首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
S. J. Xu  L. R. Joppa 《Plant Breeding》2000,119(3):223-226
The formation of unreduced gametes in some hybrids between disomic D‐genome substitutions (DS) of durum wheat cv.‘Langdon’ and rye provides a convenient approach for the rapid introduction of D‐genome chromosomes into hexaploid triticale. Meiotic pairing at metaphase I and seed fertility in spontaneous and colchicine‐induced amphidiploids derived from F1 hybrids between a set of ‘Langdon’ DS and ‘Gazelle’ rye were analysed. The purpose was to determine the effects of the substitution of D‐genome chromosomes for their A‐ and B‐genome homoeologues on hexaploid triticale and to select stable disomic D‐genome substitutions of hexaploid triticale. The results showed that the disomic substitutions with D‐genome slightly increased the frequency of univalents (1.0‐3.13) compared with the ‘Langdon’ control primary hexaploid triticale (0.76). Substitutions 2D(2A) and 3D(3B) were partly desynaptic. The substitutions 1D(1A), 1D(1B) and 7D(7B) exhibited high seed fertility but the others had decreased fertility. Except for 2D(2A), 5D(5A), 3D(3B) and 5D(5B), 10 of the 14 possible hexaploid triticale D‐genome disomic substitutions have been obtained. The results suggest that the poor compensation ability of some D‐genome chromosomes for their homoeologous A‐ and B‐genome chromosomes is a major factor affecting meiotic stability and fertility in the hexaploid triticale D‐genome substitutions.  相似文献   

2.
Using monosomic lines of wheat cultivars ‘Palur’ and ‘Compal’ as recipient parents as well as disomic substitution lines of chromosomes 5A and 5D of the wheat cv. ‘Atlas 66’, F3-populations and BC1′- to BC3′-populations with limited and free recombination of the 20 and 21 parental chromosomes, respectively, were realized and tested in field trials in comparison to the corresponding recipient cvs. ‘Palur’ and ‘Compal’. F3- and BC'-populations with the homozygous chromosomes 5A and 5D of the wheat cv. ‘Atlas 66’ expressed higher and more stable grain protein values than the comparable populations with free recombination of the same chromosomes. The grain protein content of populations with limited recombination was significantly increased compared with the recipient cultivars. Some advantages of using intervarietal substitutions in wheat breeding are discussed.  相似文献   

3.
The wheat progenitors and other wild relatives continue to be important sources of genes for agronomically desirable traits, which can be transferred into durum wheat (Triticum turgidum; 2n = 4x = 28; AABB genomes) cultivars via hybridization. Chromosome pairing in durum × alien species hybrids provides an understanding of genomic relationships, which is useful in planning alien gene introgression strategies. Two durum cultivars, ‘Lloyd’ and ‘Langdon’, were crossed with diploid wheatgrass, Thinopyrum bessarabicum (2n = 2x = 14; JJ), to synthesize F1 hybrids (2n = 3x = 21; ABJ) with Ph1. ‘Langdon’ disomic substitution 5D(5B) was used as a female parent to produce F1 hybrids without Ph1, which resulted in elevation of pairing between durum and grass chromosomes – an important feature from the breeding standpoint. The F1 hybrids were backcrossed to respective parental cultivars and BC1 progenies were raised. ‘Langdon’ 5D(5B) substitution × Th. bessarabicum F1 hybrids were crossed with normal ‘Langdon’ to obtain BC1 progeny. Chromosome pairing relationships were studied in F1 hybrids and BC1 progenies using both conventional staining and fluorescent genomic in situ hybridization (fl‐GISH) techniques. Multicolour fl‐GISH was standardized for characterizing the nature and specificity of chromosome pairing: A–B, A–J and B–J pairing. The A–J and B–J pairing will facilitate gene introgression in durum wheat. Multicolour fl‐GISH will help in characterizing alien chromosome segments captured in the durum complement and in their location in the A and/or B genome, thereby accelerating chromosome engineering research.  相似文献   

4.
D. Struss    U. Bellin  G. Röbbelen 《Plant Breeding》1991,106(3):209-214
By interspecific hybridization within the genus Brassica, trigenomic haploids were produced and back-crossed four times with B. napus, variety ‘Andor’. From this material, monosomic B-genome chromosome addition lines were selected with the extra chromosome derived from three different B-genome sources, i.e., B. nigra (BB), B. carinata (BBCC), and B. juncea (AABB). After selfing and/or microspore culture, disomic addition lines were obtained. Meiotic behavior was studied of the trigenomic hybrids, the pentaploid BC1 plants, and the monosomic addition lines. The addition lines were shown to possess cytological stability and good fertility.  相似文献   

