固体浓度和生物炭添加量3个因素对厌氧发酵的影响,建立相关数学模型,并进行试验验证。结果表明:3个因素对厌氧发酵产气效率的影响均达到显著水平,最优工艺条件为发酵温度41℃,总固体浓度8.9%,水稻秸秆炭7.9%,在此工艺条件下,厌氧发酵产气量达到2735 mL±37 mL,与预测产气量2693 mL,两者偏差在2.0%以内。因此,所建模型能较好地用于生物炭与牛粪混合厌氧发酵产气量的预测。  相似文献   

14.
为提高马铃薯茎叶资源化利用水平,文章研究了自然风干对马铃薯茎叶成分及厌氧发酵产沼气性能的影响。实验中首先比较了马铃薯茎叶营养成分和木质化程度随风干时间的变化情况;随后在35℃的中温条件下,分别以不同风干时间的马铃薯茎叶为发酵原料,进行周期为40 d的批式厌氧消化产沼气实验。结果表明:风干时间对马铃薯茎叶成分影响较大,风干时间越久,则可溶性碳水化合物、粗蛋白、粗脂肪等成分含量越低,而中性洗涤纤维含量越高;原料风干程度显著影响厌氧消化启动速度,风干时间越久则发酵启动越慢,但对沼气中甲烷含量影响不大;实验条件下,48 h风干处理组TS产气率最高,达251.70 mL·g^-1,其后依次为24 h风干,新鲜72 h风干和96 h风干处理组,TS产气率分别为227.90 mL·g^-1,154.10 mL·g^-1,193.30 mL·g^-1,和120.50mL·g^-1,各组均未出现体系“过酸化”导致的发酵失败现象。对马铃薯茎叶做适当风干处理后用于厌氧沼气发酵,可有效提高产沼气量,促进农业废弃物资源化利用。  相似文献   

15.
为了探索马铃薯茎叶与玉米秸秆混合厌氧消化产气特性和优化工艺参数,采用二次正交旋转组合设计,研究了物料质量分数、碳氮比和接种物质量分数3个因素对马铃薯茎叶与玉米秸秆混合厌氧消化产气特性及其规律,以总固体产气率为响应值得出二次回归模型和优化工艺参数,并采用Design-Expert软件对回归模型进行了优化和降维分析。通过上述试验研究,得到最佳工艺条件为:物料质量分数为9.87%、碳氮比为18.73、接种物质量分数为20.82%,预测总固体产气率为54.55 m L/g。3个因素影响主次顺序依次为接种物质量分数、物料质量分数和碳氮比,各因素间交互作用以接种物质量分数与物料质量分数的交互作用最明显。通过验证试验得出,模型预测值与试验值之间相对误差小于5%,方差分析不显著,模型拟合较好。  相似文献   

16.
文章以新鲜芦苇秸秆为发酵原料,分别对其进行打碎和切碎预处理,在恒温30℃条件下进行全混合批量式沼气发酵实验。实验结果表明,两种预处理方法的发酵时间均为62 d,芦苇秸秆打碎处理的TS产气率和VS产气率分别为467 mL·g^-1和570 mL·g^-1,芦苇秸秆切碎处理的TS产气率和VS产气率分别为560 mL·g^-1和685 mL·g^-1,芦苇秸秆切碎处理的产气潜力明显大于芦苇秸秆打碎处理,且芦苇秸秆切碎处理的甲烷含量也较前者高。说明将进行芦苇秸秆切碎处理有利于它发酵产沼气,发酵产出的沼气品质较好。  相似文献   

17.
试验研究了常温条件下,西瓜鲜秸秆和干秸秆分别与牛粪以1:1比例在原料浓度为6%,8%,10%,12%条件下混合发酵的产气速率、累积产气量以及原料的产气率。结果表明:在发酵前期鲜秸秆与牛粪混合发酵的产气速率明显大于干秸秆,发酵后期却小于干秸秆;干秸秆对温度的变化不如鲜秸秆敏感,因而产气相对于鲜秸秆稳定;鲜秸秆和干秸秆与牛粪混合发酵的累积产气量随着原料浓度的增加而增加,但是原料产气率在超过一定原料浓度范围时反而降低;综合累积产气量和原料产气率,最适宜的发酵原料浓度为8%。该研究对解决农村地区大棚蔬菜基地秸秆的资源化利用提供了有益的参考。  相似文献   

18.
在(38±2)℃条件下,分别采用UASB和UBF厌氧反应器技术对生活垃圾渗滤液进行处理。结果表明:在厌氧运行过程中,有机负荷提升至15 kg COD(m3·d),HRT为5 d,UASB厌氧反应器原料产气率为25.4~29.6 m3t,COD去除率高于94%,容积产气率为5.77~6.02 m3m3,CH4含量70%以上,pH值为7.21~8.25;UBF厌氧反应器原料产气率为22.7~25.4 m3t,COD去除率高于90%,容积产气率为4.99~5.60 m3m3,CH4含量66%左右,pH值为7.29~8.01。UASB厌氧反应器处理生活垃圾渗滤液效果优于UBF厌氧反应器。   相似文献   

19.
为充分利用厌氧干发酵工艺批次处理能力强并有效克服其物料发酵不彻底导致的产气效率低的难题,引入干湿联合厌氧发酵工艺。以水稻秸秆和新鲜猪粪为发酵原料,在35℃及发酵底物初始TS浓度为20%条件下进行厌氧干发酵,其中一组处理在实验第20 d时用纯净水将发酵底物TS浓度调节为9%改为湿发酵,两者对比结果表明:相比于干发酵,该干湿联合厌氧发酵工艺可有效提高稻秸纤维素和半纤维素的降解率,其中纤维素降解率可由20.5%提高到31.1%,半纤维素降解率可由48%提高到54.8%,虽对产气中甲烷含量影响不大,但试验周期内物料累积产气量可提高19%以上。  相似文献   

20.
为解决微好氧同步预升温序批式干发酵工艺实际运行过程中现有装备存在曝气不充分、喷淋均匀度低等问题,加快促进纤维物料降解和中间物质转化并提高产气效率,创新设计装备喷淋系统、曝气系统,优化集成了微好氧预升温序批式厌氧干发酵一体化装备,实现微好氧快速预升温、喷淋均匀接种、高效生产沼气。通过喷头特性比选出适合粘稠沼液循环的螺旋式喷嘴,并计算出当喷淋面积为0.6m×0.6m时,最佳喷头间距和管道直径分别为0.37m和0.08m,喷淋覆盖面积可达到物料表面积的87.33%。为方便物料进出,设计曝气管道对称分布在物料两侧,共设置6支平行曝气管,单侧管道间距和两端管道间距分别为0.5m和0.7m。集成装备并耦合微好氧同步预升温序批式干发酵工艺,通过长期试验确定实际运行中的多组反应器序批启动调控策略应为8组反应器,启动间隔为3d,发酵周期为24d。基于规模化奶牛养殖场对技术装备应用经济效益进行核算,得出投资回收周期约为4年,与传统湿法厌氧发酵技术相比减少了约1.3年。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号