5.
N. Inomata 《Euphytica》2003,133(1):57-64
The cytogenetic study was investigated in the intergeneric F1 hybrid, F2and backcross progenies (BC1). The plants used were Brassica juncea(2n=36) and Diplotaxis virgata(2n=18). Three intergeneric F1 hybrids between two species were produced through ovary culture. They showed 36 chromosomes. It might consist one genome of B. juncea and two genomes of D. virgata. The morphology of the leaves resembled that of B. juncea. The color of the petals was yellow that was like in D. virgata. The size of the petal was similar to that of B. juncea. The mean pollen fertility was15.3% and the chromosome associations in the first meiotic division were(0–1)IV+(0–2)III+(8–12)II+(12–20)I. Many F2 and BC1seeds were harvested after open pollination and backcross of the F1 hybrids withB. juncea, respectively. The F2seedlings showed different chromosome constitutions and the range was from 28 to54 chromosomes. Most seedlings had 38chromosomes followed by 36, 40 and 54. The BC1 seedlings also showed different chromosome constitutions and the range was from 29 to 62. Most seedlings had both 40and 54 chromosomes followed by 36, 46 and52. In the first meiotic division of F2 and BC1 plants, a high frequency of bivalent associations was observed in all the various kinds of somatic chromosomes. Many F3 and BC2 seeds were obtained by self-pollination and open pollination of both F2 and BC1 plants, and by backcrossing both F2 and BC1plants with B. juncea, respectively,especially, three type progeny with 36, 40or 54 chromosomes. The somatic chromosomes of the F3 and BC2 plants were further investigated. The bridge plants between B. juncea and D. virgata with 36 chromosomes may be utilized for breeding of other Brassica crops as well as B. juncea. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Z. L. Ren    T. Lelley  G. Röbbelen 《Plant Breeding》1990,105(4):265-270
Hybrid plants with 21 pairs of wheat chromosomes and with a haploid rye genome were produced by backcrossing a primary octoploid triticale with its parental hexaploid wheat. Upon a second backcrossing or selfing, the rye chromosomes were eliminated rapidly. Added rye chromosomes, in varying numbers, affected the transmission rate of wheat chromosomes significantly. Loss of wheat chromosomes ranging from 0.06 to 0.35 per plant in different populations was observed. In these plants a remarkably high incidence of wheat/rye and rye/rye translocations occurred. Translocations were identified by using the C-banding technique. Among 837 analyzed plants 64 wheat/rye and 256 rye/rye translocations were identified. In different generations of backcrossing or selfing the frequency of wheat/rye translocations varied between 4.23 % and 14.67 %. All 14 rye chromosome arms were involved in translocations but with different frequencies. BC1F3 plants with homozygous wheat/rye translocations were isolated The results indicate that monosomic wheat/rye addition lines may be directly used as an effective means to transfer genetic material from rye into bread wheat.  相似文献   

7.
为探讨偏凸山羊草-柱穗山羊草双二倍体SDAU18在小麦遗传改良中的利用价值,以SDAU18和普通小麦品种烟农15及其9个杂种世代为材料,分析不同自交和回交世代染色体和性状分离的特点。结果表明,随自交和以烟农15为轮回亲本回交世代的增加,染色体数目逐渐减少,回交比自交能使后代的染色体数目更快趋近普通小麦的42条,至F5和BC3F1代,染色体数目为42的植株已分别达93.9%和92.0%。与自交世代相比,回交后代减数第一分裂中期的花粉母细胞的染色体构型较为简单,回交次数过多不利于外源染色体与普通小麦染色体发生重组,一般应以回交2~3次为宜;随自交和回交世代的增进,杂种的育性提高,至F3和BC2F1代育性基本稳定。在不同杂种世代可分离出具有矮秆、大穗、大粒、对白粉病、条锈病免疫或高抗及外观品质优良的变异类型,以F3和BC1F1代的变异类型最丰富。  相似文献   

8.
W. Sodkiewicz 《Plant Breeding》1992,109(4):287-295
Four hexaploid triticale lines were crossed as females with a T. monococcum×S. cereale amphiploid (AmAmRR), with the aim of introducing the genetic material of diploid wheat. F1-plants (AmABRR)were back-crossed with a parental form of 6×-triticale as male and progenies were subjected to four different types of pollination with the aim of finding the optimal one in respect to gradual stabilization of introgressive hexaploid karyotypes. Beginning with BC1-plants, a strong tendency to decrease the somatic chromosome number was observed. In subsequent generations this was accompanied by the decrease of seed germination and plant fertility. Both of these characters showed statistically significant dependence on somatic chromosome number variation which was analyzed in BC1/F2 and BC2 populations. Based on spike fertility, an effective selection pressure was applied to restitute the hexaploid chromosome number. In the BC1/F4 generation, the first morphologically uniform secondary hexaploid lines were selected. 11.4% of the lines showed a non-waxy spike — a morphological marker transmitted from T. monococcum.  相似文献   

9.
A rye-cytoplasmic tetraploid triticale was found in Fs progenies of crosses between tetraploid rye‘No 1323’and hexaploid triticale‘KT 77′. In the tetraploid triticale, two complete rye genomes and two mixed wheat genomes, consisting of the chromosomes 1A. 2A, 4A, 7A, 3B, 5B, and 6B are present. The rye cytoplasm did not affect stability of rye chromosome pairing during metaphase 1, since rye chromosomes participated in pairing irregularities just as did wheat chramosomes, even on a larger scale. The fertility of F0, plants ranged from 0 to 75.6 %, always associated with high grain shrivelling. The analyzed pairing behaviour of induced triploid hybrids from crosses between the tetraploid triticale and diploid rye indicates the presence of at least one wheat-rye translocation in one of the investigated triploid plants.  相似文献   

10.
M. Baum  T. Lelley 《Plant Breeding》1988,100(4):260-267
F1 hybrids of triticale × rye derived from commercial varieties were backcrossed to the respective triticale parent. Selfing of the backcross generation yielded a large number of 4× triticales containing a genetically balanced wheat genome. This indicates that the 28-chromosome F1 plants with the genomic constitution of ABRR produced functional 14-chromosome gametes in high frequency each with a complete wheat and rye genome. The cytological mechanism leading to the formation of tetraploid triticales is described. The chromosomal constitution of the wheat genome in the progenies of 30 back cross plants was analysed by the C-banding technique. One offspring possessed a complete B genome of wheat. The production of tetraploid triticale through backcrossing in comparison to selfing the ABRR hybrid is largely independent of the genotype; it leads to new tetraploids in just three generations and it reduces the chance of translocations between the homoeologous wheat chromosomes. The possibility of studying the effect of different mixtures of chromosomes of the A and B genomes of wheat on the phenotype of the tetraploid triticale is discussed.  相似文献   

11.
N. Inomata 《Plant Breeding》2002,121(2):174-176
In this cytogenetic study the progeny of all crosses were investigated in F1, F2 and backcross (BC1) hybrids. Brassica napus and F1 hybrids between B. napus and B. oleracea, and between B. napus and three wild relatives of B. oleracea (B. bourgeaui, B. cretica and B. montana). Each of the wild relatives has 18 somatic chromosomes. Interspecific F1 hybrids were obtained through ovary culture mean. These had 28 and 37 chromosomes and their mean pollen fertility was 10.7% and 93.0%, respectively. Many F2 and BC1 seeds were harvested from the F1 hybrids with 37 chromosomes after self‐pollination and open pollination of the F1 hybrids, and backcrossing with B. napus. Many aneuploids were obtained in the F2 and BC1 plants. It is evident from these investigations that the F1 hybrids may serve as bridge plants to improve B. napus and other Brassica crops.  相似文献   

12.
Although the wild sunflower species Helianthus laevigatus has not been extensively studied it may be considered for sunflower breeding as a potential source of desirable genes for Sclerotinia stalk rot resistance and high contents of proteins and linoleic acid in the seed. A set of six H. laevigatus populations was crossed to cultivated sun~ower lines and produced nine F1 (2-14 plants) and 66 BC1F1 hybrid combinations (1-13 plants). Male sterility occurred in F1 and BC1F1 hybrid combinations and pollen viability was lower in the progenies than in the parents (51.6-77.2%in F1 and in F1 and 4.8-34.0% in BC1F1). Meiosis was normal in the H. laevigatus populations It was found that this tetraploid species also occurred in a hexaploid form Numerous irregularities were observed in the meiosis of the F1 interspecific hybrids During diakinesis, quadrivalents and hexavalents were recorded in addition to bivalents Dislocated chromosomes and chromosome bridges were present in the other phases The chromosome number in F1 was 68 (tetraploid). Irregularities in chromosome pairing were observed in the interspecific hybrids at BC1F1. There were many univalents, and trivalents quadrivalents and hexavalents were also present The chromosome number in the BC1F1 generation ranged from 34 to 60. The occurrence of meiotic irregularities in the F1 and BC1F1 interspecific hybrids indicates that H. laevigatus and the cultivated sunflower differ in genome constitution.  相似文献   

13.
Summary Atrazine resistant Brassica napus × B. oleracea F1 hybrids were backcrossed to both parental species. The backcrosses to B. napus produced seeds in both directions but results were much better when the F1 hybrid was the pollen parent. Backcrosses to B. oleracea failed completely but BC1s were rescued by embryo culture both from a tetraploid hybrid (2n = 4x = 37; A1C1CC) and sesquidiploid hybrids (2n = 3x = 8; A1C1C). Progeny of crosses between the tetraploid hybrid and B. oleracea had between 25 and 28 chromosomes. That of crosses between the sesquidiploid hybrid and B. oleracea had between 21 and 27. A few plants that had chromosome counts outside the expected range may have originated from either diploid parthenogenesis, unreduced gametes or spontaneous chromosome doubling during in vitro culture. Pollen stainability of the BC1s ranged from 0% to 91.5%. All the BC1s to B. oleracea were resistant to atrazine.  相似文献   

14.
R. Delourme  F. Eber  A. M. Chevre 《Euphytica》1989,41(1-2):123-128
Summary Intergeneric hybrids (F1) Diplotaxis erucoides (DeDe) x Brassica napus (AACC) and the first backcross to B. napus (BC1) have been obtained through in vitro culture of excised ovaries. The chromosome numbers of F1 and BC1 plants proved the occurrence of unreduced gametes. The study of metaphase I chromosome pairing showed that autosyndesis in De genome and allosyndesis between De and A/C genomes might exist. The male fertility of the F1 plants was low. Some male-sterile plants were found in F1 and BC1 progeny. The possibilities of creating addition lines B. napus-D. erucoides and of obtaining a new cytoplasmic male sterility in B. napus are discussed.  相似文献   

15.
N. Inomata 《Euphytica》2005,145(1-2):87-93
Brassica napus (2n = 38) and Diplotaxis harra (2n = 26) were used to investigate gene transfer from D. harra to B. napus. Intergeneric F1 hybrids (dihaploid 2n = 32 chromosomes) were obtained through ovary culture. The chromosome associations in the first meiotic division was (0–2)III + (2–10)II + (12–28)I. Many seeds were harvested in the F1 hybrid after backcrossing with B. napus, and from open pollination of the F1 hybrid. Somatic chromosome numbers of BC1 and hybrid plants varied from 2n = 26 to 52. In the first meiotic division, high frequencies of bivalent association and relatively low pollen fertility were observed. BC2 plants generated from the BC1 plants with 2n = 38 chromosomes, 69.6% showed 2n = 38 chromosomes. Many aneuploids with addition and deletion of chromosomes were also obtained. A bridge plant between B. napus and D. harra with 2n = 32 chromosomes should be valuable material for the breeding of brassica crops.  相似文献   

16.
X. Q. Zhang    X. P. Wang    J.K. Jing    K. Ross    H. Hu    J. P. Gustafson   《Plant Breeding》1998,117(1):7-12
Five wheat-triticale doubled haploid (DH) lines— M08, V209, DH220-14-2, DH696-3-4 and M16 —derived from anther culture of F1s resulting from crosses involving hexaploid or octoploid triticale × hexaploid wheat, were characterized by cytological and biochemical markers. Cytological evidence from genomic in situ hybridization and C-banding indicated that DH lines M08 and V209 (2n= 42) each contained a pair of 1BL/1RS translocation chromosomes. DH220-14-2 (2n= 42) was also a translocated line with two pairs of chromosomes containing small fragments of rye. One of the translocation fragments carried the Sec-1R gene originating from the satellite region of 1RS; the origin of the other one remains unknown. DH696-3-4 (2n= 42) contained a 3D(3R) substitution. In M16 (2n= 44), three pairs of rye chromosomes, 3R, 4R and 6R, were present, 4R as an addition and 3D(3R) and 6D(6R) as substitutions. Biochemical, isozyme and storage protein markers confirmed the cytological conclusions. The advantages of transferring alien chromosomes or chromosome fragments into wheat and creating alien aneuploid lines by anther culture of hybrid F1s are discussed.  相似文献   

17.
Meiosis in wide F1 hybrids in the tribe Triticeae is complex and irregular. Despite extensive research, the meiotic pathways in such hybrids remain largely unknown. In this study, the effect of the genotypes of disomic wheat–rye substitution lines on the regulation of meiosis in ABDR amphihaploids was analysed by comparing microsporogenesis and seed set under self pollination in hybrids of normal bread wheat (Triticum aestivum L.) and wheats with single chromosome substitutions 1R(1A), 1Rv(1A), 2R(2D)1, 2R(2D)2, 2R(2D)3, 5R(5D), 5R(5A), 6R(6A) with rye (Secale cereale L.). Three types of meiotic pathways were identified in the hybrids: reductional, equational, and equational+reductional. During the reductional type division, chromosomes randomly moved toward the poles at Anaphase I (AI) and separated sister chromatids at AII. Meiosis ended with tetrad formation, and the resulting plants were sterile ((2R(2D)1 × R, 2R(2D)2 × R). In the equational type division, the chromosomes aligned along the equator at Metaphase I and at AI separated into chromatids that moved toward the poles. This meiotic pathway led to dyad formation and partial fertility (especially in hybrids of 1Rv(1A) and 6R(6A)). In the equational+reductional pathway, some chromosomes divided in an equational manner while others were segregated reductionally within the same microsporocyte and this led to formation of tetrads with groups of uncoiled chromosomes. Comparison of the frequencies of each of the three meiotic pathways in different hybrid combinations suggests differences in contributions of individual chromosomes to the control of the entire meiotic process.  相似文献   

18.
K. K. Nkongolo    K. C. Armstrong    A. Comeau    C. A. St.  Pierre 《Plant Breeding》1992,109(2):123-129
Common wheat × hexaploid triticale hybrids were produced and evaluated for tolerance to barley yellow dwarf virus disease (BYD). The BYD tolerance expression varied with wheat × triticale combination. The selection for BYD tolerance increased the recovery of tolerant genotypes in the next generations. Homozygous tolerant and susceptible lines were obtained in advanced generations. The rye chromosomes 1R, 2R, and 4R with 7R were transmitted as disomic or monosomic, disomic, and double disomic substitution to the late generations of ‘Musala’ (common wheat) בMuskox 658’ (triticale), ‘Encruzilhada’ (common wheat) בNord Kivu’ (triticale) and ‘Encruzilhada’× 12th. International Triticale Screening Nursery 267 (12ITSN267) (triticale), respectively. A clear association was established between the 1R chromosome of the ‘Muskox 658’ triticale line and the tolerance to BYDV. Results suggest that the 2R chromosome may be involved in BYD tolerance of ‘Nord Kivu’ triticale line.  相似文献   

19.
A powdery mildew resistant double disomic wheat-rye substitution line carrying rye chromosomes 1R and 2R was crossed with normal bread wheats. The F2 generation was analysed cytologically by C-banding. Wheat-rye chromosome translocations involving both rye chromosomes 1R and 2R were frequent in F2. Lines with translocations of 1R and 2R were harvested separately. After four generations of selfing and selection for mildew resistance and fertility, fully fertile resistant lines were selected and analysed cytologically. Lines with 1BL/1RS and 2BS/2RL translocations were identified. The resistance on chromosome 1RS could not be shown to be different from control varieties carrying the same rye segment, while the resistance on 2RL is much broader than the earlier known 2RL derived resistance in the line Transec. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
甘蓝型油菜(2n=38)与播娘蒿(2n=28)原生质体融合杂种F1连续自交3代,获得F2、F3和F4后代。用细胞学和SSR分子标记方法,分析杂种后代的染色体数目变异、减数分裂行为以及播娘蒿遗传成分的保留情况。结果表明在F2、F3和F4代中,根尖细胞染色体平均数分别为38.47±3.17、37.65±3.23和36.66±2.95,随着自交世代增加呈减少趋势;在杂种后代减数分裂中,观察到染色体桥、染色体落后、染色体周期不同步、不均等分离等现象;杂种后代F2、F3和F4代中检测到播娘蒿特征条带的平均频率分别为9.62%、2.99%和0.31%,呈减少趋势。因此要实现播娘蒿种质向油菜渗入应该重视F2世代的选择。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号